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Summary 

It is argued that the currently available joint models are incapable of accurate predictions of 
joint shear behaviour without resorting to substantial levels of empiricism. This is because 
these models fail to adequately quantify joint roughness, or appreciate the importance of 
scale. A novel approach, which uses fractal geometry to investigate joint roughness, is 
described. This approach goes beyond describing the "symptoms" of roughness and seeks to 
find the "cause". In the application of this approach, the concepts of fractal geometry, 
fractal dimension and self similarity are described and used as a framework to formulate a 
statistically based and practical model for the characterisation of rock joint roughness. 
Important relationships between the fractal dimension and the more useful statistical 
parameters of standard deviation of both asperity angles and asperity heights are derived. 
These relationships not only provide a useful, working method for quantifying joint 
roughness, but are also shown to provide a basis for understanding the Barton empirical 
JRC-JCS model. In addition, the fractal model is able to provide conceptual models for the 
effects of normal stress on the shear behaviour of joints and the scale-dependence of joints. 

1. Introduction 

Joint roughness is of  paramount  importance to the shear behaviour of  rock joints. 
This is because joint roughness has a fundamental influence on the development of  
dilation, and as a consequence, the strength of the joint during relative shear 
displacement. To date, perhaps due to the earlier work of Patton (1966), joint 
roughness has been considered as a parameter  that effectively increases the fric- 
tion angle of  the joint above the base friction angle, Cb, by some "asperi ty" or 
"dilation" angle, usually designated by i, i.e. 

r = ~rtan (r + i), (1) 

where r is the shear strength of the joint and a is the average normal stress 
on the joint. In fundamental  terms, i, can be interpreted as the angle of  dilation 
of the joint during shearing. Typically, for rough rock joints, the value of  i is 
not constant, but gradually decreases with increasing shear displacement. The 
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variation in i is due to the random and irregular surface geometry of natural rock 
joints, the finite strength of the rock, and the interplay between surface sliding and 
asperity shearing mechanisms. 

The majority of the research carried out to date has concentrated on the 
quantification of joint roughness by searching for representative values of i, or 
the variation of i with shear displacement. A wide variety of techniques have been 
adopted, including, amongst others, empirically based methods (Bandis et al., 
1983), tribology (Wn and Ali, 1978), autocorrelation functions and spectral density 
functions (Wu and Ali, 1978; Krahn and Morgenstern, 1979) and fractal geometry 
(Lee et al., 1990; Huang et al., 1992). However, it appears that there is no practical, 
objective, method available that can accurately quantify roughness for use in 
joint models. 

Perhaps this is partly due to the scale-dependence of roughness. A joint 
subjected to small shear displacement will be primarily influenced by small scale 
roughness. However, the same joint undergoing large shear movements will be 
governed by large scale roughness components. Similarly, as shown by Barton and 
Bandis (1982), small lengths of joint will be affected by small scale roughness 
and large joint lengths by large scale roughness. In order to predict the full shear 
behaviour, therefore, a single roughness statistic will be inadequate. 

A careful study of the currently available descriptions of roughness indicate 
that roughness has been treated from a very limited perspective - looking at and 
describing the "symptoms" of roughness rather than seeking the "cause". What is 
needed is a philosophy which, as a minimum, can provide a qualitative apprecia- 
tion of the nature of roughness, and which can provide an insight into the meaning 
of roughness at different scales. Armed with such an understanding, a quantitative 
description of roughness, suitable for incorporation into theoretically based 
models of joint behaviour, should be possible. 

In this paper, the beginnings of such an understanding, based on the concepts 
of fractal geometry, are outlined. The formulation of a theoretical and practical 
model of roughness, based on fractal geometry, is described. This model is applied 
to the problem of scale in rock joints and is shown to provide a basis for 
understanding Barton's empirical JRC-JCS joint model (Bandis et al., 1983; 
Barton and Choubey, 1977). 

2. Existing Descriptions of Roughness 

Given the importance of roughness in controlling the shear behaviour of rock 
joints, it is not surprising that a large number of researchers have attempted to 
characterise joint roughness, develop systems to quantify roughness, and relate 
roughness to shear behaviour. 

Perhaps the most widely used is the empirical approach proposed by Barton 
and Choubey (1977). They addressed roughness in terms of a Joint Roughness 
Coefficient (JRC) that could be determined either by tilt, push or pull tests on rock 
samples or by visual comparison with a set of roughness profiles. These roughness 
profiles were obtained from a series of 136 joint specimen tests carried out on 
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samples of approximately 100 mm length. Samples were grouped in ranges of JRC 
0-2, 2-4, etc. up to 18-20, depending on performance measured during shear 
tests. One typical profile from each group was selected for a set of representative 
roughness profiles. This set of profiles has subsequently been adopted as a standard 
by the ISRM (1978). On the basis of their extensive laboratory testing, Barton and 
Choubey (1977) proposed the following expression for prediction of joint peak 
shear strength: 

= + ~5 b (2) r o-,, tan JRC log10 k crn / 

where r = peak shear strength 
~r~ = normal stress on the joint 
JRC = joint roughness coefficient 
JCS = joint wall compressive strength 
~b = base friction angle of the rock. 

Equation (2) is the same as the Patton model (Eq. (1)) but with 
i = JRC lOgl0(JCS/o-,). This implies that JRC is essentially an empirically deter- 
mined dilation angle. A correction to this dilation angle is made to account for 
normal stress (log 10(JCS/crn) in Eq. 2). 

It should be noted that Eq. (2) has subsequently been modified by Barton and 
his colleagues in a number of important ways. Barton and Bandis (1982) 
introduced empirically-derived scale corrections based on limited laboratory 
t&ting of joints of varying length to derive the scale dependent values JRC n and 
JCS~. Bandis (1993) included an additional term g in the basic formulation to 
account for large scale joint undulations. Furthermore, Barton and Bandis (1990) 
noted that dilation angles, tin, may reduce to as low as d~ = 0.5JRC lOgl0(JCS/~r,,) 
at high normal stress levels due to the effects of asperity damage. 

