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Summary 

Energy principles have previously been applied to the analysis of rock joints in order to 
determine the shear strength of dilatant joints (Ladanyi and Archambault, 1970). This work 
was based on the analysis of regular triangular asperities and assumed that the asperities 
were rigid. In recognition of the difficulty of measuring a representative asperity angle in 
natural, complex rock joints, Ladanyi and Archambault extended their results to natural 
joints by assuming the equality of joint dilation rate and the effective joint asperity angle. It 
is shown that the assumption of this equality is not universally valid, and that it may lead to 
an underestimation of joint shear strength. Further, the effective friction angle for joints in 
an elastic rock mass, for joints comprising asperities of varying inclination, for post-peak 
shear displacements and for joints in degradable rock are all analysed using extensions of 
Ladanyi and Archambault's approach. 

1. Introduction 

The shear strength of rock joints is derived in part from the basic sliding friction 
angle of the parent rock (in the absence of any joint weathering or cementing) and 
in part by the roughness of the joint, which causes the joint to dilate as shear 
displacement proceeds. This dilationat component of shear strength has been 
incorporated in many joint shear models. Patton (1966) performed a series of 
constant normal load direct shear tests on sawtooth-shape plaster/kaolin asperities 
of uniform inclination, i, at varying normal stresses. From these tests, he 
established a bilinear failure envelope with a transition pressure defining the 
change of failure from an asperity sliding to an asperity shearing mode. 

As shown in Fig. 1, the failure envelope comprises two linear sections, 
intersecting at a normal stress, O-r, designated the transition stress. For  normal 
stresses, c~ n, less than err, the peak shear stress, Tp, is governed by sliding at the 
sliding friction angle, qSu, and the asperity inclination, i. Above this transition 
stress, the peak shear stress is governed by shearing through the asperities with a 
shear strength intercept, cj, and a residual angle of internal friction, ~),.. The 
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Fig. 1. Patton's bilinear failure model (after Patton, 1966) 

equations for the two portions of the failure envelope are given below: 

~-p = crn tan(0,  + i) for an < err (1) 
Wp = cj + o- n tan G for an _> ~r  (2) 

cj (3) 
where crr = tan(G + i) - tan G '  

The important feature of this early modet is that it captured two basic 
mechanisms of behaviour of rock joints, namely: asperity sliding and asperity 
shearing, Patton showed that the effect of uniform asperities at a uniform angle,/, 
with the mean sliding surface is to increase the fi'iction angle by i, with an 
associated dilatancy, 9 = Ixtanil, where x is the shear displacement, and the 
absolute value signifies positive dilation for shear in opposite directions, The 
curvilinear failure envelopes of natural rock joints was attributed to the change in 
intensities of the different modes of failure occurring simultaneously. 

Ladanyi and Archambault (1970) provided an extension to Patton's joint 
model to account for the sliding and shearing mechanisms found in natural rock 
joints. They considered the shear resistance of joints comprising regular triangular 
asperities with asperity angles of 4-i ~ However, instead of adopting the force 
equilibrium approach used by Patton, they used the energy principles described by 
Rowe (1962) and Rowe et al. (1964). 
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According to Ladanyi and Archambault, the total shearing force, S, can be 
considered as the sum of 4 components, 1 of which ($4) relates to force attributed 
to asperity shearing, and 3 of which (S 1 to $3) relate to the process of asperity 
sliding. Hence they determined the sliding shear force as: 

S = $I + $2 + $3, (4) 

where, 

S1 = component due to external work done in dilating against the normal force 
(N) = N/,, where ~ is the rate of dilation at failure. 

$2 =component  due to the additional internal work in friction due to 
dilatancy = S/, tan~u, where ~u is the basic angle of frictional sliding 
resistance. 

$3 = component due to work done in internal friction if sample did not change in 
volume in shear = N tan qS~. 

Recognizing that in an irregular surface both sliding and shearing mechanisms 
would exist simultaneously, and defining the projected area of the shearing 
asperities at the point of failure, As, Ladanyi and Archambault then defined the 
total shear force, S, as 

S m_ (S 1 -}- $2 -]- $3 ) (1 - as) + S 4 as, (5) 

where, 

S4=component  due to shearing through rock asperities at the base= 
A so + Ntan  q50 where A is the total projected joint area, and so and ~b 0 
are the intact rock strength parameters, and 

as = the  shear area ratio, and defines the relative area of joint undergoing 
shearing = A s / A .  

