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The studies of Kapitsa initiated the detailed experimental and theo-
retical study of the flow of a thin layer of viscous liquid (liquid film)
over a solid surface [1-2]. Extensive experimental data on this ques-
tion have now been accumulated, As a rule, the existing theories are
based on linearization of the problem and diverge considerably from
the experimental results. The present paper is also addressed to the
theoretical solution of this problem. The solution method used enables
consideration of the wave flow of the liquid as a nonlinear problem
and on this basis permits determining all the parameters of the wave
regime—amplitude, wavelength, wave propagation speed, frequency,

1. Consider a thin layer of viscous liquid that
flows along a vertical surface under the influence of
the gravity force. We shall assume that the liquid
surface is free, i.e., the air friction force does not
act on the surface. We direct the x-axis along the
surface in the direction of action of the gravitational
force, and the y-axis toward the liquid; in this co-
ordinate system the liquid motion is described by
the following system of Navier-Stokes and continuity
equations:
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Let y = a(x,t) be the equation of the layer free sur-
face. To system (1) we must also add the equation
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S+t 0= udy, (1.2)
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expressing the condition that the surface consists of
streamlines. In view of no liquid slip at the wall we
have the two boundary conditions

u==0, v=0 for y=290. (1.3)

If only surface tension and the constant pressure
pp act on the liquid surface, then in the case of plane
flow with y = a(x,t) the following relations will be
satisfied [3]:
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Here o is the surface tension coefficient and R is
the radius of curvature of the surface.

In the following we shall consider a liquid layer
which is not bounded along the x-axis with a time-
average thickness g, and shall seek solutions periodic
with respect to x in the form of traveling waves.

Such solutions may be represented in the form of
functions of the variables y and £ = (n/ap)(x — wt).

Parameters of Optimal Wave Regimes

R Acm 10gg,cm p w,cmfsec n 10 p2 w20 10 p2 w1 2
9 1.196 0.406 0.080 9.530 0.055 --0.159 0.036 2.945
15 0.980 0.124 0.174 12.700 0.079 --0.328 0.158 2.760

20 0.912 0.134 0.241 14.513 0.093 --0.435 0.292 2.569
25 0.836 0.143 0.204 15.936 0.101 —0.520 0.424 2.401
30 0.865 0.150 0.334 17.191 0.108 -—0.561 0.529 2.268
35 0.859 0.157 0.365 18.321 0.115 --0.601 0.827 2.161
40 0.851 0.163.. 0.390 19.401 0.120 —0.618 0.705 2.078
45 0.845 0.168 0.410 20.439 0.125 —0.626 0.773 2.010
50 0.841 0.473 0.427 21,442 0.129 -—0.628 0.832 1.955
55 0.837 0.178 0.441 22.418 0.133 —0.626 0.885 1.909
60 0.834 0.182 0.452 23.370 0.137 -—-0.620 0.931 1.871
65 0.830 0.187 0.462 24.313 0.144 -—-0.611 0.972 1.839
70 0.830 0.191 0.471 25.226 0.144 -—0.605 1.014 1.310
75 0.829 0.195 0.478 26.12f 0.148 —-0.508 1.053 1.786
85 0.825 0.202 0.490 27.888 0.154 —0.575 1.116 1.746

Then agn will be the characteristic dimension along x
and ay will be the same along y.

Let us assume that the condition n « 1 is satisfied.
Physically this means that the wavelengths are con-
siderably longer than the average layer thickness.
From experiments [2], it follows that n in the case of
periodic wave motions is on the order of 0.1; with an
average layer thickness on the order of 1 mm we ob-
serve wavelengths of about 1 cm. The calculated
values of n shown in the table are of the same or-
der. :
The condition n << 1 enables us to estimate the
terms in Egs. (1.1) and the boundary conditions (1.4)
and immediately simplify them, which facilitates the
solution considerably. If we assume that u ~ Vy, from
the continuity equation it follows that v ~ nV,.

As a result of this, from the second equation of
motion we obtain
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Here the first term denotes the viscous terms and
the second term the inertial.

The quantity R = 3g,V,»~! is the Reynolds number;
it will be seen later than R is on the order of 10 and
the ratio n/R is small except forthe case of very small
flow rates.