Rengers (1970) and Feker and Rengers (1971) proposed a method to capture 
the statistical aspects of joint roughness. The method consists of choosing a 
reference line parallel to the general direction of the joint. The joint is then 
digitised (typically at 1 mm intervals), and the profile is traversed in discrete steps, 
recording the maximum positive and negative angles over the profile. The step 
length is progressively increased, and the tangents for the maximum positive and 
negative angles for each step size are plotted. The data can also be represented as a 
hypothetical "free" dilation curve which represents the maximum possible dilation 
that can occur for any given relative shear movement. 

This innovative method is effective in addressing roughness as a parameter 
which is subject to scale effects. However, as it does not incorporate any aspects of 
rock strength, its value as a predictive tool is limited to either hard rocks, where 
little surface degradation occurs at moderate stress levels, or to softer rocks with 
very low stress levels. Furthermore, the concept of free dilation angles for step- 
lengths exceeding the longest underlying wavelength in a joint, probably has little 
physical relevance. 

Williams (1980), in his research on rock socketed piles, samples the roughness 
of wall sockets and quantified the socket profiles as a set of statistics of rough- 
ness angles and heights for 2mm step lengths. Haberfield and Johnston (1994) 
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adopted a similar procedure in their model of joint behaviour. However, instead of 
keeping a constant step length, they proposed that a roughness profile obtained 
from a typical joint cross-section could be idealised as a series of variable length, 
straight lines. For example, the joint profile, shown as a dashed line in Fig. 1, could 
be idealised as the series of straight lines or chords depicted by the solid line, also 
shown in Fig. 1. Haberfield and Johnston noted that such a typical joint profile 
is but one of an infinite number of cross-sections of the same joint surface and that 
other joint cross-sections would result in different straight line profiles. They 
suggested that each idealised profile could then be analysed (independently or 
collectively) on a statistical basis to obtain four roughness parameters - the mean 
and standard deviation of the chord absolute inclinations, and the mean and 
standard deviation of chord end-point absolute heights. 

30 
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Fig. 1. Natural rock joint and corresponding idealisation (after Haberfield and Johnston, 1994) 

They also noted that the way in which a profile is idealized is subjective. 
Furthermore, the method gives no guidance as to what constitutes an appropriate 
scale for idealization. A particular idealization may be appropriate if shear 
movements of 20 mm are to be modelled, but entirely unsatisfactory if movements 
of only 2 mm or as much as 200 mm are anticipated. 

Apart from the large body of work relating surface parameters to friction in 
the field of tribology and wear theory, e.g. Koura and Omar (1981), many other 
investigators (Wu and All, 1978; Krahn and Morgenstern, 1979; Williams, 1980; 
Tse and Cruden, 1979; Reeves, 1985) have specifically attempted to correlate 
surface roughness with the frictional behaviour of rock joints by statistical 
methods. As noted by Reeves (1985), the statistical parameters used can be 
divided into two categories: 

- those describing the magnitude of roughness; namely the centre-line roughness 
and root mean square roughness; 

- those describing the texture of the rough surfaces, namely the root mean squares 
of the first and second derivatives of the surface profile, autocorrelation 
function, spectral density function, mean square value and structure function. 

The autocorrelation function indicates the general dependence of the values at one 
position on the values at another position, and is therefore useful in detecting 
persistent cyclic functions embedded in a complex profile. The spectral density 
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function, which is the Fourier transform of the autocorrelation function, is 
similarly an indicator of periodicity. 

Krahn and Morgenstern (1979) attempted to relate a number of these rough- 
ness parameters to either the "peak" or "ultimate" (i.e. large strain) friction angles 
of lapped, dry-sanded or diamond saw cut surfaces of limestone. At best, a 
correlation coefficient of 0.881 was achieved between the first derivative of the 
surface profile and the ultimate friction angle. All other correlations were 
statistically insignificant. 

Tse and Cruden (1979) were attracted by the development of correlations 
between various statistical parameters and Barton's roughness charts, which they 
digitised. Eleven empirical correlations were investigated, and these varied from 
very poor to excellent. Despite the high coefficient of correlations for some of 
these statistics, the value of empirical correlations with the JRC factor (which is 
itself empirical and scale dependent) must be questioned. Others (e.g. Wu and All, 
1978; Reeves, 1985; Yu and Vayassade, 1991) have also been motivated to examine 
these roughness profiles. 

Recently, a number of researchers (Lee et al., 1990; Turk et al., 1987; Carr and 
Warriner, 1987) have applied the concept of fractal dimension to rock joints. Lee 
et al. (1990) and Turk et al. (1987) applied the concept of fractal dimension to 
natural and artificially created joints, and to an analysis of the ISRM standard 
roughness profiles (ISRM, 1978). Lee et al. determined an empirical relationship 
between JRC and the fractal dimension, D, as follows: 

D - 1  
J R C = - 0 . 8 7 8 0 4 + 3 7 . 7 8 4 4 ( 0 . - ~  )-16.9304((D1@51~2k, . 1 J ' (3) 

Turk et al. (1987) took an alternative approach, and developed a semi-empirical 
relationship between the average asperity angle, i, and the direct profile length, Ld: 

cos i = (XLd) l-D, (4) 

where X is a constant, to be established empirically. In their analyses, Turk 
et al. found that the fractal dimension was not constant over the range of 
step lengths investigated (2, 6, 20 and 60mm), so they adopted a standard step 
length of 6 ram. On this basis, for the ISRM standard profiles, they determined 
constants varying unsystematically from X = 20.9 to X = 99.1 for each group of 
JRC values. 

The approaches described above, which are based on the representation of 
roughness as a single statistic, or a limited set of statistics, cannot hope to capture 
the complexities of joint behaviour, and the interplay of both geometrical and 
strength properties of rock joints. Their use must be coupled with empirical factors 
which are at best approximate. 

