New synthesis and low temperature ¹³C n.m.r. spectra of some **anionic seven-coordinate complexes of molybdenum(II) and** tungsten(II) of the type $[NBu_A^n] [MI_2X(CO)_3L]$

Paul K Baker* and Stuart G Fraser

Department of Chemistry, University College of North Wales, Bangor, Gwynedd LL57 2UW

Summary

The bisacetonitrile complexes $[MI_2(CO)_3(NCMe)_2]$ react with an equimolar amount of L in $CH₂Cl₂$ at room temperature to give $[MI_2(CO)_3(NCMe)L]$ which when mixed *in situ* with an equimolar amount of $[NBu₄ⁿ]X$ affords the anionic seven-coordinate compounds $[NBu₄ⁿ][MI₂X(CO)₃L][M = Mo or W, X = I, L = PPh₃$ (for $M = W$ only), AsPh₃ or SbPh₃ (for $M = Mo$ only); M = Mo and W, $X = Br_3$ or Br₂I, L = PPh₃, AsPh₃ or SbPh3]. These reactions are likely to occur *via* the stepwise dissociative displacement of two acetonitrile ligands. Low-temperature $(-70^{\circ} \text{C}, \text{CD}_2 \text{Cl}_2)$ ¹³C n.m.r. spectra ($C = O$ resonances) are reported for several of the complexes in order to infer the likely stereochemistry of these compounds.

Introduction

The first anionic seven-coordinate complexes to be reported were the N -methylpyridinium salts $\lceil N-1 \rceil$ $Meyy$] $[MX_3(CO)_4]$ (M = Mo or W; X = Br or I) by King in $1964⁽¹⁾$. These complexes were prepared by oxidation of the six-coordinate anions $[N-Mepy][MX(CO)_5]$ with X_2 . Similarly Ganorkar and Stiddard⁽²⁾ published the preparation of the tetrabutylammonium salts $[NBu_4^n]$ - $[MX_3(CO)_4]$ (M = Mo or W; X = Br or I) by an analogous method in 1965. The trichloro- and tribromotetracarbonyl complexes [NEt₄] [MX₃(CO)₄] (M = Mo or W; $X = C1$ or Br) were also prepared⁽³⁾ by reaction of the halide-bridged dimers $[M(\mu-X)X(CO)_4]_2$ with $[Net_4]X$ and the carbonyl substitution reactions of the molybdenum complexes $[NEt_4]$ $[MoX_3(CO)_4]$ $(X = Cl$ or Br) with $L (L = PPh_3, AsPh_3$ or SbPh₃) to give [NEt₄] $[MoX₃(CO)₃L]$ have also been reported⁽⁴⁾. The first phosphine-substituted complexes of this type to be published were the phosphonium salts. $[PPh₃H]$ - $[MX₃(CO)₃(PPh₃)]$ ($\overline{M} = \overline{M}$ o or W; $X = \overline{B}$ r or I) by Lewis and Whyman in 1967 ⁽⁵⁾. These were prepared by reaction of either $[M(CO)₃(PPh)₃]$ or $[M(CO)₄$ - $(PPh₃)₂$] with $X₂$. The molybdenum complex $[PPh₃H] [MOI_3(\overline{CO})_3(PP\overline{h}_3)]$ was also prepared⁽⁶⁾ by reaction of the iodide-bridged dimer $[Mo(\mu-1)I(CO)_4]_2$ with PPh₃. Tsang, Meek and Wojcicki⁽⁷⁾ also reported the preparation of the complexes $\text{[NBu}_{4}^n\text{][MI}_{3}(\text{CO})_3(\text{PPh}_3)$] from the reaction of $\left[\text{NBu}_{4}^{n}\right]\left[\text{MI}_{3}(\text{CO})_{4}\right]$ and PPh₃. In this paper we wish to describe a simple preparation of a wide variety of anionic seven-coordinate complexes of the type $[NBu₁ⁿ][MI₂X(CO)₃L]₃M = Mo or W, X = I, L =$ PPh_3 (for $M = W$ only), AsPh₃ or SbPh₃ (for $M = Mo$ only); $M = Mo$ and W , $X = Br_3$ or Br_2I , $L = PPh_3$, AsPh₃ or $SbPh_3$.

