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Summary 

The stability of any underground structure during and after excavation is the most important 
question for designers, because any kind of collapse may destroy large parts of a finished 
tunnel, causing major repairs and time loss. Preliminary calculations are therefore of great 
importance. A calculation is only useful, however, when the underlying numerical model 
correctly describes natural behaviour. The rock bolts used in tunnel excavations are mostly 
untensioned grouted bolts, and this type of bolt is the main focus of this work. From the model of 
the grouted bolt, other types of rock bolts can also be modelled by the theory presented herein. 
Bolt behaviour in intact rock mass is so different from behaviour when a bolt intersects a 
joint, that a model with two different elements is suggested for a numerical calculation; one 
element for the bolt in the rock mass and one as a bolt intersecting with a joint. 

The model for both elements is verified by the experimental results. The numerical results 
correspond favourably with the experimental work. A variation of the parameters 
important for the behaviour of the bolt in intersection with the joint is shown. As an 
implementation of the bolt model, the numerical simulation of excavation and stabilisation 
of one road tunnel is presented. 

1. Introduction 

Rock  bolts, in combina t ion  with a shotcrete lining, are the most  impor tan t  support  
elements and are widely used. The reason for using rock bolts is their ease o f  
t ransporta t ion,  storage and installation, and also their superior reinforcement 
effect. The effect o f  the bearing capacity o f  rock bolts is very well known f rom 
experiments and "in situ" tests, but  modell ing o f  this effect is complicated because 
o f  a complex interaction between the bolt  and the rock. The effect can be 
considered as an addit ional  suppor t  load, as acting on the excavation boundary ,  
as an increase o f  the stiffness and strength of  the rock mass, and as a local support  
element to prevent the falling down or loosening of  rock blocks. 

The reinforcement effect o f  rock bolts depends not  only on this axial and shear 
resistance, but  also on the rock mass. In the cont inuous rock mass, rock bolts act 
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mostly with their axial resistance. In the jointed rock mass the shear resistance of 
the bolt also becomes important at the place where the bolt intersects the joint. 
While the axial resistance acts in approximately the same way for all rock bolt 
types, the shear resistance is important only for bolts with a continuous contact 
between the rock mass and the bar, as grouted and frictional bolts. The modelling 
of axial and shear resistances are so different that they are very often considered as 
separate problems in the literature on the subject. 

The continuous rock mass supposes either the rock masses to be without 
cracks or that the inhomogeneities, as joints and schistosity, are considered by 
efficiently diminished rock mass parameters. This latter assumption is possible 
only if the spacing between each inhomogeneity is much smaller than a dominant 
dimension describing an external geometry of the particular problem. The rock 
bolt effects are mostly shown as an increase of the rock mass properties, such 
as elasticity modulus and strength. Improving of the elasticity modulus is mostly 
done by smearing the bolt elasticity modulus all over the cross section area of 
the representative volume, with an assumption that strains in the rock mass and 
the bolt are equal. For increasing of the rock mass strength, so simple an 
expression is not possible because it is connected with the actual axial force in 
the bolt and the strength characteristics of the rock mass. The axial force, which 
is a result of pre-stressing or different deformations along the bolt, causes an 
additional compression force in the rock mass around the bolt which increases 
the strength of the rock mass. Wullschlfiger and Natau (1987) made compression 
tests on bolted cubes and showed the increase of the strength and the elasticity 
modulus, but also the breaking strain caused by bolting. 

A fully-grouted untensioned bolt in intersection with the joint has a big 
influence on the joint resistance to shear. The resistance of the bolted joint can 
be expressed as a sum of the joint and bolt resistances. The bolt resistance was 
observed in laboratory and in "in situ" tests and it can be divided into two 
effects: increase of a normal force in the bolt and a "dowel" effect. The increase of 
the axial tensile force in the bolt caused by relative movements of the joint 
planes acts in two ways, a component normal to the joint furnishing of an 
additional shear resistance through a friction effect, and a component parallel to 
the joint acts as a portion of the joint shear resistance. The "dowel" effect means 
resistance inducted by shear deformations of the joints, causing penetration of the 
bolt in the surrounding grout and rock mass. The deformation create shear and 
bending deformations of the bolt. It is very hard to predict all of these effects 
because of the highly complicated action which can be seen in Fig. 1. This effect 
occurs at a slight distance from the joint, and only measures 2 -4  diameters of the 
bolt. 