If  a fundamental approach to the shear behaviour of rock joints is sought, 
it must be matched with a fundamental understanding and quantification of 
roughness. As will be explained, fractal geometry provides a framework to 
develop such an understanding. 
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3. Fraetal Geometry 

As fractal geometry is central to the development of the roughness model, a brief 
introduction to the concepts of fractal geometry has been included. Further details 
can be obtained from any of a number of references on the topic; e.g. Kaye (1989), 
Mandelbrot (1977, 1983). 

Fractal geometry is the geometry of "chaos theory", and has been described as 
the geometry of Nature. Nature rarely presents itself in the shapes of Euclidean 
geometrical forms - straight lines, triangles, squares, etc. - but rather in forms 
which can be considered as chaotic. Clouds, trees, mountain ranges, coastlines 
and rock joints have not been engineered, but are a result of the conjunction of 
unknown and random forces. All are poorly represented in terms of classical 
geometrical concepts, but lend themselves to probabilistic representation using 
fractal geometry. 

Fractional Dimensions 

Euclidean geometry deals with objects which can be described in integer dimen- 
sions. A straight line is one dimensional, a square or triangle are two dimensional, 
and a cube or rhomboid are three dimensional. Thus, if a straight line of unit length 
is divided into chords of length, r, as shown in Fig. 2a, then the number of 
segments, N, and the chord length can be related as follows: 

1 
N = V" (5) 

Similarly, as shown in Fig. 2b, if a unit square is divided into smaller squares of 
side, r, the total number of squares is 

1 
N = 7~. (6) 

And, for the unit cube shown in Fig. 2c 

1 
N r3. (7) 

If the parameter, D, is defined as the dimension, the following general relationship 
can be determined: 

1 
N = 75 or Nr D = 1. (8) 

Nature, however, is not so obligingly regular. Mandelbrot (1983) describes early 
work by Richardson (1961), in which he discovered that the length of the coastlines 
and borders of a range of countries was not constant, but increased, apparently 
without limit, the smaller the measuring step used. 

It can be appreciated that maps at increasingly smaller scales will reveal 
ever smaller bays and promontories that must be traversed and that were not 
apparent at the larger scales. Whatever the specific detail at a particular scale, it 
is apparent that the general form at all scales is smaller, and appears to reflect 
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Fig. 2. The concept of dimension in Euclidean geometry 

specific mechanisms that created both small and large details. This example leads 
to two important concepts - that of the fractional (or fractal) dimension, and that 
of self similarity. 

The problem of the increasing coastline length implies that the number of 
steps required to traverse the entire length is not inversely proportional to step 
length, as would be expected for a one-dimensional line. Therefore, even though 
the topological dimension of the line is always 1, the dimension D in Eq. (8) is 
fractional, and greater than 1. Rearranging this equation, we obtain an expression 
for the fractal dimension, D as follows: 

D -  log(N) 
log(,') (9) 

Graphically, the fractal dimension can be obtained from the slope of a log-log plot 
of step number, N, against step length, r. Alternatively, a log-log plot of trace 
length, L, against r will have a slope of 1-D. 

The other important concept that can be appreciated from the coastline 
example is that the irregularities of the coastline as a whole seen at the largest 
scale are mirrored in the irregularities of the bays or promontories visible at smaller 
scale, and even, in the limit, theoretically in the tide line that contacts with the 
sand grains on the beach. 

The term "statistical self-similarity" was coined by Mandelbrot (1977) to 
denote similarity at a range of scales in a statistical rather geometrical sense. The 
stronger form of "self-similarity", which denotes exact geometrical similarity at 
a range of scales only exists for mathematical constructions. 

A classical example of such mathematical constructions is Koch's triadic 
island, shown in Fig. 3. The starting point in the construction is an equilateral 
triangle. Each side is split into three parts (r = 1/3). The centre part is removed, 
and replaced by two new sections, each equal in length to the part removed, and 
now forming a "tent" at the middle of each side (N = 4). This geometric 
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construction increases the length of each side of the triangle by a factor of 4/3. 
The result of this transformation on all sides is the "Star of David" denoted as the 
second stage. The third stage is developed using the same technique of increasing 
the length of each face by the factor 4/3. The process continues to the N th stage, at 
which a form very much resembling a snowflake is generated. 

Fig. 3. Construction of the N th order Koch's triadic island (after Mandelbrot, 1983) 

It should be noted that the Koch triadic island satisfies the criterion of self- 
similarity, since it has exact geometrical similarity at all scales, i.e. if a very small 
portion of the perimeter of the triadic island is magnified, then it would look 
exactly the same as the original large part of the boundary. Secondly, the fractal 
dimension of Koch's triadic island, according to the definition in Eq. (9), is 
D = - l og (4 ) / l og ( l / 3 )  = 1.2618. It can further be appreciated that in the limit, 
the length of the perimeter is infinite, although the area contained by the triadic 
island is finite. 

Empirical Determination of  Rock Joint Fractal Dimension 

The similarity of the roughness of rock joints to the roughness of coastlines is 
evident on an intuitive basis, and as stated earlier, the application of the concept of 
the fractal dimension to rock joints has been pursued by many researchers, e.g. Lee 
et al. (1990), Turk et al. (1987) and Carr and Warriner (1987). 

Lee et al. (1990) and Turk et al. (1987) determined the fractal dimension of the 
standard ISRM joint profiles using the so-called "compass walking" method. A 
compass or set of dividers of constant opening, r, is walked over the profile, and the 
number of complete steps and fractional remainder steps are recorded. Turk et al. 
(1987) determined fractal dimension manually, while Lee et al. (1990) appear to 
have enlarged the profiles to twice their original size, and then digitised these 
profiles for analysis by a computer program which digitally performs the same 
compass walking process. 

