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ABSTRACT. We consider two different time discretization algorithms for a nonlinear parabolic PDE arising in heat 
conduction phenomena with phase changes in two adjoining bodies fl and F, where F can be considered as the 
boundary of ft. Stability, convergence and error estimate results are given for both algorithms. 

SOMMARIO.  Si studiano due algoritmi di discretizzazione nel tempo di un sistema di equazioni a derivate parziali 
non lineari paraboliche che governa la conduzione del calore, in presenza di cambiamento di fase, in due corpi 
congiunti f l e  F, di cui F possa essere considerato come la frontiera d i f L  Vengono dati risultati di stabilitfi, 
convergenza e maggiorazione deU'errore per entrambi gli algoritmi. 
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0. I N T R O D U C T I O N  

The Stefan problems in a concentrated capacity arise in 
heat diffusion phenomena involving phase changes in two 
adjoining three-dimensional bodies fl and F, when assum- 
ing that the thermal conductivity along the direction 
normal to the boundary of ~ is much greater than in the 
others. As far as heat diffusion is concerned, the body F 
then behaves like a manifold of dimension less than 3. The 
mathematical formulation of the free boundary problem 
for the heat conduction on F has been given in [5] (see also 
[2], [15] and the references therein). A more general model 
including a phase change also in fl has been studied 
recently in [11]. The impact of the Stefan problems in a 
concentrated capacity in a number of physical applications 
(e.g. the phase change in the bulk fl can be used to control 
the heat conduction on F) motivates their numerical 
analysis. 

Let us introduce the mathematical model studied in 
l-11]. Let f~ be an open-bounded regular set of R"; F = 0fl is 
the boundary of fl and v is the inward normal to F. Let 0 
denote the temperature both on F and in f~, and let u 
represent the enthalpy density on F. Let 0=fl(u) be the 
state equation between temperature 0 and enthalpy dens- 
ity u on F, where fl: R ~ R  is a nondecreasing Lipschitz 
continuous function such that fl(0) = 0 and fl grows at least 
linearly at oo. Then, the phase change on F x (0, T) can be 
formally described by the nonlinear parabolic equation 

0t~ 00 -Aof l (u)=f+~v o n E = r x ( 0 ,  T) 

(I) [.with the initial condition u(0)= u o on F, 

Meccanica 28: 121-128, 1993 
IgQq K h i u ; p r  Aenc]arn ip  Pl ihl ieho.~e P ~ i ~ t o d  in  t h o  A T o t h o ~ l ~ d ~  

where t E(0, T) is the time variable, A o is the Laplace- 
Beltrami operator on F with respect to the Riemannian 
structure 9 related to the tangential conductivity proper- 
ties of F, u o is the initial enthalpy on F, f is a heat source 
or sink on Z, and O0/Ov is the thermal flux from t) to F, 
which plays the role of an additional beat source on F. 

Assuming that a phase change takes place also in fl, and 
denoting by 0 = 7(v) the state equation for the temperature 
0 and the enthalpy density v in fl, the heat diffusion in 

x (0, T) can be described by the nonlinear parabolic 
equation 

{ ~--~-Av(v)=q~ in Q=f~x(0 ,  T) 

(II) witb the boundary condition ~/(v) = fl(u) on Z 

and the initial condition v(0) = Vo in fl, 

where A is the Laplace operator in R", Vo is the initial 
enthalpy in fl, ~o is a heat source or sink in Q, and the 
constitutive function 7 bears the same properties of ft. 

An existence and uniqueness result for the problem (I)- 
(II) formulated in suitable Hilbert spaces has been proven 
in [11]. 

In order to deal with the numerical approximation of 
problem (I)-(II), it is useful to study first its time discretiza- 
tion. Here we shall consider two different time discrete 
algorithms: the first algorithm is the classical implicit 
Euler finite difference scheme, whereas the second one is a 
linear scheme suggested by the so-called nonlinear Cher- 
noff formula in nonlinear semigroup theory, first intro- 
duced in [3] and next studied in [9], [12], [14], [17] for 
the usual parabolic Stefan-like problems. For both 
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schemes we prove stability and error estimates for temper- 
atures in the natural energy spaces. The full discretization 
of (I)-(II) is not addressed in this paper and will be the 

subject of future investigation. 