Many have worked on this problem in the last twenty years and their works 
can be divided into two groups, one which was only concerned with the maximal 
resistance, and the other which was interested in the behaviour of the bolted 
joint from the initial state to the failure of the bolt. Most theories from the 
first group are formed around an axial resistance based only on underformed 
bolt geometry and around the assumption that the normal force in the bolt is 
equal to the yield force. Aydan et al. (1987) suggested the formula which included 
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Fig. 1. Action of grouted bolt 

the deformed bolt geometry and shear response of bolt. Empirical formulae are 
used for the "dowel" effect (Bjurstr6m, 1974), which is significant when the bolt is 
set at a perpendicular angle through the joint. Spang (1988) conducted many shear 
tests under different conditions and found the relation for the maximal resistance 
of the bolted joint, which includes most of the important parameters. All these 
theories consider only the maximal resistance of the bolted joint and do not discuss 
behaviour before failure. 

In order to understand the behaviour of the bolted joint before failure, the 
complex combined system including the bolt, grout and rock mass around the 
bolt must be solved. The physical behaviour of this system must be described 
for shear movement and also for normal movement or for a decoupling of the 
joint. Panet (1987) suggested that these be calculated as separate problems for 
which elastic analytical solutions exist. This calculation correlates well with 
experimental results, but only when the whole system remains elastic, which is 
only true for very small displacements. From experimental results, Yoshinaka 
et al. (1988) tried to find a relationship between the displacement at the joint 
and the bolt resistance. This theory is based on the assumption of the circular 
deformed bolt shape with some parameters such as statistical values. Brady 
and Lorig (1988) suggested an element with two springs, one parallel to the 
local axis of the element and one perpendicular to it. Egger and Pellet (1992), 
for the purpose of finite element modelling, suggested a representation of 
the bolted joint by a virtual interface element with equivalent mechanical 
properties. 

In the numerical models, if the rock bolting effect has to be appropriately 
modelled, the rock bolts have to be represented as special elements. The action of 
the bolt in the continuous rock mass and near the joint is so different that it is 
necessary to be modelled as two different elements. 
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Fig. 2. Four node bolt element and connection with finite element mesh 

2. Belt in Continuous Rock Mass 

Usually the rock bolts in continuous rock mass are simulated as truss or beam 
elements (Laabmayr  and Swoboda, 1978). These elements are not appropriate to 
describe rock bolts, especially grouted bolts, because they do not take into 
consideration the stiffness of  the grout. The main disadvantage of the method is 
that it is not possible to take into consideration different displacements in the bolt 
and on the surface of the borehole (shear displacement which takes part  in grout). 
To solve this problem some authors have attempted to apply special interface 
elements between the bolt, represented as one-dimensional elements, and the rock 
mass. These interface elements were springs in nodes, or special interface elements. 
Such elements are normally two or three dimensional elements with characteristics 
of  grouted material (Spang, 1988; Siriwardane, 1989), or special joint elements 
such as the axisymmetrical joint element by Ghaboussi  (1973). 

A further development of rock bolt elements was an element which included the 
stiffness of the bolt and the interface. Aydan et al. (1988) developed an element 
with four nodes, two connected to the rock and two to the bolt. This element can be 
coupled to regular finite element models with two nodes which represent the 
grout-rock coupling. The remaining two nodes on the bar are connected with the 
rock with the stiffness of  grout (Fig. 2). 