It is interesting to compare the fractal dimensions determined by the two 
research groups in Table 1. Also shown in this table are values determined by 
the authors in a manner similar to the digitising method of Lee et al. (1990). The 
table shows that the fractal dimensions of even the roughest profiles are marginally 
greater than 1. However, small values are to be expected, since the difference 
between the topological dimension of a line (1) and its fractal dimension 
(1 _< D _< 2) is a measure of its space-filling ability. Thus a straight line has both 
a topological and fractal dimension of 1, whereas Brownian motion, which has 
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complete space filling ability, has a topological dimension of 1 and a fractal 
dimension of 2. 

Table 1. Estimated fractal dimensions for ISRM standard 
roughness profiles 

JRC Lee et al. Turk et al. Current study 

0-2 1.000446 1 1.00009 
2-4 1.001687 1.0019 1.00054 
4-6 1.002805 1.0027 1.00072 
6 8 1.003974 1.0049 1.0014 
8-10 1.004413 1.0054 1.0018 

10-12 1.00564I 1.0045 1.004 
12-14 1.007109 1.0077 1.0053 
14-16 1.008055 1.007 1.0081 
16-18 1.009584 1.0104 1.0096 
18-20 1.013435 1.017 1.012 

The fractal dimensions reported in Table 1, although showing similar trends, 
do vary considerably for individual profiles, given the accuracy which is suggested 
by the number of significant figures reported. It is considered that these differences 
are due to inaccuracies both with the physical difficulties of compass stepping on 
the one hand, or on the other hand, manually guiding a digitiser over the profiles 
with finite width. It is thought that some of the variation may have arisen from 
differences in the arbitrary choice of step length. The relevance of all determina- 
tions of fractal dimensions is also compromised by the succession of reproductions 
made since the tracing of  the original profiles by Barton and Choubey (1977). 

It should also be noted that considering the small differences between trace 
length and direct length that these low fractal dimensions imply, small errors 
in length measurement will result in relatively large errors in the fractal dimen- 
sion computed. 

The Fractal Dimension of "Self-Affine" Surfaces 

The general application of (particularly) the compass-walking method has 
generated a large amount of controversy in the technical literature (Huang et al., 
1992; Mandelbrot,  1985). Huang et al. (1992) note that fractal surfaces may be 
"self-affine" (a term coined by Mandelbrot, 1977) rather than statistically self- 
similar. Mandelbrot (1985) suggested that rock surfaces are theoretically self-affine. 
The difference between the two terminologies is that a self-similar surface is 
statistically equivalent when scaled equally in both axial and transverse directions, 
whereas a self-affine surface must be scaled differently in perpendicular direc- 
tions to maintain statistical similarity. For  a self-similar fractal such as the Koch 
triadic island, compass walking will always define the similarity dimension. 
However, for a self-affine surface, the fractal dimension can only be determined 
for step lengths less than a critical length, known as the cross-over length. Above 
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this length, step-dividing will always produce a bogus fractal dimension approach- 
ing unity 1 . 

As noted previously, rock joints are essentially self-affine surfaces. They are 
generally linear structures, comprising (many) segments which may in themselves 
be statistically self-similar without the joint length as a who le  being self-similar. 
The determination of the joint's fractal dimension will only be valid at step lengths 
less than the cross-over length (which must be established). 

4. The Fractal Dimension and Roughness Statistics 

As an index in itself, the fractal dimension is of little use to the practicing engineer 
interested in describing and quantifying the aspects of roughness which govern 
the behaviour of rock joints. It is therefore necessary to develop methods which 
relate fractal dimension to common roughness statistics such as step or chord 
angle and height. 

With the Koch triadic island introduced earlier, the "initiator" is a constant 
geometric transformation which is applied to every line in each successive 
generation. Mandelbrot (1983) develops the concept of the Peano curve. The 
simple Peano curve initiator is a pair of segments each emanating from the original 
chord endpoints at 45 ~ to the chord, and meeting above the chord midpoint at 
right angles as shown in Fig. 4a. The fractal dimension of this initiator is 
D = - log(2) / log( I /x /2 )  = 2.0 A degree of randomness can be introduced into 
this initiator by allowing the initiator to "flip-flop" randomly on either side of 
the chord, as shown in Fig. 4b. The fractal dimension remains the same. This is 
further developed by Mandelbrot by maintaining a right angle connection between 
the two initiator segments, but allowing the angle subtended by one of the 
segments with the initial chord to vary randomly between 0 ~ and 360 ~ as 
indicated in Fig. 4c. This final development results in a fractal which has statistical 
rather than geometric self-similarity. 

a) 
I 0 < a < 3 6 0  o j 

. . . . . .  initial chord \ / 
\ / 

. . . . . .  1st generation " \  

. . . . . . . . . . . .  2nd generation 
- -  3rd generation e) 

b) 

Fig. 4. The Peano curve and successive stages of randomisation (after Mandelbrot, 1983) 

c.f. comments on free-dilation angle of Feker and Rengers at large step lengths. 
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The Fractal Dimension and Standard Deviations of Angle and Height 

Similar concepts to Mandelbrot 's  randomisation of  the Peano curve have been 
applied by the authors to develop a relationship between fractal dimension and the 
statistics of angle and height applicable to surfaces such as rock joints. Other 
researchers have attempted to determine relationships between JRC and fractal 
dimension that are partly or wholly empirical. However, in an attempt to 
understand the true nature of roughness, and hence extract the relevant statistics 
to characterise rough surfaces, a theoretical basis for understanding the relation- 
ship between fractal dimension and asperity angles was sought. 