As the authors are concerned here only with sliding mechanisms of failure, 
further discussion will be restricted to three sliding components (S1 to $3). These 
components are shown diagrammatically in Fig. 2. 

The dilation rate at failure, z) is equal to the ratio of the increments of dilation, 
dy, and shear displacement, dx. The ratio dy/dx  can therefore be substituted for z) 
in each of the foregoing expressions for the components S1, $2 and $3, and 

S 

N 

ay 

dx 
Fig. 2. Ladanyi and Archambault's (1970) frictional work components 

$1 = N dy _ N tan i 
dr 

$2= S tan i tan ~u 

$3= Ntan ~u 

S = S I + S 2 + S  3 
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substituted into Eq. (4) as follows: 

S N~xx+ dy = S tan r dx + N tan r (6) 

As the analysis by Ladanyi and Archambault is based oft the assumption of a 
rigid asperity, the dilation rate, dy/dx, is also equal to the tangent of  the asperity 
angle, i. Equation (6) can therefore be rearranged, and converted to stress units to 
give: 

~n (tan i + tan r 
= ( 7 )  

(1 - tan r tan i) 

which can be simplified to the following expression derived by Ladanyi and 
Archambault: 

7 = o-, tan(r + i) (8) 

Equation (8) is identical to that obtained by Patton for the peak sliding 
resistance of sawtooth profiles with inclination, i, at normal stress levels less 
than the transition pressure. 

Ladanyi and Archambault suggest that for irregular surfaces, which exhibit 
complex geometry (rather than trivial first-order roughness as exemplified by the 
simple triangular model), the asperity angle, i, cannot be determined, and the 
dilation rate, /,, should be substituted. Furthermore, they recommend that r  
should be more correctly replaced by the empirically determined s tatisticat average 
value of friction angle, Of. On the basis of investigations by Rowe (1962), they 
tentatively determine for initially tightly interlocked rock surfaces, such as are 
being considered here, that r would not be much different from r Hence in its 
simplest and most basic form, and ignoring the shearing component, Ladanyi and 
Archambault recommend for the sliding resistance of  natural rock joints with their 
attendant complex joint geometry: 

cr~ (/, + tan r 
: (9)  

1 - / ,  tan r 

or, 

r = cr n tan(r + u), w h e r e / / =  tan l[/,j. (10) 

It is noted that Eqs. (9) and (10) relate only to the sliding component of friction. 
The further complexities of the shearing component and interlocking factors also 
derived by Ladanyi and Archambault are peripheral to the purpose of this paper, 
and only the basic sliding shear stress component as reflected in Eq. (10) will be 
considered hereafter. 

2. Energy Approach for Elastic Materials 

The validity of Eq. (10) for the rigid asperities assumed by Ladanyi and 
Archambault can be easily verified by considering a profile with only first order 
roughness~ such as simple triangular asperities. As the dilation angle and asperity 
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angle are identical, if Eq. (8) is correct, then Eq. (i0) must foliow. However, it will 
be readily appreciated that for interfaces comprising elastic materials, elastic 
deformations will result in joint dilation rates less than the asperity angle, and 
that the values of asperity angle and dilation rate are not interchangeable in these 
circumstances. 

The energy approach outlined previously can be successfully extended from 
rigid to elastic asperities. Rigid asperities do not, by definition, undergo any 
deformation due to the applied shear and normal loads. However, for elastic 
materials, the elastic, and recoverable, deformations must be taken into account. 
The following analysis will be restricted to a consideration of deformations 
perpendicular to the joint axis only, however, the same considerations appty to 
the treatment of elastic shear deformations. Figure 3 shows a ctef~rmation due to 

S a. ~ Sl  = N(dy-de) Nde 
dx + --~-- = N t a n  i 

dy $2 = S tan i tan ~u 

$3= Ntan ~u 

S =SI+S2+S 3 
dr. 