Thus, with an error whose order does not exceed
the larger of the numbers n? and 3nR™, the pressure
may be considered constant across the layer and
equal to the pressure at the surface.
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Simplifying with the same accuracy the boundary
conditions (1.4) and neglecting in the first equation of
motion the derivative
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we obtain the following problem:
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=0, v=0 for y=0,
ou/dy=0 for y=alz,t) (1.5)

Now we replace the equations of system (1.5) by
equations integrated with respect to the variable y.
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This replacement may be considered as the first step

in sequential application of the direct method. For

this we select a complete system of functions W;(y)

satisfying the boundary conditions; we represent the
velocity u in the form

u—= 2, bi(x,t)Wi(y) s

and from the continuity equation we find

¥
v = — .9b;/oz \ Wi(y)dy.

1 0

Substituting u, v into Eq. (1.5), we require that
the resulting expression on the segment (0, a) be
orthogonal to the complete system of functions Vj(y),
and from the orthogonality conditions we obtain the
equations for b;(x,1).

In limiting ourselves to the first term, we avoid
verifying the rapidity of the convergence of this pro-
cess and we judge the accuracy thus obtained only in
comparison with the experimental data. We set

u=23U(xz,t)[y/a— Y (y/a)?],

which coincides with the exact solution for the lami-
nar flow regime of the layer. Integrating the first of
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Egs. (1.5) with respect to y from 0 to a and intro-
ducing the variables
a Q

U
g: 1;'.=n——°-t’ h:——, q = 5
ao a aUo

(1.6)

we obtain the equations for determining the dimen-
sionless thickness h and the flow q:
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Here V; is the characteristic value of the velocity,
which, generally speaking, may be selected arbitrar-
ily. In place of Vg, g, it is more convenient to use the
dimensionless parameters R and R, = ga,*v~2, with
whose aid the coefficients of Eqs. (1.7) may be expres-
sed as follows:
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The first of these parameters characterizes the
flow rate, and the second is uniquely associated with
the film thickness. If as V; we select the average
velocity for laminar flow of a layer of thickness g,
then, as follows from the second of Egs. (1.7), R, =
= R in this case and the average value g, of the flow
rate differs from unity. If we take as V; the average
velocity in that section where the film thickness is g,
for wave flow, then g, = 1 but R, = R.
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Only four parameters appear in system (1.7): Ry,
R, z, andnor R, %, n, qif Ry = R(z = w/Vy). From
the physical aspect of the considered problem and
from the condition of unique solvability for the
periodic solution, two of these parameters may be
considered known, while the other two must be de-
termined in the course of the solution. For example,
we may consider that R and A are given, i.e., the
flow rate and the disturbance wavelength, and deter-
mine the corresponding average thickness and wave
phase velocity, -or else specify R, and A. The quan-
tities vy, v characterize the physical properties of the
liquid and are considered given. In the following cal-
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culations we take v = 0.0114 ecm?/sec, g = 981 cm/sec?,
T = 28590 (water at 15° C).

In the case of the steady-state traveling wave re-
gime, 8/87 = 0; therefore, from the first of Egs. (1.7)
we easily find that

q = zh -+ go — 3. (1.8)

We select Vysothat q;=1, andwe set h=1 + ¢,
where ¢ represents the disturbance of the surface of
the downflowing liquid caused by the wave formation.
Then with the aid of (1.8), we obtain the equation for
@:
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The study of the periodic solutions of (1.9) forms
the subject of further consideration. This equation
was first obtained in {1] (the term vou/dy was not
considered in the derivation). In the form written
here it was considered in [4], where for the partic-
ular value A = 1 the periodic solution was constructed
for small values of the wave amplitude by a series
expansion.
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2. We shall seek the periodic solution of (1.9) in
the form of the Fourier series

@ == psin £ | p%(pao sin 28 + @y c0s2E) .. ., (2.1)

in which, without loss of generality, we can drop

cos &, since £ does not appear explicitly in (1.9), and
therefore solution (2.1) is determined only with accu-
racy to within an arbitrary shift along £. I we substi-
tute (2.1) into the left side of (1.9), we obtain a non-
linear expression containing powers of the trigono-
metric functions. The basic idea of the solution
method is to transform this expression and represent
it in the form of a Fourier series as well. It is con-
venient to make this transformation as follows. We
write (2.1) in the form of an expansion in powers of
sin £ and cos §, using for this the relations express-
ing the trigonometric functions of a multiple angle in
terms of the function of a single angle. We substitute
the resulting series for ¢ into (1.9) and collect terms
of like order in s, ¢ (where s = sin &, ¢ = cos £).
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The left side of (1.9) will represent the sum of
polynomials homogeneous in s, ¢