Assume that a joint profile of unit direct length can be characterised by N 
segments or chords of constant length, r, as shown in Fig. 5. For  convenience, let 
the joint profile be oriented such that the direct line joining its two end points is 
horizontal. Starting at the left hand end of  the profile, each chord can therefore be 
defined in turn, by its inclination, 0, measured relative to the horizontal, and the 
chord length, r. Based on roughness measurements of rock joints carried out by 
Reeves (1985) and others, it is reasonable to assume that the distribution of chord 
angles, 0, is gaussian, with menu, # 0, and standard deviation, so. As the line joining 
the start and end points of the joint profile is horizontal, then #0 = 0, which implies 
that the chord angles are normally distributed about the horizontal. Positive angles 
are assumed to be inclined upwards from left to right. 

o 1 a . . . . . . .  y_-_3 . . . . . . . . . . . .  N 

3 N-2 N-1 

Direct Length, L d = 1.0 

Fig. 5. Characterisation of a profile of unit length with chord length r 

Referring to Fig. 6, the horizontal component of chord length is l = r cos 0. 
Since the joint profile is of unit length and there are N chords, the mean of the 
horizontal component of chord lengths, #(l)  = 1/N. However, since r is constant, 
then # ( l ) =  r # ( c o s 0 ) =  1/N. For a normal distribution of chord angle, the 
distribution of the angle cosines is not normal, since cos 0 = cos(-0) .  However, 
it has been shown (Seidel, 1993) that for a large population, the mean of the 
cosine of chord angle approximates to the cosine of the standard deviation of 
chord angle, i.e. 

#(cos 0) cos(s0). (10) 

Substituting for #(cos 0), leads to a relationship between step length, r, number of 
segments, N, and the standard deviation of segment angle, so: 

1 
r Ncos(s0) ' (al) 
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Fig. 6. Single chord geometry 

however, by definition 

D -  log(N) 
log(r) " 

Hence, substituting for r and rearranging, leads to 

S O ~-~ COS -1 ( N ( 1 - D ) / D ) ,  (12) 

which implies that the standard deviation of chord angle is a function only of the 
number of chords and the fractal dimension. For  so <_ 20 ~ (equivalent to JRC _< 20 
at a 1 mm scale), the error associated with the inequalities in Eqs. (10) and (12) are 
less than 0.1% (Seidel, 1993). It should be noted that a value of so = 20 ~ does not 
represent an absolute limit, and at very small scales, values of so in excess of 20 ~ 
may be common. However, this level of roughness implies that the joint will 
contain very steep asperity angles in excess of 60 ~ (3 standard deviations), which 
will fail by shearing rather than sliding. 

The variation of s o with the number of chords, for a range of fractal 
dimensions, is shown in Fig. 7. It can be seen that in the limiting case of N = 1 
(one chord only), 0 = 0 ~ regardless of the fractal dimension, which is correct, as 
any two points connected by a single line must be straight. Further, for a fractal 
dimension of 1, 0 -- 0 ~ by definition, regardless of the number of chords into which 
the profile is subdivided. This is to be expected, since a fractal dimension of 1 
(equal to the topological dimension) implies a straight line. 

For  the more general case of fractal dimension, D > 1, it can be seen (from 
Fig. 7) that the standard deviation of chord angle increases both with the fractal 
dimension, which can be interpreted as the tendency for divergence from a 
straight line, and N, which can be interpreted as the number of opportunities 
for divergence. 

It is important to note that this model implies that rough surfaces have an innate 
tendency for the asperities to diverge from straightness, which can be quantified by 
the fractal dimension, and which increases with increasing fractal dimension. 

The corollary to the establishment of a relationship between fractal dimen- 
sion and standard deviation of chord angle is that a similar relationship can be 
established for the standard deviation of chord height, s h. From Fig. 6, h = r sin 0. 
Since r is constant, then sh = rs(sin 0), where s(sin 0) is the standard deviation of 
the sines of the chord angles. However, it can also be shown (Seidel, 1993) that for 
a large population, s ( s in0 )~  sin(s0) which leads to sh ~ r s i n s o  and Fig. 8. 
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From Fig. 8 it is clear that 

1 (13) 
r ~  2q-N2 

and, from the definition of fractal dimension, 

D ~ - log(N) 
1 "~ 1/2" (14 )  log@ 

By rearranging terms, an approximate relationship between fractal dimension and 
the standard deviation of segment height can be established: 

sh ~ x / N  - 2 I v -  N -2. (15) 

The error in the equality of Eq. (15) is less than 1% for s o < 10 ~ and less than 4% 
for so < 20 ~ (Seidel, 1993). 

As for the standard deviation of chord angle, the implication for the standard 
deviation of  chord height in the limiting cases of fractal dimension, D = 1 or when 
the number of chords, N = 1, is in both cases a chord height of 0, as expected for 
a straight line. For  a line of direct length, La, rather than unity, the standard 
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deviation of height is given as: 

s h ~ Lcl@N-2/D - N - 2 .  (16) 

It should be stressed that these relationships are valid only to that portion o f  a joint 
or interface which can be considered as self-similar. A generalised joint surface must 
be analysed in order to determine what is the underlying fundamental "wave- 
length" or "cross-over length" above which the profile is no longer fractal, but in a 
statistical sense, repeats itself. Furthermore, the height and angle statistics are 
seen to be intimately related, and are not independent variables, as has been 
assumed by others. 

5. Generation of Roughness Profiles 

As discussed previously, a number of researchers (Lee et al., 1990; Turk et al., 
1987) have attempted to compute the fractal dimension of the ISRM standard 
roughness profiles and then correlate these with the JRC. 

A reverse approach has been taken here in attempting to understand the 
significance of the ISRM profiles. Using the technique of mid-point displacement 
(Mandelbrot, 1983) and using the techniques for generating random numbers with 
gaussian distribution described by Stevens (1990), it is possible to generate 
roughness profiles that depend only on the number of subdivisions, N, and the 
fractal dimension, D. The technique is depicted graphically in Fig. 9. 

A B 

. . . .  ~ Generation 1 profile 
Generation 0 profile (base line) 

A / 

Generation 2 D C E 

~ f  
Generation 3 

Generation 4 . . . .  