Based on this element a modified rock bolt element (BOLT) was developed. In 
this model, the nodes on the steel bar  and the grout-rock interface have the same 
coordinates, but the real geometry is based in the stiffness matrix. This stiffness 
matrix is the sum of the axial stiffness of the bar and the stiffness of  the grout 
annulus. Some assumptions are made for this element: 

- the distribution of deformation in longitudinal (local x) direction of the bolt 
element is linear, 

- the distribution of deformation in radial direction, normal to the local axis of  
the bolt element is constant, 

- the distribution of deformation in radial direction in the grout is based on a 
theoretical analytical solution for axisymmetric bodies. This assumption saves a 
discretization in the radial direction, 

- the normal stress in the longitudinal direction is transferred by the bolt, but in 
radial direction no stresses are taken into account, 
the shear stress which is the result of  a different longitudinal movement  in the 
bolt and on the grout-rock interface is taken by shear resistance of grout, 

- the shear stress which is the result of a transversal movement  on the grout-rock 
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interface is taken by the shear resistance of the steel bar. Small transversal 
movement causes breaking of the grout and loosing of its stiffness, 

- the transversal stiffness between the bar and the grout rock interface, "dowel" 
stiffness, is modelled as an additional spring between the bar and the grout-rock 
interface nodes in transversal direction. 

The bolt stiffness matrix [K] under consideration of expressed assumptions can be 
written as (1) 

where 

EbA b GbA b L 
k b - L ' k s -  L ' kg=Trag-31n(rh/rb)" 

Eb and Gb are the elasticity modulus and the shear modulus of the bolt, Gg the 
shear modulus of the grout, A b the area of the bolt, L the length of the element, r b 
and r h the radius of the bolt and the hole and kd is the "dowel" stiffness. The 
"dowel" stiffness is important only on the place where the bolt intersects the rock 
joint, on which the penetration of bar in the surrounding grout and rock is existing, 
and it is equal to the shear stiffness of the Bolt Crossing Joint element defined in 
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the next section. If the "dowel" is not defined in this way the value can also be 
calculated from the work of Sydner et al. (1982) 

kd = EbI -2Ebi(r~-rb _ 1) ' (2) 

where Eg is the elasticity modulus of the grout and I a moment of inertia of the bolt. 
Since relatively small displacements of rock can produce very large forces in the 

bolt, the bolt element should be modelled as an elasto-plastic element. The bolt 
element consists of two different parts, the bar and the grout, made of different 
materials, and the post yield definition for both materials have to follow their 
natural behaviour. 

3. Bol t  Cross ing  Jo int  E l e m e n t  

The behaviour of the rock bolt in intersection with a joint is a very complicated 
problem for prediction and depends on the characteristics of the joint and many 
factors connected with the bolt such as: the diameter of the bolt and the hole, the 
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Fig. 3. Bolt crossing joint element and connection with finite element mesh 

quality of the steel, the extension of the bolt, the strength of the rock and the grout, 
and the angle between the joint and the bolt. The rock bolt type also plays an 
important role. If, at the place where the bolt intersects the joint, a contact between 
the bar and the surrounding rock does not exist, for example in the case of 
mechanically anchored or pre-stressed bolts, the bolt acts only with its axial 
resistance. At the bars which have a continuous contact with the surrounding rock 
the shear resistance could also mobilised. The grouted bolts, which are the best 
representation for bolts with continuous connection, could be characterised by the 
relatively large axial resistance to extension that can be developed over the 
relatively short bar length and by the high resistance to shear that can be 
developed by an element penetrating the slipping joint. 

A special element, Bolt Crossing Joint (BCJ) element, has been developed to 
incorporate all important factors. The BCJ element is the element which connects 
the bolt elements on both sides of the discontinuity (Fig. 3). The BCJ element is 
assumed to be an element with two nodes, each on one side of the discontinuity, 
connecting the bar nodes of the bolt element. The other nodes of the bolt element 
(grout-rock interface) are connected through an interface element representing the 
joint (Swoboda, 1992). 

The BCJ element is modelled as springs which describe the bolt resistance 
according to the movements on the joint. The stiffness matrix of the bolt crossing 
joint element can be presented as 

[ k, k12 - k .  -k121 
Ke= I k21 k22 -k21 -k=~ 

]-kll -ki2 kli k~/ '  
L-k21 -k22 k21 k22] 

(3) 
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where kll is a shear stiffness, k22 is a normal stiffness, k12 represents a connection 
between a shear displacement and a normal force and k21 a connection between a 
normal displacement and a shear force. The stiffness values depend on a lot of 
different parameters and explicit expressions are very difficult to prescribe. Here, 
an additional finite element calculation is suggested for calculating the stiffness 
matrix components. 