Fig, 3. Deformations due In elasticity 

elasticity in the vertical direction, de, during the sliding process. This deformation 
effectively causes a vertical body motion of the interface by the amount de, and a 
reduction in the joint dilation to dy-de. 

The relative movements between opposing surfaces on the interface, however, 
remain unchanged - that is: the movements resulting in frictional losses remain dx 
in the x-direction, and dy in the y-direction. Therefore, following the terminology 
used by Ladanyi and Archambault in their energy approach, force components $2 
and $3 are identical to the original rigid asperity case. 

By contrast, component $1 is reduced, in as much as dilation is reduced from 
dy to (dy-de). However, as the deformations are elastic and recoverable, the 
reduction in work done in dilating against the external normal force is exactly 
balanced by additional work required to increase the internal strain energy of the 
asperities, dU, i.e. 

d U =  N.de (11) 

The net effect on the component $1 is consequently nil. Therefore, although the 
effect of elasticity is to reduce the net dilation rate as a result of asperity 
deformation from dy/dx  = tan i to (dy-de)/dx < tan i, the frictional resistance ts 
unchanged, i.e. 

T = O-~ tan(~b, + i). (t2) 
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Equation (12) has been verified experimentally by Seidel (1993) for a series of 
constant normal stiffness direct shear tests on regular triangular joint profiles cut 
into a synthetic mudstone material, called Johnstone (1986). These tests were 
performed as part of an extensive research project into the behaviour of concrete 
piles socketed into weak rock; the joint in these tests therefore comprised a weak 
rock/concrete interface. Asperity angles for these tests varied from 5 ~ to 27.5 ~ , and 
typical interface geometry, shear displacement-dilation curves and stress-path 
plots are shown for tests on regular triangular asperities of 12.5 ~ and 22.5 ~ in 
Fig. 4 and Fig. 5 respectively. 

The effective friction angle predicted by Eq. (12) for the series of tests, (q~, + i), 
is compared in Table 1 with both tan-l(T/an) measured in the tests and the 
effective friction angle, (q5 u + u), suggested by Eq. (10). It is clear from this table 
that the joint dilation angle is consistently lower than the asperity angle, and that 
the observed joint sliding friction angle [tan-l(T/an)] is by far more closely 
predicted by Eq. (12) than Eq. (10). The boundary conditions adopted in these 
tests were approximately 300 kPa initial normal stress and a constant normal 
stiffness of 300 kPa/mm dilation, except for the test on the 5 ~ sample, for which 
double these values were used. For regular triangular asperities, Eq. (10) under- 
estimates the joint shear strength, as elastic joint deformations reduce the rate of 
dilation to a value less than the asperity angle. 

On the basis of the energy method considerations, and the experimental 
validation for regular triangular asperities, it is concluded that Ladanyi and 
Archambault's expression for global shear stress based on the joint dilation rate 
as given by Eq. (10) is incorrect for rock joints in which high asperity contact 
stresses result in significant local elastic deformations. In order to estimate the 
reduction effect of these elastic deformations on the rate of dilation, local contact 
stresses must be estimated. As these are critically dependent on global stress, joint 
geometry and shear displacement, no general guidelines can be given. However, the 
authors have successfully combined a probabilistic approach for roughness 
characterization (Seidel and Haberfield, 1995) with a mechanistic model of asperity 
behaviour (Seidel and Haberfield, 1994) to estimate the shear response of joints 
taking elasticity into account. 

It is acknowledged that for joints in hard rock under low normal stress 
conditions, the effects of elasticity may be small, and the underestimate of shear 
strength using Ladanyi and Archambault's approach will therefore not be 
significant. 