1. THE CONTINUOUS PROBLEM 

1.1. Assumptions and Notation 

Let f~ be an open-bounded set of R", n~>2, whose 
boundary F is an oriented connected C ~ ( n -  1)-manifold, 
Q = f~ x (0, T), ~ = F x (0, T), T > 0. We follow the nota- 
tion of [-7]; in particular we use the L2-Sobolev spaces 
H~(f~) and H~(F), s real, and set H°(~)=L2(~),  
How) = L2(F). Let us denote by v the inward normal to F, 
by V and A the gradient vector and the Laplace operator in 
R". Moreover we assume that a (proper) C°°-Riemannian 
structure 9 is defined on F and denote by A o the Laplace- 
Beltrami operator on F with respect to g (see, e.g., [4]) and 
by 011, t/z)a the global scalar product with respect to 9, 
either for t h, r/2 ff LZ(F) or for ~/l s H - a ( F )  and t/2 ella(F). 
We recall that q ~ Ad/is a linear continuous operator from 
Ha(F) into H-a(F)  and that 

where d is the exterior differential on F. Moreover we shall 
use also the spaces H ~'~, r and s nonnegative real numbers, 
defined in [7, Ch. 4, n. 2.1] as 

H"*(Q) =L2(0, T; H'(f2))c~H*(O, T; L=(n)), 

Hr'~(]~)=L2(O, T; H'(P))c~Hs(O, T; U(F)), 

endowed with their natural norms. 
Let fl and 7: R-oR satisfy fl(0)=0, y(0)=0 and 

INs)l >~cllsl-c2, I~(S)[ ~>c3lsl-c4, VseR, 

cplfl(Sa) __/~(S2) 12 ~ (]~(S 1 ) - -  ]~($2))(S 1 _ $2),  

cvl~,(sO--~(sz)t2<...(y(sO--~(s2))(sl-s2), Vs1, s2~:R (1.1) 

(q ,  c2, c 3, c~, % c~ positive numbers). 

REMARK 1.1. The functions fl and ? represent the 
constitutive equations 0=fl(u) and 0=y(v) relating the 
temperature 0 to the enthalpy densities u on F and v in D, 
respectively. The simplest physical case corresponding to 
constant thermal coefficients in each phase is given by 

i s. 0 

fl(s) = if 0 ~< s ~< 2 o, 

( Lp(s-- 20) if s/> 20 

{ l~s if s~21 

7(s)= 1~21 if21<~s~<22, 

L~(s--22)+l~2a if s~>).2 

where 20 >/0 and 2 z - 2 1  >/0 represent the latent heats on F 
and f~, the constants l~, L~, l~, L~ are the heat capacities, 

and the temperature of the phase change is 0 r = 0 on F and 

0n=1~21 >~0 in ~. []  

The hypotheses on the initial data Uo, v o and source 
terms f, q~ are the following: 

uosL2(F), fl(Uo)~Ha(F), vo~L2(fl), 7(Vo)~Hl(f2), (1.2) 

?(Vo)=fl(Uo) on F, (1.3) 

f 6 L2(Z), ~0 ~ L2(Q). (1.4) 

REMARK 1.2. We stress that (1.2) is a proper assumption 
on the initial data of a phase change problem, because it 

allows jumps for the enthalpies Uo on F and Vo in ~ and for 

the temperature gradients V0o (00 = fl(Uo) on F, 0 o = y(Vo) in 
f~). The condition (1.3) is an obvious compatibility condi- 
tion for the temperatures. []  

1.2. Existence and Uniqueness 

Let us introduce the definition of the weak solution of 
problem (I)-(II). 

D E F I N I T I O N  1.1. Under the assumptions (1.1)-(1.4), 
(u, v) is a weak solution of problem (I)-(II) if 

u ~ L°~(0, T; La(F)), 

fi(u) ~ L°°(O, T; H'(F)) c~ Hi(0, T; L2(F)), 

v eL°°(0, T; L2(~"2)), 

7(v) ~ L~°(0, T; HI(~'~)) ('1 Hi(0, T; L2(y~)), (1.5) 

7(v) = fl(u) on Z, (1.6) 

and, for all ZSZT = {z~HI"I(Q):zJzsHI"I(Z), z (T)= 0}, it 

holds that 

fo; ; - u ~ 7  d a  d t -  UoZ(O) d a  + 

fo c fo + (dfl(u), dz)o d t -  v dx d t -  
jo &- 

;o c fo -- Voz(O ) dx + Vy(v)" Vz dx d t -  
30 

- f z  da d t -  rpz dx dt = O. 
30 

REMARK 1.3. From (1.5) it follows that y(v) s H 1' I(Q) and, 
consequently (cf. [7, Ch. 4, n. 2.2]), V(v) has a trace on Z 
which belongs to Ha/2'l/2(~Z); whence (1.6) is meaningful in 

Hm,1/2(X). [] 

In [11] the following existence and uniqueness result has 

been proved. 