Results and discussion

The starting materials for this research are the sevencoordinate bis(acetonitrile) complexes $\text{[MI}_2(\text{CO})_3$ - $(NCMe)₂$ $(M = Mo$ or W)⁽⁸⁾ which are prepared in quantitative yield by reaction of the zero-valent trisacetonitrile complexes $[M(CO)_{3}(NCMe)_{3}]$ *in situ with* one equivalent of I_2 . Equimolar quantities of $\text{[MI}_{2}(\text{CO})_{3}(\text{NCMe})_{2}$ and L react in CH₂Cl₂ at room temperature to give the acetonitrile substituted products

Table 1. Physical and analytical data for the complexes, $[NBu_4^n][MI_2X(CO)_3L]$.

	Complex	Colour	Yield $\binom{9}{0}$	Found (Calcd.) $(\%)$		
					H	N
$\left(1\right)$	$[NBu4n][WI3(CO)3(PPh3)]$	Yellow	75	38.3(38.5)	4.4(4.5)	0.9(1.2)
(2)	$[NBu4n][MoI3(CO)3(AsPh3)]$	Orange	66	40.4(40.1)	4.6(4.6)	1.4(1.3)
(3)	$[NBu4n][WI3(CO)3(AsPh3)]$	Yellow	77	36.8(37.1)	4.3(4.3)	0.9(1.2)
(4)	$[NBu4n][Mol3(CO)3(SbPh3)]$	Orange	61	37.9(38.4)	4.4(4.5)	1.1(1.2)
(5)	$[NBu4n][MoI2(Br3)(CO)3(PPh3)]C6H14$	Brown	56	40.3(40.9)	5.0(5.2)	1.2(1.1)
(6)	$[NBu4n][WI2(Br3)(CO)3(PPh3)]C4H10O$	Yellow	33	37.1(36.7)	4.4(4.6)	1.0(1.1)
(7)	$[NBu4n][Mol2(Br3)(CO)3(AsPh3)]C4H10O$	Brown	36	38.0(38.0)	4.8(4.7)	1.2(1.1)
(8)	$\lceil NBu_4^n \rceil \lceil WI_2(Br_3)(CO)_3(AsPh_3) \rceil$	Green	46	34.3(33.9)	4.4(3.9)	1.1(1.1)
(9)	$[NBu4n][MoI2(Br3)(CO)3(SbPh3)]$	Yellow	75	34.9(35.0)	4.1(4.1)	1.0(1.1)
(10)	$[NBu4n][WI2(Br3)(CO)3(SbPh3)]$	Green	73	33.0(32.8)	4.0(3.8)	0.9(1.0)
(11)	$[NBu4n][MoI2(Br2I)(CO)3(PPh3)]$	Brown	76	37.0(36.3)	4.6(4.2)	1.2(1.1)
(12)	$[NBu4n][WI2(Br2I)(CO)3(PPh3)]$	Brown	28	34.8(33.8)	4.0(3.9)	0.9(1.1)
(13)	$\lceil NBu_a^n\rceil \lceil Mol_2(Br_2I)(CO)_3(AsPh_3)\rceil$	Brown	72	34.7(35.0)	4.5(4.1)	1.2(1.1)
(14)	$\lceil NBu_{4}^{n}\rceil \lceil WI_{2}(Br_{2}I)(CO)_{3}(AsPh_{3})\rceil$	Brown	51	33.8(32.8)	3.9(3.8)	1.0(1.0)
(15)	$[NBu4n][MoI2(Br2I)(CO)3(SbPh3)]$	Brown	44	33.9(33.8)	4.0(3.9)	1.1(1.1)
(16)	$\lceil NBu_4^n\rceil \lceil WI_2(Br_2I)(CO)_3(SbPh_3)\rceil$	Yellow	63	31.1(31.7)	4.2(3.7)	1.0(1.0)

* Author to whom all correspondence should be directed_

^aSpectra recorded in CHCl₃.