Generation 5 

. . . . . . . . .  Profile for generation k-1 

Profile for generation k 

Fig. 9. Generation of  random roughness profiles using mid-point displacement technique 

For a line AB of given length, the number of chords, N, into which the line is to 
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be divided is chosen, with the restriction that N is a positive integer power of 2, 
i.e. N = 2k; k > 1. Given N and the standard deviation of angle, so, the fractal 
dimension, D, and the standard deviation of chord heights, sh, can be determined 
from Eqs. (12) and (16) respectively. The profile generation is initiated by 
displacing the midpoint of AB (i.e. point C) vertically a height, h, in accordance 
with the chosen gaussian distribution (see Fig. 9). Note that h can be positive or 
negative, with a negative value indicating a downward displacement. The actual 
height and sign of the displacement is chosen randomly from a gaussian popu- 
lation. This procedure is analogous to the first stage initiation of the Koch triadic 
island or the Peano curve, both of which have been discussed earlier. 

As the number of segments being created in the first generation is 2, the 
standard deviation of height is given by: 

Sh, 1 ~ L d V / 2  - 2 / D  --  2 --2. (17) 

In the next step, the intervals AC and CB are also bisected, and their respective 
midpoints (D and E) are similarly allowed to displace on either side of their 
respective chords according to a random choice from a gaussian population. 
However, because the chord lengths in this case have been halved, the standard 
deviation of the applied displacement in this second generation will only be half of 
the displacement applied in the first generation, i.e. 

sh,2 ~ ? ~ - 2 -2. (18) 

A general expression for the standard deviation of mid-point displacements for the 
kth bisection can be expressed as follows: 

Sh,k ~ Ld ~--2(1 + k D - D ) / D  _ 2-2k. (19) 

Equations (19) and (16) differ in that the term sh in Eq. (16) incorporates the height 
variability due to all roughness of scale greater than or equal to the k th bisection, 
whereas sh k in Eq. (19) is specific to the component of roughness attributable only 
to the k th i~isection. 

This process of successive bisection of segments, and displacement of the 
midpoints according to gaussian distributions, continues until the original chord 
has been divided into the pre-determined number of chords, N. 

It is important to note that the process of successive bisection of the original 
chord maintains the self-similarity of the profile in a statistical sense. With each 
new bisection, further opportunities are given for the segments to diverge from the 
original chord; new gaussian distributions are superimposed upon the previous 
gaussian distribution. Figure 10 shows the effect of this superposition for the 2 nd 

and 3 rd bisections. In each case, the net distribution resulting is still a gaussian 
distribution, confirming the element of self-similarity, however, the standard 
deviation increases with each successive bisection. This can be shown from the 
addition theorem of variances, i.e. 

s 2 = s 2 + s~. (20) 
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As the two variances (of segment angle) being superimposed are equal, it follows 
that 

2 2So2,1, (21) SO, 2 = 

where s2,2 is the variance of angle for the 2 nd bisection. More generally for the k th 

bisection, the standard deviation of angle can be determined as follows: 

SO, k = V ~ S o ,  1 ,'~ V~COS -1 (2(1-~176 (22) 

The close correspondence of Eq. (22) and Eq. (12) is noted. Their approximate 
identity can be verified by substitution of N = 2 k in Eq. (12). 
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6.0 

Although, as shown below, the process of mid-point displacement can produce 
realistic roughness profiles, it must be pointed out that the profiles so generated, 
although fractal, are influenced heavily by the initial displacement, and progres- 
sively less by subsequent displacements. In practical terms, however, a joint or 
interface profile would combine many such individual profiles, and the effects 
would simply be incorporated into the random roughness of the surface. 

It should also be noted that for a gaussian distribution, the mean value of chord 
angle absolutes 161, is related to the standard deviation, So, as follows: 

101 = ~/2s o. (23) 
v T r  

Fractal Profiles and the ISRM Standard Roughness Chart 

Examples of typical profiles obtained by applying the mid-point displacement 
process described above are shown in Figs. 11 to 14. The profiles shown have been 
generated for standard deviations of chord angle of 3 ~ 9 ~ 13 ~ and 17 ~ respectively. 
All profiles have been generated using 7 random stages of the bisection process, 
leading to 2 v or 128 chords in each profile. 
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Each figure contains 6 profiles. The first five are generated profiles using 
the same standard deviation of  chord angle, but having different "seed" values. 
The "seed" is a random number, required by, and generated from the random 
number generator that produces the gaussian distribution of chord heights. Shown 
at the right hand end of each profile is the actual standard deviation of  chord 
angle for that profile. Note that since only a finite number of chords have been 
included, the standard deviation of  angle obtained will not necessarily be the 
same as the angle initially adopted, but will be close to it. For example, the profiles 
shown in Fig. 11, were generated using a standard deviation of chord angle of 
3 ~ , whereas the actual standard deviations of the generated profiles range from 
2 . 8 7 5  t o  3 . 1 7 9  ~ . 

Random Profile 1 
s o = 2.660, ~ 

Random Profile 2 
s o = 2.875 ~ 

Random Profile 3 
s 0 = 3 . 1 7 9  ~ 

Random Profile 4 
s o = 3.085 o 

Random Profile 5 
so= 2.953 ~ 

I S R M  Standard 
Profile 2 N 4 

F i g .  11 .  R a n d o m  roughness  generation for s o = 3 ~ compared with I S R M  standard roughness  profile 
J R C  2 - 4  

Random Profile 1 
so= 9.113 ~ 

Random Profile 2 
s o = 9.008 ~ 

Random Profile 3 
s o = 8.952 ~ 

Random Profile 4 
s 0 = 8.755 ~ 

Random Profile 5 
% =  8.822 ~ 

I S R M  Standard 
Profile 8 N I0 

F i g .  1 2 .  R a n d o m  roughness  generation for s o = 9 ~ compared with I S R M  standard roughness profile 
J R C  8 - 1 0  

It should be stated that for the roughest profiles (i.e. s o = 17~ profiles were 
selected on the basis of a small initial displacement for the first generation (see 
above). It would have been equally possible to characterise these profiles as 
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F i g .  1 3 .  Random roughness generation for so = 13 ~ compared with 
JRC 1 2 - 1 4  