T H E O R E M  1.1. There exists a unique weak solution of 
problem (I)-(II). 
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1.3. Properties of the Weak Solution 

Let us introduce the space V defined by 

v = {~ eHl(r l ) :  ~Ir~HI(F)} 
which, endowed with the norm 
II~llv = (ll~#ll~,<n)+ II~#lrll~m)) 1/2, is a Hilbert space. The 
following property of the weak solution of problem (I)-(II) 
holds [11]. 

PROPOSITION 1.1. I f  (u,v) is the weak solution of 
(I)-(II), there exists a subset E of (0, T) with meas(E) = 0 
such that, for all t ~ (0, T) - E, we have 

; fo (u(t)-- Uo)t I da + (dfl(u(s)), dq) 0 ds + 

fo fofo + (v(t)--Vo)t 1 dx + VT(v(s))'Vtl dx d s -  

-;frf(s),d ds-f:fo (s),d ds=O. V, V 
(1.7) 

Further properties of the weak solution (u, v) of (I)-(II) 
have been proved in [11]. In particular we have that 

v ~ Ha(0, T; H -  1(~)) c~ H1/2(0,  T; H -  1/2(fl)) c~ 

c3 C°([0, T]; H-1/2(0)) 

and v satisfies the equation 

0v 
- -  - AT(v) = ~p (1.8) & 

(in the sense of the distributions space ~'(Q)) and the initial 
condition 

v(0) = Vo (in the sense of C°([0, T]; H -  1/2([1))). (1.9) 

Moreover, the normal derivative of ?(v) on E can be 
defined in a suitable weak sense, namely, 

aT(v) 
-~-  ~ ~'(Z), (1.1 O) 

where ff'(Z) is a distribution space on E defined as follows. 
Let 

if(E) = [Hi(0, T; L2(F)), L2(0, T; L2(F))]a/2 c~ 

c~ Lz(0, T; H1/2(F)), 

where 

H~(0, T; L2(F))= {zeHa(0, T; L2(F)):z(0) = z(T) = 0} 

and [',']~, 0 ~< ~ E 1, denotes the usual Hilbert spaces 
interpolation method described, e.g., in [7, Ch. 1]. There- 
fore ~(E) is a Hilbert space and 

9 ( 2 )  ~ (~(E) = Hll2'a/2(Y~) ~ La(E)  

with dense and continuous injections. Then (¢'(E) is the 
dual space of if(Z) and, denoting by H-1/2, 1/2 (Z) the dual 

space of H 1/2' t/2 (y.), we have 

Lz(E) c H-1/2,-a/z(G ) c f¢'(Z) c ~'(Z). 

Further regularity for ~y(v)/#v can be proved provided ? is 
nondegenerate; e.g. if ),(s) = s for all s e R, then [10] 

8Y(v~) e L2(Z). 
8v 

Finally, u verifies the equation 

#u + aT(V) (in the sense of@'(Z)), (1.11) & A, fl(u) = f ~v 

and the initial condition 

u(0) = Uo (in the sense of 

lira f r  (u(t) - Uo)t 1 da = O, Vqe V). (1.12) 
t-~ 0,t~(0, T) - E 

REMARK 1.4. Let us stress that (1.8), (1.9), (1.6), (1.11) and 
(1.12) give a precise (nonformal) sense to the problem (I)- 
(II) formulated in the Introduction. 

2. THE IMPLICIT EULER FINITE DIFFERENCE 
ALGORITHM (S1) 

2.1. The Algorithm 

In order to guarantee the well-posedness of the implicit 
Euler finite difference scheme, we need the following 
preliminary result. 