The stiffness matrix components are calculated from a substructure (Fig. 4). In 
this system, with an assumption that the deformation of the bolt is symmetric on 
both sides of the joint, only the bolt on one side of the joint is taken into account. 
The bolt near the joint is calculated as a beam structure, with the length which is 
sufficient to ensure that the support conditions on the side opposite to joint have no 
influence on results. The beams represent the bar, while the grout and the rock 
around the bar are modelled as axial and lateral continuously distributed non- 
linear springs. In this case most of the influences such as the diameter of the bolt 
and the hole, the quality of the steel, the strength of the rock and of the grout, and 
the angle between the joint and the bolt can be taken into account. The bolt, before 
breaking, can take displacement which is in a rank of bolt diameter and the 
calculation is done based on the theory of large displacements. For  the real shear 
and normal displacement on the joint, a deformed bolt shape and forces in the bolt 
are calculated. The proposed substructure calculation to find the stiffness matrix 
components is an iterative procedure. 

The substructure stiffness matrix Ksu b is represented as a sum of  beam stiffness 
Kb, spring stiffness K~ and additional stiffness of the large displacement theory 

Ksub : ~ k b  + K, + Kg, (4) 
i=1 

where n is the number of the beam elements. The geometry change is taken into 
account by the way that in every iteration step the system coordinates are changed 
according to the displacements from the previous step. 
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The bolt in the intersection with the joint can take large shear and normal 
displacement before breaking, but plastic deformations of the bar and the 
surrounding material will occur. The plasticity is included in the substructure 
calculation according to the direct iteration method. The plastic bar is modelled as 
a plastic beam element and the grout and the rock are modelled as non-linear 
lateral and axial springs, with the stiffness dependent on the displacements defined 
for each substructure element according to actual lateral and longitudinal 
displacements on element. The solution of the global elasto-plastic substructure 
problem is done by direct iteration method, which also allows elastic-residual 
plastic behaviour. 

Constitutive Law for Beam 

The bar is modelled as a system of beams with normal forces, shear forces and 
moments in it. The bar material which is mostly steel is modelled as linear elastic- 
ideal plastic material. The K16ppel-Yamada yield criterion (1958) is used to check 
if the steel bar is in the plastic condition. This yield criterion Fy b is specially 
developed for steel beams and it is expressed in forces as 

_ _ _ _ M  ['N'~ 2 1 6 ( Q )  2Qpp 
Frb = ~ + ~ )  +~5~2 - 1 = 0 .  (5) 

where M, N, Q are the bending moment, normal and shear forces in the bolt and 
Mp, Np, Qp are the plastic forces when only one of these forces is acting. 

Lateral Spring Stiffness 

The lateral springs describe the grout and the rock stiffness around the bolt in the 
lateral direction. The stiffness of the spring is defined as a lateral force acting on the 
bolt divided by a lateral displacement under the bolt. The spring stiffness is not 
linear and nonlinearity depends on the bolt's lateral displacement. The small 
lateral displacement produces a big pressure on the grout and rock and for the 
small displacements plastic deformations in both materials occur. 

Based on experiments in which the bar lateral displacements are measured, 
Prisco et al. (1988) found the experimental formulae for describing the behaviour 
between the lateral displacement and the lateral stiffness (Fig. 5). 