 $\text{[MI}_{2}(\text{CO})_{3}(\text{NCMe})$] which when treated *in situ* with $\lceil NBu_A^n \rceil$ X affords good yields of the anionic compounds $[NBu₄ⁿ][MI₂X(CO)₃L][M = Mo or W, X = I, L = PPh₃$ (for $M = W$ only), AsPh₃ or SbPh₃ (for $M = Mo$ only); M = Mo and W, $X = Br_3$ or Br_2I , $L = PPh_3$, AsPh₃, or SbPh₃} (1-16). The complexes (1-16) were fully characterised by microanalysis (C, H and N) (Table 1) and infrared spectroscopy (Table 2). Repeated elemental analyses and ¹H n.m.r. spectroscopy confirmed the solvent of crystallisation associated with (5-7) (see Experimental). The triiodide complexes $(1-4)$ are stable in the solid state when stored under nitrogen. However, the mixed halogen compounds $[NBu_4^n]$ $[MI_2X(CO)_3L]$ (5-16) decompose upon exposure to air in the solid state, although they can be stored for short periods at 0° C under nitrogen. All the complexes are air-sensitive in solution. The compounds $(1-16)$ are soluble in CHCl₃ and CH₂Cl₂ but insoluble in hydrocarbon solvents. The triiodide complexes are insoluble in MeOH whereas the "mixed" halide complexes (5- 16) are sotuble in MeOH.

The reactions of $[MI_2(CO)_3(NCMe)_2]$ with L followed by an *in situ* reaction with [NBu₄]X are likely to proceed *via* successive dissociative mechanisms as shown in Scheme 1. Evidence to support this scheme comes from
the fact that the monoacetonitrile complexes that the monoacetonitrile complexes $[MI_2(CO)_3(NCMe)L]$ have been isolated and fully char- $\arct{e}^{(9)}$. Also the six-coordinate complexes $[MoX_2(CO)_3L](X=Cl, Br or I; L=PPh_3, AsPh_3 or$ $SbPh_3$) have been prepared ⁽¹⁰⁾ by reaction of the pentacarbonyl complexes $[Mo(CO)₅L]$ with $X₂$ in hexane. These results support the formulation of the proposed intermediates $[MI_2(CO)_3(NCMe)]$ and $[MI_2(CO)_3L]$ shown in Scheme 1.

The x-ray crystal structures of both neutral and anionic seven-coordinate complexes of molybdenum(II) and tungsten(II) have generally been found to have capped octahedral geometry⁽¹¹⁻¹⁹⁾. The low temperature ¹³C_{n.m.r.} spectra δ (C=O) of (1, 6, 8, 9, 11, 13, 15) have

(i) $\text{[MI}_2(\text{CO})_3(\text{NCMe})_2] \rightarrow \text{[MI}_2(\text{CO})_3(\text{NCMe})_1 + \text{NCMe}$

(ii) $[MI_2(CO)_3(NCMe)] + L \rightarrow [MI_2(CO)_3(NCMe)L]$

(iii) $\lceil \text{MI}_2(\text{CO})_3(\text{NCMe}) \text{L} \rceil \rightarrow \lceil \text{MI}_2(\text{CO})_3 \text{L} \rceil + \text{NCMe}$

(iv)
$$
[MI_2(CO)_3L] + [NBu_4^n]X \rightarrow [NBu_4^n][MI_2X(CO)_3L]
$$

been measured in order to gain insight into the geometry of some of the complexes described in this paper. The low temperature $(-70^{\circ} \text{C}, \text{CD}, \text{Cl}_2)^{13} \text{C}$ n.m.r. spectrum of the complex $[NBu_4^{\pi}][WI_3(CO)_3(PPh_3)]$ (1) showed three carbonyl resonances of equal intensity at $\delta = 212.54$, 215.67 (d, ²J_{C-P} = 28.87 Hz) and 240.51 (d, ²J_{C-P} = 34.46Hz)ppm. In view of the work of Colton and Kevekordes⁽²⁰⁾ on other seven-coordinate complexes of molybdenum(II) and tungsten(II), the low-field resonance at $\delta = 240.51$ ppm can be ascribed to a carbonyl ligand in the unique capping position. Ganscow and $Vernon⁽²¹⁾$ have suggested that the carbonyl ligand in the unique capping position is most strongly bound due to π -back donation and as such δ (CO) is shifted to higher frequency in the 13 Cn.m.r. spectrum. Since the two octahedral carbonyls for (1) are in different environments as indicated by the $13Cn.m.r.$ spectrum a possible structure for this complex is shown in Figure 1.