THEOREM 2.1. Let fl and 7 satisfy (1A), let 2 be a real 
positive number, F~L2(F), ~EL2(~); then there exists a 
unique solution {U, V} to the following problem: 

UeL2(F), fl(U)~Ha(F), V~LZ(n), 7(V)6HI(n), (2.1) 

fl(U) = 7(V) on F, (2.2) 

fr Uq d*+X(dB(V), dn).+ V, dx+2 f v,(v) V, dx 

= j ~ F t / d a + i  *qdx,  Vt/~V. (2.3) 
d l  dn 

REMARK 2.1. The proof of this theorem can be obtained, 
for example, by the same techniques developed in [11] to 
prove Theorem 1.1. More precisely, we approximate the 
functions fi and 7 by strictly increasing functions fie and 7E, 
we solve (using the Leray-Schauder fixed point method) 
the nondegenerate elliptic problem obtained by replacing 
fl and Y in (2.1), (2.2), (2.3) by fie and 7~, and finally we pass 
to the limit as e ~ 0 by standard compactness and mono- 
tonicity arguments. [] 

Now we can introduce the implicit Euler algorithm (S1) 
which, under the assumptions (1.1)-(1.4), is well posed by 
virtue of Theorem 2.1. 

Let N be a fixed positive integer and let z = T/N  denote 
the time step. Let us introduce the notation: t °=0,  
z°=z(0), and, for n = l  . . . . .  N, t"=nz,  I "=( t " - l , t " ] ,  and 
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z"=z(t"), ~"=z-a~, ,z( t )dt ,  for any continuous or in- 
tegrable vector-valued function t~z(t)  with values in L2(F) 
or L2([)). Then, the algorithm ($1) reads as follows. 

ALGORITHM (S1). Set 

U ° = u o ,  V ° = v o ,  (2.4) 

and, for n = 1 , . . . , N ,  let (U", V") be the solution to the 
problem 

U"eL2(F), fl(U")•HI(F), V"eL2(n), 7(V')•HI(f~), (2.5) 

fl(U") = 7(V") on F, (2.6) 

f r ( U " -  U"-1)q do- fn  Vn-t)t/dx + + z(dfl( un), dq)o + (V"- 

+ z f n v ? ( v ' ) ' V q d x : z f r f ' t l d a + z f  (p'tldx, VtI•V. 

(2.7) 

2.2. Stabi l i ty  

The following stability result holds. 

THEOREM 2.2. Under the assumptions (1.1)-(1.4) there 
exists a constant C independent of  z such that 

max l]fl(U")llL~(r) + max tlT(V")llLz(n) + 
l~<n<~N l<~n<~N 

N N 
+~ ~ Ilfl(Un)l[2,(r)+Z ~ II~(V")ll~,(.)~<c. (2.8) 

n = l  n = l  

Proof By virtue of(2.5) and (2.6), we can take q = 7(V") in 
(2.7). Adding the resulting expressions over n from 1 to i, 
for any 1 <~ i <~ N, we obtain 

( U " -  U ' -  ~)fl(U")da + z ~, (dfl(U"), dfl(U'))a+ 
n = l  n = l  

+,=~  fn  ( V ' - V "  ' ) 7 ( V ' ) d x + ¢ . = l  ~ f~ iV'(Vn)i2dx 

= r ~ J~NU")do-+z ~ ~n~(V")dx. (2.9) 
n = n = l  

Let us introduce the following notation: if 2: R ~ R  is a 

Lipschitz continuous function so that 2(0)=0 and 
0 ~< 2'(s)~< A for a.e. seR,  we denote by ~ the convex 
function 

fo ¢P;~(s) = )~(r) dr, Vs • R, 

and note that Ox satisfies 

1 22(s ) ~< @~(s) ~< A 2A 2- s2, Vs•R. 

Then, from (1.1) and (2.4) we readily obtain 

( U  n _ U n - (~/j( U n) _ ~I~(U n - 1)) da 
n=l  = 

= f r  @¢(Ui)da- f r  ~P(Uo) da 

1 

and, similarly, 

,~1 ( r " -  r'-l)~(g")dx>~ II/~(gi)llZ2(r)- 2c~ IlvolF~2(r). 