The characteristic values which define the curve were found from experiments 
for the reinforced bar in the concrete block with a compressive strength of 
fc = 30 MPa (Prisco et al., 1988). The stiffness values depend on the bar diameter 
and are based on the different tested diameters (d b = 14, 18, 24 ram). The values are 
suggested as: 

ki = 483.0 - 13.03d b (N/mm 3) (6) 

ki = 150.0- 1.66db (N/mm 3) (7) 

v~ = 0.6 (ram) (8) 

v, = 0.316 + 0.302db (ram) (9) 
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From the experiments on the reinforced bar, the shape of the lateral displacement, 
spring stiffness dependency can be used, but real values on the curve have to be 
found. The behaviour of the bolt under the lateral displacement is dependent not 
only on the strength of the grout and the rock mass but also on the bolt and the 
hole diameter. The real values can be found from a parametric study of the real 
problem or from the finite element calculation. The experiments and the para- 
metric study for each case are expensive and in most cases impossible. The finite 
element method can describe the problem well, but the materials have to be 
modelled very carefully, especially the grout and the rock plastic behaviour. In the 
region where plasticity occurs the material is fully crashed, which means that the 
material constants for the crashed material have to be used. 

In the substructure calculation the lateral spring stiffness is defined, based on 
the work of Prisco. The displacement-stiffness function is defined as linear 
functions on the regions. 

Axial Spring Stiffness 

The axial spring stiffness describes the behaviour of the bar under the displacement 
in the direction of the bolt axis. The bar-grout interface plays the main role in this 
case, because in most cases the slip happened on this plane. Two different stiffness 
models have to be introduced, dependent on the bolt lateral displacement. If the 
bolt is moved in the direction of the bolt axis, the real bond-slip relation between 
the bar and the grout have to be taken into account, and if the bar also has the 
lateral displacement, the stiffness has to be modelled as a friction between the bar 
and the crushed grout. 

The spring stiffness without the lateral displacement can be defined as a bond 
stiffness between the bar and the grout. The spring stiffness c2 is then defined as the 
bond force divided by the corresponding slip displacement s (Fig. 6), 

C 2 = (10) 
S 

where r is a maximal bond stress for the applied slip s, and d b is the bolt diameter. 
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This relationship between the bond force and the slip can be found from the 
experiments or can be taken as suggested values from the CEB-FIP model code for 
1990. The Code suggested the bond-slip relationship based on the concrete 
compressive strength to be different for a ribbed and for a smooth bar. 

If  the lateral displacement of the bar exists, the bond between the bar and the 
grout is destroyed and only a friction between the bar and the crushed zone is 
active. This can happen only when a certain lateral displacement takes place, which 
produces a debonding between the bar and the grout on the one side and the plastic 
deformations of the grout on the other side of the bar. For the lateral displacement 
which produces this effect, a value the same as the height of the ribs can be taken. If 
the displacement is bigger than this limit, the maximal axial force can be defined as 
a product of the active lateral force and the friction coefficient. 

Convergence Process 

The substructure calculation is a non-linear iterative procedure. The convergence 
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of the process is checked by two criteria; the displacements and the plasticity of the 
bar. 

The displacement criterion checks that the difference between the displace- 
ments in two adjoining calculations is smaller than the allowed tolerance. The 
displacement check is important  for the large displacement theory and also for the 
selection of the right spring stiffness. This check is done for all nodes in the axial 
and the lateral direction. The plasticity criterion verifies if the stresses in each part 
of the bar are smaller than the yield stress. This criterion is checked only if the 
displacement criterion is satisfied. When both criteria are satisfied, the stiffness of 
the substructure system is found and the BCJ element stiffness matrix components 
can be found. 

For  the verification of the substructure calculation specially prepared samples 
are indispensable. The substructure calculation verification is made on two 
separate examples; one for lateral and one for axial displacement, for which the 
experimental data exist. The calculated results concur satisfactorily with experi- 
mental results (Maren~e, 1992). 

Definition of BCJ Stiffness Matrix Components 

The stiffness of the bolt in the intersection with the joint is very sensitive according 
to the size and the combination of the shear and the normal displacement which 
takes part on the joint. Due to this fact, the stiffness of the substructure system is 
defined for the real displacements on the joint, u, v found in the previous iteration 
step of the total system (Fig. 7). Application of the separate displacement on the 
substructure with defined stiffness, a normal and a shear force in the bolt can 
be detected and from this terms of the BCJ element stiffness matrix defined in 
Eq. (3). 