Random Profile 1 
So= 13.055 ~ 

Random Profile 2 
so= 12.858 ~ 

Random Profile 3 
so= 13.267 o 

Random Profile 4 
so= 12.838 ~ 

Random Profile 5 
s o = 13.039 ~ 

ISRM Standard 
Profile i2  ~ I4  

ISRM standard roughness profile 

J 

F i g .  14. Random roughness generation for so = 17  ~ compared with 
JRC 1 6 - 1 8  

Random Profile 1 
so= 17.562 ~ 

Random Profile 2 
s o = 17.434 ~ 

Random Profile 3 
s o = 17.390 ~ 

Random Profile 4 
So= 16.713 ~ 

Random Profile 5 
SO= I6 .815 ~ 

ISRM Standard 
Profile 16 ~ 18 

ISRM standard roughness profile 

comprising a number of shorter base lengths, say 4 chords each of 1/4 the original 
length, and then to have applied 5 random stages of bisection to each of these 
chords, again resulting in a total of 27 chords. 

Included with these random profiles, are the ISRM standard roughness 
profiles for JRC values of 2-4, 8-10, 12-14 and 16 18 respectively. The similarity 
between the random profiles, based on the fractal dimension, and the ISRM 
profiles is striking, and suggests a strong correlation between the JRC number 
and the standard deviation of angle. In fact, the correlation between the standard 
deviation of angle and JRC has been recognised by others (Williams, 1980; 
Lam, 1983; Kodikara, 1989). Williams (1980) proposed the following empirical 
relationship from his analysis of the standard roughness profiles: JRC = 0.83s0. 
It is apparent from an examination of successive ISRM profiles (see Figs. 11 to 
14) that they show increasing angularity and increasing tendency to diverge 
from the chord connecting the end points. These are both processes that are 
mirrored by the generation of random profiles by the mid-point displace- 
ment technique. 
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Roughness Measurement and the Effects of Scale 

As illustrated in Fig. 1, it is possible to characterise the major roughness elements 
of a joint profile by a series of chords of varying length. It is postulated that the 
average chord length so obtained corresponds to the "cross-over" length. As 
argued earlier, it is not valid to characterise the profile with chord lengths greater 
than the cross-over length. However, for chord lengths less than the cross-over 
length, the profile may be fractal. It follows then, that if the cross-over length can 
be established, and the angular statistic so is computed for this length, the variation 
of the standard deviation of angle for smaller lengths can be simply estimated from 
Eq. (12) without the need for direct determination by accurate digitisation of the 
rough surface. Conversely, if detailed roughness measurements are available at a 
range of scales, an appropriate cross-over length can be projected. 

The results of predicting a continuum of roughness statistics from only coarse 
roughness approximations are shown in Fig. 15 for two of the ISRM profiles. 
The major roughness elements in profiles with JRC 10-12 and 18-20 were 
(subjectively) identified. This resulted in 4 chords of 25.0 mm average length for 
the JRC 10-12 and 8 chords of 12.8 mm average length for the JRC 18-20 profile. 
Equation (12) was then used to estimate the standard deviation of chord angle 
for different chord lengths less than the corresponding cross-over length. The 
results are summarised in Fig. 15, which compares the predicted variation of 
standard deviation of asperity angles with chord length with values determined 
from digitisation of the profiles using step lengths as low as 0.2 mm (the profiles 
were first enlarged considerably). Both comparisons show good agreement, 
demonstrating that the scale dependence of roughness statistics can be theoreti- 
cally predicted. The subjectiveness of this procedure as currently proposed is 
readily acknowledged. 
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6. Understanding Barton's JRC-JCS Model 

Standard Deviation of Chord Angle and JRC 

It should be noted that the particular standard deviation calculated for the 
computer-generated profiles discussed above depends on the number of intervals 
used to generate these roughness profiles. This is because the standard deviation 
of angle increases with increasing number of subdivisions of the original chord 
(see Fig. 15). The reason that an apparent equality has been achieved between 
so and JRC in Figs. 11 to 14 is considered to be because the average segment 
length of 0.78ram (128 segments in 100ram) is close to the peak shear displace- 
ments of Barton and Choubey's (1977) test samples. They reported peak shear 
displacements varying between 0.59 and 1.21 ram, with a mean of 0.95 mm for 
the 136 samples used in the original study that led to the ISRM standard rough- 
ness profiles. The scale of the roughness elements involved in Barton and 
Choubey's tests are therefore similar to the scale of the generated profiles. It 
is concluded that the standard deviation of angle at a particular length or scale 
is relevant to the engineering performance over displacements of the same rela- 
tive magnitude. 

The relevance per se of the standard deviation of angle is less clear. However, it 
can probably be best appreciated if the distribution of angles is conceptualised as 
a probability density function. The gaussian assumption of angle distribution 
connotes a 16% probability that chord angles or asperities in excess of 1 standard 
deviation will exist in the profile. From Eq. (2), and assuming JCS = 10~n, the 
value of JRC is effectively the dilation angle at peak shear strength. It is noted that 
the dilation angle must be related to the inclination of the joint asperities in 
contact. Given the demonstrated correspondence between JRC and so, it can be 
assumed that for JCS = 10o-~, 16% of the profile is involved in the shearing process 
at peak shear strength. If a smaller percentage of the profile were involved (i.e. only 
steeper asperity angles), individual stresses on the asperities would be sufficient to 
either fail these asperities or to cause elastic deformations which would allow 
further asperities to come into contact; i.e. reinvolve lower angle asperities and 
reduce the dilation angle. The effect of varying the normal stress is discussed 
in the following section. 

The Effects of Normal Stress 

Barton and Choubey's empirical relationship (Eq. (2)) shows that the JRC value is 
multiplied by a logarithmic stress ratio factor to account for the effects of normal 
stress on dilation angle. This ratio will be equal to 1 and therefore have a neutral 
effect on JRC, when the joint wall compressive strength (JCS) is 10 times the 
applied normal stress (~n). The foregoing discussion of the percentage of asperities 
involved in the shearing process, is, therefore, dependent on the value of 
log(JCS/o-~) being one. 