3. Sliding on Surfaces with Multiple Asperities of Varying Angle 

The original analysis of Ladanyi and Archambault, and the preceding analysis of 
the effect of elasticity on joint shear stress were restricted to joints with constant 
asperity angles. In the case of a joint profile comprising a number of rigid asperities 
of varying asperity angle, asperity sliding can only occur on asperities with a slope 
angle equal to the currently steepest, or critical slope. (Initially, this will be the 
steepest slope angle of the profile, but subsequent asperity failures may make 
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joint in Johnstone 
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Table 1. Comparison of direct shear tests and predicted effective friction angles for Johnstone 

Asperity angle, Measured dilation Basic friction tan -I (r/~rn) Eqn. (12) Eqn (10) 
i (deg) angle, u (deg) angle, ~u from shear (~u + 0 (~b. + u) 

(deg) tests (deg) (deg) (deg) 

5.0 4.0 24.5 29.0 29.5 28.5 
10.0 8.5 24.5 34.0 34.5 33.0 
12.5 10.5 24.5 36.5 37.0 35.0 
15.0 12.5 24.5 39.0 39.5 37.0 
17.5 14.5 24.5 42.0 42.0 39.0 
22.5 18.5 24.5 47.0 47.0 43.0 
27.5 21.0 24.5 52.5 52.0 45.5 

progressively shallower asperity slopes the critical slope). Any asperities with lower 
slope angles than the current critical slope (which we shall call subcritical) cannot 
be in contact, and therefore will not be involved in the sliding process. 

By contrast, for joint profiles comprising elastic asperities, it is possible that as 
a result of elastic deformations of the asperities, sliding will occur both on the 
currently critical asperity slope and simultaneously on asperity slopes less steep 
than the critical slope, i.e. sub-critical asperity slopes (Seidel, 1993). Figure 6 

S ~ / / / ~ i dp S1 - N(dy-dP)dx 

J i / / ~ .  S 2 = S + tan ~u 

/ / iaY $3= Ntan ~u 

- - J ~ - - J / 1 ~ -  . . . . . . . . .  I ~  S = S I +  $ 2 +  S 3 

dx 

Fig. 6. Deformations due to inelasticity 

Ndp Ntan i 
+ dx - 

schematically represents the relevant movements for this case - a general asperity 
slope, i, and a critical slope, i c > i, have been adopted. 

It is evident that dilation at an angle larger than the sub-critical asperity angle, 
i, will result in an additional component, dr, of dilation against the normal force on 
the asperity, than would apply if the asperity were the critical asperity. However, 
the energy for this additional amount of dilation is provided by the release of 
elastic strain energy in the asperity, as long as contact is maintained. The net effect, 
therefore, is that the component $1 in the energy balance remains unchanged at 
N tan i, and not N tan ic. As discussed in the previous section, the components $2 
and $3, being frictional, are dependent on the relative movements across the 
interface. They are unaffected by the body movement dr of the asperity and 
therefore remain identical to the rigid asperity components for an asperity slope of 
i as given by Ladanyi and Archambault. 

The shear stress for each sub-critical asperity is therefore dependent only on the 
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basic friction angle and the angle of that asperity, and not on the overall joint 
dilation rate, i.e. 

~- = c% tan(~b, + i). (13) 

From Eq. (13), the instantaneous shear strength of a joint of n asperities with 
slopes, ij, in an elastic rock can be determined as follows: 

7- = ~ a/r~,/tan(~, +/ j ) ,  (14) 

where A is the total joint contact area and crnj are the local contact stresses which 
act upon the individual asperity contact areas, aj. The instantaneous shear strength 
in this context is taken to mean the shear strength at any instant of the shear 
process or for any value of shear displacement; it is not simply the peak joint shear 
strength. For  asperities which are not in contact, the relevant anj term in Eq. (14) is 
zero, and these asperities obviously do not then contribute to the joint shear 
strength. 

The instantaneous sliding resistance of a joint is therefore determined as the 
sum of individual asperity sliding resistances, which are a function only of the 
current asperity normal stress and the asperity angle. The sliding shear stress is 
dependent on the distribution of normal stresses on asperities within the joint, and 
the angles of those asperities as given in Eq. (14). By contrast, it is incorrect to 
determine the shear stress from the global normal stress and the global joint 
dilation rate as proposed in Eq. (10). 

The spatial distribution of asperity angles in a joint can be addressed on a 
statistical basis, whilst the determination of the normal stresses on these asperities 
requires the interactions of elastic deformation due to individual asperity loading 
to be modelled. In an elastic rock joint with complex interface geometry, the 
highest stresses will be applied to the steepest asperities, with the more shallow 
asperities subjected to lower or even no normal stress due to lift-off. The successful 
application of these approaches to the prediction of complex joint performance are 
described in more detail in Seidel and Haberfield (1994) and Seidel (1993). 