Qi=Qus!+ Qus™lc4... + Quct (i=0,1,2,..)

of zero, first, etc. orders. We add to this sum the
differences

Qi - Q‘l(sz + 02)7
Q; = Qiost + Qustle + ... -+ Quct,

These differences are identically zero in view of
the relation s+ ¢?= 1. We then define the coeffi~
cients Qi in terms of Qi so that the expressions
Q, — Qy(s? + %, Q3 — Q4(s%+¢?, ... convolute into
the corresponding harmonics My, sin k& + My, cos ké.
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Here in order to reduce the second harmonic {o the
normal form, we must introduce Q,, for the third
harmonic we iniroduce Q, etc. After the left side of
(1.9) is transformed into a Fourier series, it re-
mains to equate its coefficients to zero.

The resulting system of equations will be infinite
and must be truncated for practical consideration.
If we limit ourselves to the consideration of the i + 1
harmonic and set all ¢, beginning with Q;4,, equal to
zero, then we obtain a closed finite system of equa-
tions. Its solution will represent the solution of the
considered problem in the i-th approximation. In
order to write out this system, we must find concrete
expressions for Qjk in terms of ¢ by expanding Q
in a series.

In the first approximation we set Q = ¢ (k = 2, 3,
.). Equating to zero the coefficients of the first
two harmonics and the free term of the expansion of
the left side of (1.9), we obtain the following system

after some transformations:

r 34’ =0,
41 —A)p 2434+ B —124¢n—4{(13 - B)gu =0,
4Dp2 4 34 — 124qu + 4 (13 + B)gu =0,
2(4 — A)gu + Doz — Y/5(3+ 2B) =0,
Dzt — 2(4 — A) g — 24 = 0. (2.2)
Here the unknowns will be p, ¢4, ¢y and any two

of the four parameters R;, R, z, n. We introduce the
quantities t, s, w by the relations

t=3—z wi=t11—R/R), s=A—1, (2.3)

and take as the unknowns A and w, while we consider
t and s known. From the first of Egs. (2.2) we find

p? =2 t/w. (2.4)

Excluding ¢qg, @4 from the four remaining equa~
tions, we obtain the equationsfor determining A andw:
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18(2 — s)w? — [63 + 6s + 488 — (3+ B)t +
F18(3— 1) (2—9)] w—t(3—1)(3+B) =0, (2.5)

6[3 —t/w(B—t—w)(h—t—w)jdz—

—(21+2B) (3+2B) +
+23—5)(8+B) — 123 —s)swtt =0,  (2.6)
(38—

; J L S
15 — 18t + 58

(1+s).

If we now specify the values of t and s, from (2.5)
it is easy to find w, and then from (2.6) and (2.4) we
find A and p2
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Using (1.9), (2.3) it is easy to find the expressions
for all the physical parameters intermsof t, s, A, w:

AR = (1 4 5) =3 (4 - t/w)A2 (512 — A8t + 15)2,
nd = RQ%/"\’A, R = Ro(1 -— t/ lU),
o = (3 — t)Rv [ 3ay,

ag® = Ryv?/ 8
A= 23‘[2(10 / n, (2.7)

We see from (2.4) that real solutions of the con-
sidered problem exist for t/w >0. From (2.5) follows
that if t, s are not too large, then w will be positive
and therefore we must have t > 0. Recalling the defi-
nition of t, we find that the ratio z of the wave propa-
gation velocity to the average liquid velocity is always
less than 3. We determine completely the region of
existence of the wave regimes in the t, s plane if we
assume that the inequalities « > A%z 0 must always
be satisfied.

In accordance with (2.6), the limiting values of A2
are reached on lines whose eguations are

3—t/w@B—t—w)(—t—w) =0,
(21-+2B)(3+2B) —2(3 —s)x
X(3 + B) — 12(3 — s)sw/t = 0. 2.8)

These lines are shown in Fig. 1. The values of
t, s included between these lines and the t = 0 axis
are admissible, i.e., for any of these values the
periodic solution of (1.9) in the first approximation
exists and may be calculated with the aid of (2.4)—
(2.7). The entire existence region consists of two
parts having a common point with the coordinates
t =1.3101, s = —1 at which the boundary curves inter-
sect. The portion of the region to the right of this
point represents a very narrow lune whose vertex has
the coordinates t = 1.4908, s = —=. The values of t,
s lying therein correspond to large flow rates; they
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are not used for comparison with the experimental
data and therefore are not examined in detail.