The influence of the stress level on the effective dilation angle, as proposed by 
Barton and Choubey, is at least intuitively obvious. A higher normal stress on the 
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joint, would be expected to result in a lower dilation angle, as predicted by Eq. (2). 
The converse would be true for a lower normal stress. 

It follows then, that at low normal stresses, less asperities will be in contact, and 
therefore involved in the shearing process, than at high normal stresses. Logan 
and Teufel (1986) established an approximately linear relationship between actual 
area of joint contact and normal stress for Tennessee sandstone and Indiana 
limestone. This linear relationship is adopted, and combined with the probabilistic 
concept introduced above. If the normal stress is reduced from 1/10 to 1/100 of 
the joint wall compressive strength, then the percentage of asperities involved at 
peak shear strength is predicted to reduce from 16% to 1.6%. Similarly, for a 
further ten-fold reduction in stress, only 0.16% of the asperities will be involved. 
As noted above, the 16% probability corresponds to 1 standard deviation. The 
1.6% probability is equivalent to 2.1 standard deviations, and the 0.16% prob- 
ability corresponds to 2.9 standard deviations. These effective dilation angle 
multipliers are very close to the predictions of 1.0, 2.0 and 3.0 given by Barton 
and Choubey's logarithmic stress-correction factor. An alternative basis for the 
empirically derived stress factor is therefore suggested. 

Scale Effects of Joint Length 

As noted earlier, the JRC value is scale dependent; larger joint samples were found 
to have lower apparent JRC values. Barton and Choubey (1977) suggested that 
as the joint tength is increased, the inherent stiffness of the surrounding rock results 
in the joint wall contact being transferred to the major and less steeply inclined 
asperities as peak strength is approached. Bandis et al. (1983) recommended the 
use of natural block sizes for testing. Barton and Bandis (1982) recommended 
the following expression for scale correction of JRC, where subscripts (o) and (n) 
refer to laboratory scale (100 ram) and in-situ block sizes respectively: 

J R C n ~ J R C o  L[~oo ] 002JRC~ (24) 

Barton and Bandis (1982) also recommend a similar scale correction for JCS. 
The need for such a correction to JRC can best be appreciated by using the 

analogy of the mid-point displacement technique. The shear behaviour of longer 
joints may be controlled by longer asperities that are not evident in smaller sections 
of the joint. This is evident from the tests of Barton and Bandis (1982) where the 
displacement to peak was found to increase as the samples became longer. Bandis 
et al. (1981) note that the displacement to peak is approximately 1% of sample 
length. As the standard JRC value is assessed only relative to a standard 100 mm 
joint length, it is relevant only to the short asperities of approximately 1 mm length. 

The following example is indicative, rather than rigorous, but serves to 
demonstrate the predicted influence of scale on JRC using fractal concepts. If 
the JRC value assessed on the basis of a 100 mm sample is 7, Eq. (24) suggests the 
empirically-corrected JRC for the 500 mm length should be 5.59. This correction 
can also be evaluated using fractal concepts. From above, the critical asperity 
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chord length is approximately 1% of sample length. For convenience, a chord 
length of 0.78mm is adopted for the 100mm long sample. This coincides with 
N = 128 (or 27) chords. Assuming equivalence of s o and JRC, the fractal 
dimension for this profile can be computed from Eq. (12) as D = 1.001544. As 
found by Bandis et al. (1981), the displacement to peak is proportional to sample 
length. In terms of the fractal model, this implies that the controlling asperities for 
longer profiles are proportionally longer. The JRC for the 500 mm joint can 
therefore be determined using a chord length of 500/128 = 3.90 ram, from which 
N = 100/3.9 = 25.6. Reapplying this reduced value of N and the known value of 
D to Eq. (12) gives so = 5.73 ~ which is very close to the empirically-corrected JRC 
value of 5.59. 

Similar comparisons for lower and higher JRC values are not quite so 
favourable, with a tendency for undercorrection for higher JRC values and 
overcorrection for lower values. It must be stressed, however, that this sim- 
plistic analysis, and indeed the JRC-JCS model, takes no account of the true 
complexities of joint roughness. Despite this, it can be appreciated that the 
fractal model provides an alternative basis for understanding the JRC-JCS 
scale corrections. 

The Application of  the Fractal Model to the Prediction of  Shear Behaviour 

The discussion of the JRC-JCS model has been presented as a validation of the 
applicability and potential of the fractal model, rather than as a justification of 
the empirical JRC-JCS model per se. It is the view of the authors, that the 
prediction of the shear behaviour of rough rock joints should rather be based on a 
fundamental theoretical understanding of the interface failure mechanisms. 

The shear behaviour of rock joints is dependent not only on the geometry of the 
joint, which can be described by the fractal model, but also on the strength 
characteristics and elastic properties of the rock, and the prevailing boundary 
conditions. All of these considerations must be combined to describe the shear 
performance of a rock joint. Such an approach has been proposed by Seidel (1993), 
but a detailed description is beyond the scope of this paper. 

7. Conclusions 

In this paper it has been argued that it is unsatisfactory to characterise joint 
roughness as a single, discrete statistic; rather roughness must be represented as a 
continuous function of scale. It has been shown that such a representation can be 
achieved using the concepts of fractal geometry, in particular fractal dimensions 
and self-similarity. These concepts have been used as a basis for the formulation 
of a practical and statistically based model of roughness. This model has led to 
the derivation of important relationships between the fractal dimension and the 
standard deviation of both asperity angles and asperity heights, which in turn have 
been shown to provide a theoretical understanding of Barton's empirical JRC-JCS 
model. In particular, a relationship between JRC and so has been suggested. In 
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addit ion,  al ternat ive bases for  unders tanding  the effects o f  normal  stress on the 
shear pe r fo rmance  of  rough  joints and  the scale-dependence have been proposed.  
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