Application of the shear displacement u on the substructure a shear force S. 
and a normal force N.  in the bar is found, and the stiffness terms defined by the 
shear displacement are 

S. 
kl, = G  (11) 
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N~ 
k12 = ~u'  (12) 

In the substructure calculation only half of the system is calculated and the BCJ 
elements stiffness has to be defined for a total joint displacement. On analogy, 
applying of the normal displacement v a shear force S~ and a normal force N~ in 
the bar is found and the stiffness terms are defined as 

S~ (13) k21 2v 

k22 = ~ .  (14) 

The stiffness matrix of BCJ element defined in this way is not symmetric because 
the terms k12 and k21 are not equal. Non-symmetry is very small and sym- 
metrization in the form 

k~2 - k12 -- k21 (15) 
2 

can be used. Equation (3) which defines the BCJ stiffness matrix is modified in the 
equation 

[ kll k~2 -kl l  -k~2] 
K e :  i k~2 k22 -k~2 -k22/ 

i-k11 -kTa k,1 k~2/" <16) 

L-k~2 -k22 k~2 k22.] 
The components of the stiffness matrix are sensitive according to the shear and the 
normal displacement. 

4. Shear Experimental 

By means of simple laboratory tests, such as pull-out and shear tests, the required 
parameters for bolt description in the finite element calculation can be found or 
their selection can be confirmed. To prove the rock bolt model, pull-out and shear 
tests for different bolt types have been done. (Swoboda et al., 1992; Maren6e, 
1992). Here, results of shear tests with grouted bolts are show. 

In the laboratory shear tests, concrete blocks were connected by grouted bolt, 
set perpendicular to the joint. The bolt, a ribbed steel bar with 26 mm diameter, 
was installed according to regular procedures in tunnelling. To reduce the joint 
influence, tests have been done with Teflon plates between blocks and without 
normal pressure on the joint. The shear force resulting from the (app. mono- 
tonous) shear displacement was measured. Based on the presented theory, 
the laboratory shear test was numerically modelled and results are compared. 
The selection of the parameters, important for BCJ definition, are proved. The 
longitudinal spring stiffness definition, based on the bond between steel and grout, 
has been checked by a pull-out test and concur well with the values defined by the 



Numerical Model for Rock Bolts 157 

225.0 [ 

200.0 [ 

 75o/ 
"~ 150.0 :Z 
o ~ 125.0 

i00.0 

75.0 

m 50.0 

25.0 

0.0 

_ :  . . . .  _ . . . . .  . . . . .  _ . . . . .  
. . . . . .  / - -  ~ . . . . . . . . .  ~ . . . . . . . . . . .  ! . . . . . . . . . . . . . . . .  _ . . . . . .  

, ~ ~ FEM (without splitting) 
/ 

/ 

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 

Shear displacement (ram) 

Fig. 8. Measured and calculated shear force-shear displacement behaviour 

CEB-FIB code (1990), for the ribbed bar (Maren6e, 1992). The lateral spring 
stiffness has been defined by the work of Prisco et al. (1988). The shear force - 
shear displacement diagram is shown in Fig. 8. The numerical results concurred 
satisfactorily with the experiments until the applied force reached 150 kN. At that 
point in the experiment the sheared block split under the bolt. The changing of the 
lateral spring stiffness definition in the substructuring calculation of the BCJ 
element and the splitting of the block can be also modelled. 

5. Behaviour of the Bolted Joint 

Based on the performed laboratory tests, the necessity input data for the finite 
element calculation was proved and the influence of different parameters on the 
shear resistance of bolted joint, such as a bolt setting angle, joint strength 
parameters, or a joint dilatancy angle, is then studied. The study was made on 
the numerical simulation of the standard direct shear test. 

Influence of Bolt Setting Angle 

The setting angle is one of the most important parameters which influence the 
behaviour of the bolted joint. Figure 9a shows the influence of the bolt setting 
angle on a mobilised shear force as a function of shear displacement for selected 
setting angles. The results are compared with different theories presented in the 
literature on the subject. "The results obtained correlate well with the work of 
Bjurstr6m (1974) and Aydan (1987) except when the setting angle is approximately 
90 ~ . This is because all these theories only give consideration to the effect of the 
normal force and not to that of the "dowel" effect. The expression defined by 
Spang (1988) took both effects into consideration because it has been derived as an 
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Fig. 9. Influence of  bolt setting angle 

empirical formula from many shear tests. This equation is only valid for setting 
angles between 60 ~ and 90 ~ and correlates well in this range with the present 
theory. Figure 9b shows the maximal resistance of a bolted joint for the whole 
range of setting angles. 