The low-temperature $(-70^{\circ} \text{C}, \text{ CD}_2\text{Cl}_2)$ ¹³C n.m.r. spectrum of the "mixed" halide complex $[NBu_4^n]$ - $[Mol_2(Br_3)$ (CO)₃(SbPh₃) \rfloor (9) shows two resonances at $\delta = 206.92$ and 238.67 ppm with an intensity ratio of 2:1. For complex (9) the low field resonance at δ $= 238.67$ ppm is due to a carbonyl ligand in the unique capping position and the resonance at $\delta = 206.92$ ppm can be ascribed to two equivalent octahedral carbonyls. Generally the halide ligands make up the opposite face to the capped face and hence the structure proposed for (9) is shown in Figure 2.

However, the low-temperature $(-70^{\circ} \text{C}, \text{CD}, \text{Cl}_2)$ 13 Cn.m.r. spectra of the related complexes (6), (8) and (11-13, 15) all show a single resonance at $\delta = 199.83$. 204.32, 207.06, 206.94 and 207.21 ppm, respectively. Hence, it is likely that these complexes are fluxional even at -70 °C, since these carbonyl ligands in octahedral environments cannot all be equivalent in these complexes. Fluxionality has been previously observed for sevencoordinate halocarbonyl complexes $(22-24)$. It should also be noted that complexes (4) , (6) and $(14-16)$ show 4 carbonyl bands in their infrared spectra (Table 2) and it is highly likely that different isomers of these complexes exist in solution.

Experimental

All reactions described in this paper were carried out under an atmosphere of dry N_2 . The complexes $\text{[MI}_2(\text{CO})_3(\text{NCMe})_2]$ (M = Mo or W) were synthesised by the literature method⁽⁸⁾. All chemicals used were purchased from commercial sources except $[NBu_A^n]X(X)$ $=$ Br₃ or Br₂I] which were prepared by the published method⁽²⁵⁾. \tilde{CH}_2Cl_2 was distilled before use.

Figure l. Proposed structure $[NBu_4^n][WI_3(CO)_3(PPh_3)]$ (1).

for the complex

Figure 2. Proposed structure for $[NBu₄ⁿ][MoI₂(Br₃)(CO)₃(SbPh₃)] (9).$ the complex

Elemental analyses for C, H and N were recorded on a Carlo Erba Elemental Analyser Mod 1106 (using helium as the carrier gas). Infrared spectra were recorded as CHCl₃ films between NaCl plates on a Perkin-Elmer 197 i.r. spectrophotometer. The 1 H n.m.r. spectra of complexes (5-7) were recorded on a Jeol FX60 MHz n.m.r. spectrometer. Low temperature 13 Cn.m.r. spectra were recorded on a Bruker WH-400 MHz n.m.r, spectrometer at the University of Warwick (all spectra were calibrated against tetramethylsilane).

$[NBu_{4}^n] [Mol_3(CO)_3(SbPh_3)]$ (4)

To $[MoI_2(CO)_3(NCMe)_2](0.219 g, 0.425 mmol)$ dissolved in $CH₂Cl₂$ (15 cm³) with continuous stirring under a stream of N_2 was added SbPh₃ (0.150 g, 0.425 mmol). After stirring for 5 min, $[NBu₄ⁿ][(0.157 g, 0.425 mmol)$ was added and the mixture stirred for a further 90 min. After filtration, the volume was reduced to 5 cm³ in vacuo and addition of MeOH (20 cm^3) gave an orange precipitate of $[NBu₄ⁿ][MoI₃(CO)₃(SbPh₃)]$. This was filtered and dried under vacuum (yield = 0.30 g, 61%).