Therefore, from (2.9) we deduce the following estimate: 

i 

IIB(Sg)llZ~(r ) + il7(VZ)ll2~tn)+ z ~ (dfl(U'), dfl(U')) o + 
n = l  

i 

n = l  

i i 

+ Z It~"ll,z.~<~, +~ Z ll/~(S")llL<r)+ 
n = l  n = l  

+~ I1~( )liE (n) , 
n = l  

where C is independent of z. Finally, using the discrete 
Gronwall's lemma, we obtain the estimate (2.8) with C 
depending on T, Ilu011L~(r), IIv011LZ(n), II/IIL2(~), and [l¢l]L~(e), 
but independent of z. K) 

REMARK 2.2. A straightforward consequence of (2.8) and 
the linear growth at ~ of fl and 7 (see (1.1)) is the stability 
also for enthalpies, namely, 

max I[U"ll~(~)+ max IIV'IIL~(.)~<C. (2.10) [] 
l<~n<~N l<~n<~N 

2.3. Error E s t i m a t e s  

In order to study the order of convergence for the 
algorithm (S1), let us introduce the temperature and 
enthalpy errors e0 and e,, ev, defined by 

eo(t) = 7(v(t))- y(V"), e~(t) = v(t)-  V" 

in ~ x I " ,  n = 1 . . . . .  N ,  

eo(t ) = fl(u(t))-fl(U"), e,(t) = u(t)-  U" 

on F x I " ,  n = l , . . . , N .  

Note that, by virtue of (1.6) and (2.6), e0 defined on E is the 
trace of e0 defined in Q. We shall prove the following error 
estimate. 

THEOREM 2.3. Under the assumptions (1.1)-(1.4), there 
exists a constant C independent of  z such that 

~0 L~°(O, T;H I (F ) )  
H eo I1L2(O,T;LZ(F)) + II eo el L2(O,T;L2(~)) -l- eo(s) ds + 

+ f l  eo(s) ds L~(O,T;Ht(n)) 
C..(51/2" (2.11) 
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Proof. We add Equation (2.7) over n from 1 to i, for any 
1 ~< i ~< N, and use (2.4) to obtain 

fr (Ui-u°)rl d a + z  ,=lk (aft(u"), dt/)o+ f a  (Vi-v°)rldx+ 

-~T n=l ~ ~f~ v~(gn)'gF] dx 

=f~';f(s),dods+f~'fnw(s),~dxds, V~e V. 

(2.12) 

Taking the difference of (2.12) from (1.7), for a.e. t e P and 
any l~<i~<N, weget  

f 
;ofo + V eo(s) ds'V~/dx = (t i -  t)(dfl(Ui), dt/)a + 

-- (p(s)t/dx ds, gt/e V (2.13) 

For a.e. te(o,r), we can take tl=eo(t ) in (2.13); after 
integration in time over (0,t), for any re(0, T), we get 
I + II + I I I  + IV = V + VI + VII + VIII. We estimate each 
term separately. Noting that V(v(t)) - 7(V~) = 
3(u(t))-fl(U i) on F, from (1.1) it readily follows that 

2 2 I + III ~> c¢ Ileo [[g~(0,?;L~(r)) + c~ll eo IIL~(0,?;L~(n)) - 

On the other hand, we have 

2(II+IV)=(d f] eo(s) ds, d f] eo(s) ds)o+ 

Next we can write 

IVl ~< ~ I(t ~ -  t)(dfl(U~), deo(t))gldt 
i=1 i 

and, similarly, 

[VII ~< Cz (~:~ zll,(V*)l[2~(~)+l[v(v),[~(O.T;U,(n,), 

'VII[ <~ Cz (l[f [l~(~) + ~ zllfl(U')"2~(r) + l'fl(u)"2~(~)) 

(][(PI[L2(Q) ~-i~= 1 ) [VlIII ~< Cz z rll~(g~)ll~=(n)+ [l~(v)ll~=<Q) . 