Each periodic solution may be characterized by
the number R, and the wavelength A; in Fig. 1 this is
the point of intersection of lines of constant values of
Ry and A. All lines Ry = const, A = const begin at the
point O and pass through the point N. The solutions
represented by the point O kave zero amplitude. In
essence they were considered in [1], while the solu-
tions constructed in [4] are represented by the seg-
ment of the s = 0 axis beginning at O. These solutions
are bounded by the value R = 14.75 which is obtained
as t — +0. The portion of the s-axis from O to Kcor-
responds to zero flow rate.

For small values of t and s = 0, i.e., small flow-
rates, it is not difficult to obtain approximate expres-
sions for all the problem parameters if we limit our-
selves to the first terms of the expansion in t

30 (A+s)*(A—es)
101 s(3—s) (1 — 62/303s) .’

2\ s 2 \Ys
@y == (1.) R'/a1 A= 2n (l-) _LR*'/'.',
g ®

R = + 27

8
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0=V (l > R
4
n=dRh,  d=[H{A+9]n @9

All the periodic solutions for given R are repre-
sented in Fig. 1 by the lines R, = const. With in~
crease of the distance [ from the point O along each
of these lines the amplitude p increases monotonic-
ally, while the number R first increases and then de-
creases. At the point where R reaches a maximum,
the derivative 8R/9] vanishes. Since R; and R are
functions of t and s, this condition may be written

R 0R, OR OR,
———————=0. (2.10)

We introduce w and A in place of R and Ry; then
the condition (2.1) may be written as

1 ( [r?A2 t /0420w dw 6A2)'J+
yrARY '79?+E(_a?7s“ 5t s
t dw t 9— 5t

Rk 3"6'1175t2—18t+ 15

ow

1+ s)a—s— =0. 2.11)

Here the derivatives are found with (2.5) and (2.6).
The set of all such points constitutes the line MN in
Fig. 1. In view of the symmetry of Eq. (2.10), a
minimum value of Ry for a given R is also reached on
this line. Thus, MN is the line of optimum periodic
solutions. Along this line the value of R increases
monotonically: R=0fort=0, andR=95fort=
= 1.282, The calculation of these solutions may be
carried out by joint solution of Egs. (2.5), (2.6), (2,11);
the results of the calculations are presented in the
table.

In order to evaluate the accuracy of the solution
constructed, let us consider the second approxima-—
tion. We set Q; =0 (i =3, 4, ...) and equate to zero
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the first seven coefficients of the Fourier series for
the left side of Eq. (1.9). If we introduce the vari-
ables t, s, w, A% as was done in the first approxi-
mation, after lengthy calculations we obtain the equa-
tions for Afand w

8(3 -+ 80) {2 —syu? — [63 4 18B + 65— (34 B)t -+

+6(3—1) (34 60) (2 —s) — 65 —
(21 +2B)8]w— (3 — 1) (3+B) =0,
(214 2B) (3 + 2B — 8)) — 2(3 — 5)
X(3 - B) 4 4(3 — 5) (3 + do)swi~t —
68— & —twi(3—t—w)X
X [(1 4 1sdo) (3 — £ —w) —*]}A% =0,
8o == 2p2[4141(18 + B) ¢z —
— 3o + *fapa? — BA~PaoPas + Yapar’],
81 == Y02 —1 + 6Aga + 4(12 + B)gu +
+ 4(39 + 2B) gz — 1240q],
8g = p2[—2471(12 4 B) @2 + 3par+
+ 6 -+ 2474 (39 + 2B) pu], (2.12)

and the coefficients of the expansion (1.9) are expres~
sed as

A~tego = Y2/ (3 + 2B — 8;) — (3 —5) (3 — &2),
e@u = (3 — 5) (3 + 2B — 81) + 12(3 — &) fA2,
e1gso = LafA? — 3(8 — s) Lo,
Aty = 3(8 — s) L + fLs,
f=—tw(E3—t—w),
e= (fA)2 +4(3—9)% & =98—s)72+ (f4)?
Ly = u[1 + 8(9 + 2B) A~'ge — 129m],
Ln=1,[— (3 + B) -+ 124qu + 6(9 + 2B)gu].