Influence o f  Joint Strength Parameters 

The joint strength is usually represented by the linear Mohr-Coulomb strength 
law. In this presentation the joint strength is expressed in terms of a cohesion and a 
friction angle. Additional normal pressure on the joint caused by shearing of the 
bolt, together with the joint friction, produces supplementary shear resistance of 
the bolted joint. The effect of different friction angles on the maximal resistance of 
the bolted joint is shown in Fig. 10a. Increase of the maximal resistance for the 
setting angles until 110 ~ is obvious. For setting angles over 110 ~ shearing causes a 
compression force in the bolt, which decreases the normal pressure on the joint and 
thereby the additional resistance of the bolted joint. 

If the bolt, as a special element, is not included in the numerical calculation, the 
resistance parameters which define the joint resistance can be increased. Numerical 
shear tests with and without the bolt have been performed. For both cases, the 
normal pressure on the joint has been varied. The results, show in Fig. 10b, show 
that the effect of rock bolting on joint shear resistance can be described as an 
increase in joint cohesion without a change in the friction angle, also found from 
experimental results (Bjurstr6m, 1974; Wullschlfiger et al., 1987). The increase in 
cohesion can be expressed as the additional joint shear resistance caused by the 
bolt divided by the joint area corresponding to one bolt. 
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Fig. 10. [nfluertce of joint strength parameters 

Influence of Joint Dilatancy 

Dilatancy describes the normal displacement (joint thickening) caused by shear. In 
the numerical calculation it is conventionally approximated by a dilatancy angle i, 
defined as 

i = arctan , (17) 

where Av is a normal displacement caused by a shear displacement Au on the joint, 
The joint thickening induces a larger normal force on the joint, and through joint 
friction, increases the resistance of the bolted joint. Also, the joint thickening 
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Fig. 11. Influence of  joint dilatancy 

induces a larger bolt strain and causes breaking of the bolt at a smaller shear 
displacement. Results of  numerical shear tests, with different dilatancy angles, 
for the bolt set perpendicular to the joint, are shown in Fig. 11 a. Figure 11 b shows 
the maximal resistance of a bolted joint for the whole range of setting angles for 
the different dilatation angles. The increase of  the maximal shear resistance is 
obvious. 

Table 1. Material parameters 

Rock 
E 130.00 MN/m 2 
u 0.38 - 
3' 25.00 kN/m 3 
c 120.00 kN/m 2 
cr 80.00 kN/m 2 

22.00 deg 
~b r 18.00 deg 

Shotcrete modulus of elasticity 
E 1 5 000.00 MN/m 2 
E 2 20 000.00 MN/m 2 

Rock bolts 
db 26.00 mm 

40.00 mm 
d~ 500.00 MN/m 2 
~ax 14.00 M N/m 2 
~l'e~ 5.00 MN/m 2 

Elasticity modulus 
Poisson's ratio 
Unit weight 
Cohesion 
Cohesion at rest 
Friction angle 
Friction angle at rest 

Young shotcrete 
Old shotcrete 

Bolt diameter 
Hole diameter 
Bolt yield stress 
Peak bond strength 
Residual bond strength 
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6. Illustrative Example 

Implementation of rock bolts in the numerical model which simulates excavation 
and stabilsation of an underground opening is demonstrated on one road tunnel 
in Australia. The tunnel is excavated under difficult geological conditions in a 
moraine with a maximal overburden of 70.0 m. Rock parameters and parameters 
defining the supporting system, consisting of shotcrete lining and rock bolts, are 
shown in Table 1. 