The asserted estimate then follows from (1.4), (1.5) and 
(2.8). [] 

REMARK 2.3. The problem of estimating the enthalpy 

errors e, on Z and e~ in Q seems to be more difficult. As a 
simple by-product of the above theorem we obtain a weak 
error estimates for enthalpies and the convergence of 
scheme (S1), namely, 

Ilev HL~(O, T;H-I(O)) ~ CT1/2, 
(2.14) 

lie. + ~*e~IIL~(O,T;If-~(D) <<. Cz 1/2, 
where ~*:  (Hi(f~))' ~ H-I (F)  is the adjoint operator of the 
harmonic extension operator ~:HI(F)--* Hl(fl) defined, 
for any ~ ~ Hi(F), by A ~ $  = 0 in f], ~ $  = $ on F. In fact, 
from the error equation (2.13), for a.e. t e (0, T) and all t/e V,, 
we get 

fr e.(t)tl d~ + fn e.(t)~I dx 

fO L~(O,T;HI(F)) <<, C eo(s ) ds + 

+za/2(,=~zll3(u")u~l(r))l/2+zl/2llfllL2(~)) '[~/['u~cr) + 

fO L~(O,T;HI(~)) + C eo(s ) ds + 

+ zl/2 (.=~ ~ll,(V")ll~,(n)) l/2+ ~l/2llcPllz=(a)) II~'lH*(r~), 

whence, by virtue of (2.11), (2.8), and (1.4), 

fr e.(t)~da + f ev(t)rtdx <~ Czl/2U~Hv, 

where C is a constant independent of z, t, and r/. The weak 
convergences e~-~ 0 in L2(Q) and e, ~ 0 in L2(Z) then 
easily follows from (1.5) and (2.10), whereas the estimates 
(2.14) follows taking r/EHo~(fl) and r/=~q~(~J~H~(F)), 
respectively. Note that the estimate on e~ agrees with the 
regularity v ~ H~(0, T; H-l(t))). We conjecture that a more 
precise estimate of the enthalpy error e, on E should be 
obtained using deep the properties of the weak solution 
recalled in Section 1.3, in particular (1.10). El 

REMARK 2,4. Under the further assumptions 
f ~ HI(0, T; LZ(F)) and ~p ~ H~(0, T; LZ(f~)), the algorithm 
($1) can be defined using f "  and cp" in place of f "  and 0" 
at the right-hand side of (2.7). The stability and error 
estimates, Theorems 2.2, 2.3, hold under minor modifica- 
tions of the proofs. [] 

3. THE ALGORITHM BASED ON THE 
NONLINEAR CHERNOFF FORMULA ($2) 

3.1. The Algorithm 

The linear scheme suggested by the nonlinear Chernoff 
formula in semigroup theory reads as follows. 

ALGORITHM ($2). Set 
U ° = Uo, .=o = 3(Uo), v ° = Vo, O ° = ~y(Vo), (3.1) 
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and, for n = 1 . . . . .  N, let (U", E", V", ®") be the solution to 
the problem 

U.~L2(F), E.eH*(F), V"EL2(n), O"~Hl(n), (3.2) 

E" = O" on F, (3.3) 

E"t/do" + Z-(dE",dr/)o + O"rldx + ~ VO"'Vrldx 
# 

= fi(U"-~)tlda+ ?(V"-~)ndx + f"ndo'+ 
:a ~ : r  

+ ~- [ O"q dx, Vtle v, (3.4) 
# dn 

U" =  U"-x+#(E"-fl(U"-~)) on r ,  
(3.5) 

V"= V" ~ + # ( O " - 7 ( V " - ~ ) )  in ~, 

where # is a relaxation parameter which satisfies 
0 < # ~< ~ = min(c~, c~). 

It is easy to see that, under the assumptions (1.1)-(1.4), 
the algorithm ($2) is well posed. We stress that problem 
(3.3), (3.4) is linear in the unknowns E" and ®" whereas 
Equations (3.5) for U" and V" are just pointwise correc- 
tions that require the evaluation of given nonlinear func- 
tions. Therefore, the algorithm ($2) is expected to be more 
efficient than (S1) from a numerical viewpoint. 

3.2. Stability 

The following stability result holds. 