4. The Effects of Degradation on the Friction Angle of Collapsing Materials 

The previous discussions have related to rocks which behave in an essentially 
elastic manner until the onset of asperity failure. Not  all rocks, however, can be 
assumed to behave elastically under the application of shear stresses. Calcarenites 
are such a class of rock, and must therefore be modelled differently. Calcarenites 
are essentially composed of angular bioclastic grains that are cemented to various 
degrees at isolated point contacts, forming an open structure with a high void ratio. 
Under the application of hydrostatic confining stresses or shear stresses, the 
structure can collapse, either as a result of the destruction of cementing at the 
point contacts, or by crushing of the individual grains. This collapse is accom- 
panied by a reduction in volume of the calcarenite, as voids are filled by the freed 
grains, or their debris. 
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Whereas the sliding response of non-degrading rocks under applied shear can 
reasonably be modelled as elastic, the calcarenite samples are subjected to both 
elastic and inelastic deformations. The elastic deformations cause recoverable 
strain energy to be stored in the rock. As shown previously, these elastic 
deformations do not affect the measured friction angle of the rock under shear. 
By contrast, the inelastic deformations result in permanent and non-recoverable 
strains in the rock, and the energy used in causing these inelastic deformations is 
lost in the crushing process. 

Just as the energy approach of Ladanyi and Archambault (1970) was applied 
previously to the shear behaviour of elastic interfaces, the same approach can be 
used to determine the effect of inelastic deformations on the net friction angle 
during sliding accompanied by degradation. The schematic representation for the 
case of entirely inelastic deformations is shown in Fig. 6, which is essentially 
identical to Fig. 3, except that the elastic body deformation, de is replaced by a 
gradational inelastic deformation, dp. 

In this case, the reduction in work done due to dilation against the normal force 
is not balanced by recoverable strain energy, but rather by work required, and lost, 
in producing the inelastic deformations (i.e. crushing the structure of the calcar- 
enite). 

Adopting the same terminology used by Ladanyi and Archambault (1970), the 
component S1, which is the component due to external work required to dilate 
against the normal force, N, is therefore unaffected. The component due to work 
done in internal friction if the sample did not change volume, $3, is also unaffected, 
as the shear displacement, dx, is unchanged. However, as the amount of relative 
dilation movement is reduced due to the inelastic movements (i.e. degradation), the 
component $2, is reduced. If  the current dilation rate,/,  < tan i, the component $2 
becomes: 

$2 = St)tan q5 u (15) 

and the total shear force, 

S = Ntan  i + S/,tan q~, + N tan  qS,, (16) 

which can be rearranged in terms of stress as: 

crn (tan i + tan ~,) 
~-= (1 -~ tan4~ , )  ' (17) 

as ~ r tan i, this expression does not reduce further. The effective friction angle for 
a degrading material can then be expressed as: 

[tan i + tan ~,] 
~degrade = tan-1 L f22 u ~ a n ~ - J  " (18) 

It can be seen from Eq. (16) that if/ ,  < tan i, the determination of sliding shear 
strength on the basis of dilation rate will lead to an underestimation of the true 
sliding shear strength for these materials. 

Just as for the case of elastic asperities, Eq. (16) has been verified experimen- 
tally by Seidel (1993) for a series of constant normal stiffness direct shear tests on 
regular triangular joint profiles cut in a natural calcarenite, called Gambier 
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Limestone (James and Bone, 1989). These tests were performed as part of the 
previously mentioned research project into the behaviour of concrete piles 
socketed into weak rock, and in this particular case to the behaviour of grouted- 
insert piles or driven-and-grouted piles in calcareous offshores deposits; the joint in 
these tests therefore comprised a calcarenite/concrete interface. Asperity angles for 
these tests varied from 5 ~ to 27.5 ~ as for the tests on Johnstone, and typical 
interface geometry and stress-path plots are shown for tests on regular triangular 
calcareous asperities of 12.5 ~ and 22.5 ~ in Figs. 7 and 8. 