The rock mass is modelled by linear strain triangular elements as a homo- 
geneous isotropic elasto-plastic material. The plastic behaviour is defined by the 
Mohr-Coulomb failure criteria with peak and residual strength parameters. The 
shotcrete lining is modelled as beam elements. Development of shotcrete stiffness 
with time is, in the calculation, expressed by a modulus of elasticity dependent on 
shotcrete age. Grouted bolts are modelled as BOLT elements. The length of the 
bolts is between 4.5 and 6.0 m. The geometry of the tunnel and the position of the 
bolts is shown in Fig. 12. 

The initial state of stress is assumed from the geological conditions. The vertical 
initial state of stress is taken as a linear distribution in depth with an overburden of 
70 m. The horizontal initial state of  stress is taken as a portion of vertical stress 
with a coefficient of  horizontal stress of  0.6. The three-dimensional effect of 
excavation is taken into account by initial stress relief before excavation. In this 
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Fig. 14. Axial forces in lining for the calculation with and without rock bolts 
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way, displacements taking place before excavation are included in the calculation. 
The factor defining initial stress relief c~ is 0.3 (Swoboda, 1989). 

Excavation of the tunnel was undertaken in two steps, a crown and then a 
bench. The loading steps follow the excavation phases, with indispensable 
partition. After finishing excavation and lining installation of the crown, the 
plastic calculation is performed to partly release the over-stressed rock regions. At 
the end, all over-stressed rock regions are released. 

Some representative results, for the final situation, are shown here. Distri- 
bution of axial force in the bolts is shown in Fig. 13. It can be seen that the part of 
the bolts 4 -6  and 11 14 are plastified after the last construction stage, due to very 
bad rock conditions. In contrast to these high loaded bolts, the bolts in the crown 
are not fully loaded, but their role is also to prevent possibly instable rock blocks 
from falling. The bolts at the bench also bear a small force compared at the yielding 
force of a bolt. The importance of these bolts is to reduce the bending moments in 
the concrete beam caused by plastic deformations under the tunnel. 

The effect of rock bolts on the normal force in the shotcrete lining is shown in 
Fig. 14. Installed bolts reduce the lining deformations and thus normal forces in 
lining, but the rock bolts also exert internal pressure on the lining. 

7. Conclusions 

Rock bolts represent a very efficient method of increasing rock mass strength. The 
effect of rock bolts is very well known from engineering practice and laboratory 
tests, but it is difficult to quantify it. For  the influence of rock bolts on rock mass, 
one must distinguish between the behaviour in intact rock mass and the behaviour 
when a bolt passes through rock fault or discontinuity. The behaviour is so 
different that two different finite elements are proposed for description of bolt 
behaviour; one in the intact rock mass and one when the bolt intersects the fault 
system. 

In the intact rock mass a bolt acts as an increase in rock mass stiffness and 
strength, particularly tension and shear strength. Bolt action in intact rock mass 
can be easily modelled by BOLT elements which give satisfactory results compared 
with an analytical solution. Behaviour of a bolt in intersection with a fault can be 
divided into two effects: the increase of axial tensile force in a bolt and a "dowel" 
effect. The behaviour of a bolt in intersection with a fault is complicated to analyse 
being influenced by many parameters such as: the shape and type of bolt, the 
diameter of the bolt and the hole, the steel quality, the angle between the joint and 
the bolt, the strength of the grout and the rock and the characteristics of fault as 
a strength and dilatancy. Predicting all parameters having an influence on the 
resistance of a bolted joint is very difficult using one expression, which is why a 
small finite element calculation is suggested here. In the calculation, the real forces 
and the bolt stiffness are found for the real shear and normal movement on a joint. 

Numerical modelling of simple laboratory tests, such as pull-out and shear tests 
concur satisfactorily with experimental results. On the basis of experiments, the 
behaviour of  a bolted joint, defined for specific conditions, can be extended to 
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other cases. A few simple tests combined with inexpensive numerical calculations, 
can be an easy and inexpensive means of defining the bolted joint behaviour for all 
parameters of  interest. In this way, the effect of  an existing bolt type can be proved 
or a new bolt type can be tested or developed. 

Elements describing the behaviour of  the bolt are defined for a grouted bolt, as 
the most  commonly used bolt type, but can be used with simple modification for 
other bolt types. 
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