T H E O R E M  3.1. Under the assumptions (1.1)-(1.4) and 
0 < # <~ ft fixed, there exists a constant C independent ofz 

such that 

max [lfl(U")]lLz(r) + lm<axN II~(V")IIL~(n)+ l <~n~N ~ 
N N 

+ ~ IIu"-u"- ' l lb(~)+ ~ IIv"-v"-~ll~(~)+ 
n = l  n = l  

N N 
+z ~ (dE",dE")0+z ~ IlVO"ll~2(a)~<c. (3.6) 

. = 1  .=i 

Proof Let us introduce the functions 7 and 6 defined by 

~(s) = s -  #fl(s), 6(s) = s-- #7(s), Vs e R, (3.7) 

which, in view of the stability constraint 0 < # ~< it, satisfy 

0 ~< ~'(s) ~< 1, 0 ~< 6'(s) ~< 1 for a.e. s e R. (3.8) 

Using (3.5) and (3.7), we can split E" and ®" as follows: 

1 . + 1 _  1 1 1 
E" = ~fi(U ) 2# (~(U")-~(U"- ))-- ~ ~(U"-~)+~ U", 

, 1 V" 1 1 1 V". o = ~( )+~ ( 6 ( v " ) - 6 ( v " - ~ ) )  - ~ 6 ( v " - ~ ) +  

(3.9) 

In addition, still using (3.5), we can reformulate the discrete 
equation (3.4) as follows: 

fr ( U" -- U" - I)q do'+ fn  (V"-- V"- I)q dx+'c(ff =", dr/)o + 

(3.10) 

By virtue of (3.2) and (3.3) we can take ~ = O" in (3.I0). We 
add the resulting expressions over n from 1 to i, for any 
1 <~ i ~< N, and proceed to estimate each term separately. 
Using (3.9), (3.1), (1.1), (3.8), the convexity of (I)a, (I)~, O~, (I)6, 
and the elementary identity 2a(a- b) = a 2 - b 2 + (a -  b) 2 
for a, b e R, we obtain first 

2 fr (v.-v.-*)-:. do'>/ dr[ (O~(U~)-O°(u°))da+ 

1 .It (@~(u°)-O~(U')) do'+ +; 

1 ( gi .~=1 sn g n - I  22 ) +y~  II 11~2(r)-IluolI~2(r)+ II - IlL <r) 

1 c a 
/> - - IluoIl~<r)+ 2- IINUi)ll~2<r) + # 

1 i 
+ ~  .=1 ~ }lUn-Un-lll~z(r) 

and, similarly, 

'fo 2 ~ (V"-  V"- 1)0" dx 
n = l  

1 2 Cy 
/ > - _  IlVollL~(~)+ 7 Ily(Vi)ll~(~)+ # 

1 i 
+ ~ ._E II w -  v"- l llb(~,. 

In addition, using (3.5), we have 

.:~ z fnf"E" do" <<. ¢Hfllb(z) + 

~ f~ dx r 0"O" ~< c II~PllL~(Q) + 
n = l  

i 1 i 
+Cv ,=~ 117(g"- t)ll~2(n)+ ~-fi ,=~ HV"- V"- t [I2~(n). 

Noting that the remaining terms are nothing but 
i i 

z Z (dE", dE")o+z Z []V®"][z~(n) , 
n - 1  . = 1  

using the discrete Gronwall's lemma, we obtain the 
stability estimate (3.6). [] 

REMARK 3.1. A straightforward consequence of (3.6) and 
(3.5) is the estimate 
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max tlE"IfL~(r)+ max IIO"llL=(n) ~ C, 
1 4 n ~ N  l<~n~N 

whence, using again (3.6), it follows that  

N N 

n=l n=l  

(3.11) 

(3.12) 

[ ]  

3.3. Error Est imates  

Let us define the errors e0, e, and e~ by 

%(0 = 7(v(t))--O", e,(t) = v(t)-- V" 

in ~ x I " ,  n = 1 , . . . , N ,  

%(0 = fl(u(t))-- 7~", e,(t) = u(t)-  U" 

on F x I ' ,  n = 1 . . . . .  N. 

Note  that, by virtue of (1.6) and (3.3), e0 defined on Z is the 
trace of e0 defined in Q. We shall prove the following error 
estimate. 

T H E O R E M  3.2. Under the assumptions (1.1)-(1.4) and 
0 < # <~ [~ fixed, there exists a constant C independent of'c 
such that 

fo eo(s) ds I le011g=(0,r;g~(r)) + I le0[Ig2(0,r;g=(a)) + + 
L~(O,T;Ht(F)) 

f O L~(O,T ;H~(n)) 
+ eo(s)ds <. Cz 1/4. (3.13) 