Similar *in situ* reactions of [MI₂(CO)₃(NCMe)L] with [NBu₄]I gave the complexes, [NBu₄][MI₃(CO)₃L]. Reaction times for $\text{[MI}_2(\text{C}\bar{\text{O}})_3(\text{N}\bar{\text{C}}\bar{\text{M}}\text{e})_2)+\text{L}\rightarrow \text{[MI}_2-(\text{CO})_3(\text{N}\text{C}\text{M}\text{e})_1$ and $\text{[NBu}_4^n]\text{[}-\text{[NBu}_4^n]\text{[}M\text{I}_3-\text{[}M\text{I}_4\text{e})_2$ and $[NBu₄ⁿ][NBu₄ⁿ][MI₃$ - $(CO)₃L$ + 2NCMe at 25°C are:

(1) $M = W$, $L = PPh_3$, 1 min; [NBuⁿ₄]I, 22 min;

- (2) $M = Mo, L = AsPh₃, 3 min; [NBu₄ⁿ]*I*, 60 min;$
- (3) $M = W$; $L = AsPh_3$, 3 min; [NBu₄]I, 19 min;

$[NBu_4^n][WI_2(Br_3)(CO)_3(SbPh_3)]$ (10)

To $[WI_2(CO)_3(NCMe)_2]$ (0.210 g, 0.348 mmol) dissolved in CH_2Cl_2 (15 cm³) with continuous stirring under a stream of N_2 was added SbPh₃ (0.123 g, 0.348 mmol). After stirring for 5 min $[NBu₄ⁿ]Br₃ (0.168 g, 0.348 mmol)$ was added and the mixture stirred for a further 40 min. After filtration, removal of solvent *in vacuo* gave green crystals of $[NBu_4^{\text{n}}][WI_2(Br_3)(CO)_3(SbPh_3)]$ (yield $= 0.346$ g, 73%), which were recrystallised from CH₂Cl₂. Similar *in situ* reactions of $\lceil \text{MI}_2(\text{CO})_3(\text{NCMe}) \text{L} \rceil$ with

 $[NBu₄ⁿ]**X**(X = Br₃ and Br₂**I**) gave the complexes$ $\text{NBu}_{4}^{\text{m}} \text{J} \text{m} \text{I}_{2} \text{X} \text{CO}_{3} \text{L}$. Reaction times for $[MI_2(CO)_3(NCMe)_2] + L \rightarrow [MI_2(CO)_3(NCMe)L]$ and $[NBu_4^n]X \rightarrow [NBu_4^n] [MI_2X(\bar{C}O)_3L] + 2NCMe$ at 25°C are:

 $(5)^*$ M = Mo; L = PPh₃, 1 min; [NBu₄]Br₃, 44 min;

- (6)^{\blacksquare M = W; L = PPh₃, 1 min; [NBuⁿ₄]Br₃, 44 min;}
- (7) ^t M = Mo; L = AsPh₃, 3 min; [NBu₄]Br₃, 42 min;
- (8) $M = W$; $L = AsPh_3$, 3 min; [NBu₄]Br₃, 57 min;
- (9) M = Mo; $L =$ SbPh₃, 5 min; $[NBu_4^{\mu}]Br_3$, 40 min;
- (11) M = Mo; $L = PPh_3$, 1 min; [NBu₄]Br₂I, 44 min;
- (12) $M = W$; $L = PPh_3$, 1 min, [NBu₄]Br₂I, 49 min;
- (13) M = Mo; $L = AsPh_3$, 3 min; [NBu₄]Br₂1, 47 min;
- (14) $M = W$; $L = AsPh_3$, 3 min; $[NBu_4^n]Br_2I$, 42 min;
- (15) $M = Mo$; $L = SbPh_3$, 5 min; $[NBu_4^u]Br_2I$, 50 min;
- (16) $M = W$; $L = SbPh_3$, 5 min; [NBuⁿ₄]Br₂I, 40 min.

Acknowledgements

We wish to thank Dr. O.W. Howarth for recording several low temperature 13 C n.m.r, spectra at the University of Warwick, and we thank the S.E.R.C. for support. We also wish to thank Mr Barry Kaye for preparing the anionic salts [NBu $_{4}^{n}$]X (X = Br₃ and Br₂I).