If we set 6, =0, 8; = 0, 6,= 0 here, then we ob-
tain the equations of the first approximation consid-
ered above.

The relations derived are convenient to use for
calculations by iterations. In the second approxima-
tion the set of admissible values of t, s changes, and
solution of (2.12) will not exist in some portion of the
region shown in Fig. 1, and in the case in which solu-
tions exist in both approximations the degree of dif-
ference befween them will not be the same in various
parts of this region.

Calculations show that for values of R of the order
of 30 the difference between the first and second ap-
proximations with regard to all the parameters is
completely negligible for the optimal regimes. This
difference increases in the direction of small flow-
rates and particularly in the direction of large rates.
For values of R of order 50 this difference amounts
to about 10%. If we construct graphs of the variation
of @y, A, w with flow rate for values of s, t lying on
the line MN, as is done in Figs. 2—4, then we obtain
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curves which practically coincide. The difference is
in the wave shape and, in particular, in the values

of the smallest and largest oscillation amplitudes is
more marked. This difference may be seen in Fig. 5,
where the solid lines correspond to the first approxi-
mation and the dashed lines to the second (1 is the
wave trough, 2 the crest).

3, Ler us apply the constructed solution to the explanation of the
experimental data, considering primarily the results of [2]. First of
all we note that Eq. (1.9), whose periodic solution was studied, was
obtained from the governing system of equations using certain simpli-
fications; therefore, it describes the wave motion of a viscous liquid in
a thin layer approximately. We can judge the accuracy by comparison
with experimental data; however, some preliminary statements may be
made. The accuracy will be poorer for small A, comparable with the
layer thickness gy, since in this case the boundary layer approximation
used becomes incorrect. For very large A the wave profile has a complex
form, as calculations show, and iis representation by two or even three
harmonics of the Fourier series is not exact; in this case the solution
method used is not sufficiently accurate. Therefore the cases of long
and short wavelengths must be excluded from consideration. We see
in Fig. 1 that the lines of constant values of A cluster together near the
boundaries of the existence region, near which their density increases
stiarply. The major portion of this region is included between the lines
A= 0.7 cm and A= 1.4 cm; the simplifications made are best justified
for the wave regimes corresponding to this portion of the region.

Theoretically, for & given flow rate there exists an infinite number
of wave regions which differ in wavelength, and there is no a priori
indication of which will be observed experimentally, In reality it is
found that if special measures are not taken the wave flow of the liquid
layer will be unsteady and waves of different length are observed si-
multaneously, Clear-cut periodic motion is realized only in the case
in which periodic disturbances of a frequency which is unique for the
given flow rate are imposed on the flow. In this case a wavelength may
be associated with each flow rate. Experiment does not indicate in
what way this wavelength differs from the others and why this specific
wavelength is realized from among the infinite set of possible regimes,
However the theoretical examination leads to the conclusion that
among all possible regimes there actually exist those which are in a
definite sense exceptional regimes--these are the optimum regimes,

It is natural to suggest that it is precisely these regimes which are ex-
perimentally observed. In Fig. 2 (and in the remaining figures) the
solid curve shows the theoretical variation of wavelength with flow
rate, and the dashed curves show the experimental results [2]. The
close correspondence of the theoretical and experimental data indicate
that the assumption concerning the optimum regimes will be correct or
very close thereto,

In Fig. 1 the optimum regimes are represented by the points of the
line MN, They exist in a large range of flows from R= 0 to R = 100.
The experimentally observed regimes [2] occupy only the portion of
this range from about R = 20 to R= 60, i.,e., the region of medium
flow rates. A comparison of the theoretical and experimental data is
shown in Figs. 3-5. Good agreement is obtained with respect to the
values of the average thickness (in Fig, 3 the curve is for 1.07ay, since
the experimental pointsrepresent the quantity 1.07 « (Gax + @min)/2)
and the wave propagation velocity and somewhat poorer agreement
with respect to the amplitude values, although nearly all the experi-
mental points fall in the band between the maximum and mini-
mum amplitudes or very close thereto. On the whole, this com-
parison confirms the rather good accuracy of the constructed
solution.
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