Proof We closely follow the proof  of Theorem 2.3. We 
add Equat ion  (3.10) over n from ! to i, for any 1 ~< i ~< N, 
and use (3.1) to obtain 

f r  (Ui-u°)~ d a + z  .=1 ~ (dE", dt/)o+ fn  (Vi-v°)tl d x +  

+ Efn v°°vn dx 

fof  fifo = f(s)tl da ds + ~o(s)tl dx ds, Vr/e E 

(3.14) 

Taking the difference of (3.14) from (1.7), for a.e. t e I  i and 

any l~<i~<N, w e g e t  

fre.(t)qda+(d;eo(s)ds, drl)o+ine~(t)rl dx+ 

;ofo + V e0 (s) ds" Vt /dx  = (t ~ -  t)(d~J, dr/) o + 

fo f:; + (t ~ -  t) V® i" V ~ / d x -  f(s)~l da d s -  

- q)(s)r/dx ds, V~/s V (3.15) 

For  a.e. re(0,  T), we can take rl=eo(t ) in (3.15); after 
integration in time over (0,t), for any 7e(0,  T), we get 

I + I I + I I I + I V = V + V I + V I I + V I I I .  Not ing  that 

7(v(t) ) _  ®i = fl(u(t))-E / on F, the estimate of terms II, IV, 
V, VI, VII, VIII proceeds along the same lines of the 
corresponding terms in the p roof  of Theorem 2.3, thus 
leading to 

2(II + IV)=(d  f~ eo(s) ds, d ; eo(s) dsto+ 

+ V ; e o ( s )  ds ~2(n ), 

[V + VI + VII + VIII[ <~ Cz ( ~" II ~i  1121 (F) + 
\ i=1 

N 
U ~22 + Y~ q[Ogl[2,(n)+ ll/~( )I,L (0,r,H~(r,+ 

i=1 

2 ) + }1 y(v)IIL2(O,T;,~*(n, + II f 112=(~) + II q~ 1122(0) • 

It remains to bound from below terms I and III. We first 
decompose I as 

I 2 = # I[% IIL2(O,7;L2(r)) + 

+ (%(0 -- #eo(t))eo(t) da d t=  I x + I 2. 

Next, we use (3.5) and (3.7) to split e0 and eu on F x I i, for 
any 1 ~< i ~< N, as follows: 

eo(t ) = fi(u(t))_fl(U i 1)_ 1 ( u i _  ui_a) ' 
# 

e,(t)-- #%(0 = a(u(t))-- a(U i- 1), 

whence, in view of (1.1) and (3.8), we have 

(% (t) -- #e o (0)% (t) 

= (c~(u(t)) -- a(U'- 1))(fi(u(t)) -- fl(U i- 1)) _ 

1 
__ __ ( U  i - -  U i - 1)(~(u(t) ) _ o~(U i -  t)) 

# 

1 
> - -  - -  ( U  i -  U i -  1)(~(u(t)) --  ~ ( U ' -  1)). 

# 

Therefore, using again (3.8), we can estimate 12 as follows: 

12 >~ --CT 1/2 t IU i -  Ui-*l122(r) x 
\ i=1  

X UIIL2(O,T;L2(F))-[- T I IU  i - 1  2(F ) . 
i= 

Similarly, we get 

III ~> 2 _ # [I e011L2(O,t;L2(Q)) - -  

-- czl/2 (i=~ 1 H V i -  Vi- ' l[22(n)) l/2 × 

(H (=Zl  [I 2 ) 1 / 2 )  X VlIL2(O,T;LZ(a))+ TI[ v i - 1  =(F) • 
i= 

Collecting all previous estimates and using (1.5) and (3.6) 
leads to the asserted error  bound  (3.13). [ ]  
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REMARK 3.2. From equation (3.15), one can proceed as 
in Remark 2.3 and obtain the convergence of scheme ($2) 
as well as error estimates for enthalpy, namely, ev ~ 0 in 
L2(Q), e, ~ 0 in L2(Z), and 

llev liL~(0, T;H-~(n)) ~ C~ a/4, 

lie. + ~*  %llI.~(O,T;n-~(r)) <- Cz 1/4. [] 

REMARK 3.3. Remark 2.4 applies also for algorithm 
(S2). []  

REMARK 3.4. A number of linear approximation schemes 
for Stefan-like problems has been proposed during recent 
years; see, e.g. [1], [6], [8], [13], [16]. The application of 
these methods to the Stefan problems in a concentrated 
capacity should be investigated. [] 
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