References

- ⁽¹⁾ R. B. King, *Inorg. Chem.*, 3, 1039 (1964).
- r M. C. Ganorkar and M. H. B. Stiddard, *J. Chem. Soe.,* 3494 (1965) .
- J. A. Bowden and R. Colton, *Aust. J. Chem.,* 21, 2657 (1968).
- (4)j. A. Bowden and R. Colton, *Aust. J. Chem.,* 22, 905 (1969).
- (5)j. Lewis and R. Whyman, *J. Chem. Soc. A,* 77 (1967).
- (6)R. Colton and C. J. Rix, *Aust. J. Chem.,* 22, 305 (1969).
- ⁽⁷⁾ W. S. Tsang, D. W. Meek and A. Wojcicki, *Inorg. Chem.*, 7, 1263 (t968).
- ~a)p. K. Baker, S. G. Fraser and E. M. Keys, *J. Organomet. Chem.,* 309, 319 (1986).
- o) p. K. Baker and S.G. Fraser, *Transition Met. Chem.,* In Press.
- u0) S. C. Tripathi, S. C. Srivastava and D. P. Pandey, *Transition Met. Chem.,* 2, 52 (1977).
- (11)M. G. B. Drew and A.P. Wolters, *J. Chem. Soc., Chem. Comm.,* 457 (1972).
- ⁽¹²⁾ A. Mawby and G. E. Pringle, *J. Inorg. Nucl. Chem.*, 34, 517 (1972).
- (X3)M. O. B. Drew, *J. Chem. Soc., Dalton Trans.,* 626 (1972).
- ~t4)M. G. B. Drew, J. *Chem. Soc., Dalton Trans.,* 1329 (1972).
- ~ Shmid, R. Boese and E. Welz, *Chem. Ber.,* 108, 260 (I975).
- ⁽¹⁶⁾ M. G. B. Drew and J. D. Wilkins, *J. Chem. Soc., Dalton Trans.,* 1984 (1975).
- (17)R. Boese and U. Mfiller, *Acta Crystallogr.,* B32, 582 (1976).
- (18)M. G. B. Drew and A. P. Wolters, *Acta Crystallogr.,* B33, 205 (1977).
- (19)M. G. B. Drew and J.D. Wilkins, *J. Chem. Soc., Dalton Trans.,* 557 (1977).
- (2~ Colton and J. Kevekordes, *Aust. J. Chem.,* 35, 895 (1982).
- (2t) O. A. Ganscow and W. El. Vernon, *Top t3C n.m.r. Spectrosc.,* 2, 270 (1970).
- *c22)F.* A. Van-Catledge. S. D. Ittel and J. P. Jesson, *Organometallics,* 4, 18 (1985), and refs. therein.
- ~2S)L. Mihichuk, M. Pizzey, B. Robertson and R. Barton, *Can. J. Chem.*, 64, 991 (1986).
- ~24)F. A. Cotton and M. Matusz, *Polyhedron,* 6, 261 (1987).
- (25r p. Silvestrori and F. Rallo, *Gazz. Chim. Ital.,* 109, 295 (1979).

(Received 4 December 1987) TMC 1825

^{*} Complex precipitated out of CH₂Cl₂ solution upon addition of hexane. The room temperature 1 Hn.m.r, spectrum of (5) in CDCl₃ showed resonances at $\delta = 1.27$ (brm, 50 H, Buⁿ and C₆H₁₄) and 7.56 (m, 15H, Ph).

[†] Complexes precipitated out of CH_2Cl_2 solution upon addition of Et₂O. The room temperature the ${}^{1}H$ n.m.r. spectrum of (6) in CDCI₃ showed resonances at $\delta = 1.81$ (brm, 40 H, Buⁿ + OCH₂CH₃), 4.08 (q, $4H$, OCH₂) and 8.04 (m, 15 H, Ph). At room temperature the ¹H n.m.r. spectrum of (7) in CDCl₃ showed resonances at $\delta = 1.32$ (brm, 42 H, Buⁿ $+ OCH₂CH₃$), 3.47 (q, 4H, OCH₂) and 7.45 (m, 15H, Ph).