The effective friction angle given in Eq. (18) for the series of tests, is compared 
in Table 2 with both tan -1 (T/crn) measured in the tests and the effective friction 
angle, (q~u + I)), suggested by Eq. (10). As the degradation rate changes with the 
applied normal stress, all comparisons in Table 2 are based on analysis of the 
responses at peak shear strength. It is clear from this table that the observed joint 
sliding friction angle, [tan-l@-/o-~)] is most closely predicted by Eq. (18). The 
sliding friction angle based on the asperity angle, i, (Eq. 12) consistently over- 
predicts the measured friction angle; conversely, Eq. (10), based on the observed 
dilation rate, underpredicts the measured friction angle. 

As noted previously, Eq. (18) is based on deformations at the interface of the 
degrading material being entirely inelastic. In practice, deformations will comprise 
both inelastic and elastic components. This would account for the differences 
between Eq. (18) and the observed friction angle. Furthermore, in order to predict 
the joint response in degrading materials, the elastic and inelastic components must 
be computed individually and treated separately. It is important, therefore, to be 
able to predict the instantaneous rate of degradation. 

On the basis of the energy method considerations, and the experimental results 
for regular triangular asperities in calcarenite, it is concluded that Ladanyi and 
Archambault's expression for global shear stress based on the joint dilation rate as 
given by Eq. (10) is incorrect for rock joints which undergo inelastic deformations. 
For such rocks, Eq. (10) m u s t  underestimate the joint shear strength; Equation (17) 
will more correctly predict joint shear strength. 

As for the elastic asperity case described previously, the shear resistance of 
multi-asperity profiles in degrading rocks, and with varying asperity angles is 
computed by combining the individual shear resistance of each individual asperity 
face as follows: 

1 @~ (tan q~u + tan !j) 
= 5 aynj (19) 

5. Conclusions 

According to Ladanyi and Archambault, joint shear strength of natural joints can 
be determined from the applied normal stress, the basic friction angle of the rock 
and the joint dilation rate [see Eq. (10)]. The authors have investigated the 
performance of concrete-rock joints as part of an extensive research program 
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Fig. 8. Shear displacement-dilation curve and stress path plot for 22.5 ~ regular triangular asperity join1 
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Table 2. Comparison of direct shear tests and predicted effective friction angles for Calcarenite at peak 
shear 

Asperity Measured Basic tan -l(~-/cr,,) Eqn. (18) Eqn. (12) Eqn. (10) 
angle, dilation friction from shear (fidegrade (~u @ i) (o u + u) 
i (deg) angle, u angle, ~u tests (deg) (deg) (deg) (deg) 

(deg) (deg) 

5.0 1.2 37.5 42.1 41.0 42.5 38.7 
10.0 2.9 37.5 44.5 44.5 47.5 40.4 
12.5 3.8 37.5 47.0 46.2 50.0 41.3 
17.5 10.5 37.5 51.3 49.7 55.0 48.0 
22.5 11.9 37.5 56.1 54.7 60.0 49.4 
27.5 14.4 37.5 60.0 58.1 65.0 51.9 

into the behaviour of  piles socketed into weak rock. As part  of this research, it has 
been shown by applying conservation of energy principles, that for natural rocks, 
the assumption of rigidity made by Ladanyi and Archambaul t  in their model, leads 
to an underestimate of  the available sliding friction strength. By contrast, the joint 
shear strength of elastic rocks is dependent not on the dilation rate, but on the 
individual asperity angles and the distribution of normal stresses on those 
asperities. 

The conservation of energy principles have also been used to determine the 
shear strength of asperities of  degrading materials, such as calcarenite. It  has been 
shown in all cases that the use of  dilation angle as proposed by Ladanyi and 
Archambaul t  will underestimate joint shear strength. The theoretical derivations 
have in all cases been substantiated experimentally. 

The sliding models developed in this paper  have been used in a new analytical 
model for the prediction of the shaft resistance of concrete piles socketed into rock 
(Seidel and Haberfield, 1994). The principles, however, can be applied to the more 
general case of  natural rock joints. 
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