SOLUTION OF THE PROBLEM OF THE FLOW
AROUND A V-SHAPED WING WITH A STRONG
SHOCK AT THE LEADING EDGE

V. I. Lapygin UDC 533.69.01

The influence of initial and boundary conditions on the numerical solution of the problem of the flow
around a V-shaped wing with supersonic leading edges is considered.

Flow modes in the range of angles of attack close to the shock detached from the leading edge are in-
vestigated, and the realizability of the mode of flow around the V-shaped ring with a strong shock is shown,

Two solutions with an attached compression shock are possible in the supersonic gas flow around a
wedge. Flow modes with weaker compression shocks are always realized in the simplest cases of flow
around finite conical bodies, cones, triangular wings with shocks attached along the edges. An exact solu-
tion with a plane shock lying on the leading edges, which can be constructed in such a way that the shock in
a plane perpendicular to the leading edge is strong [1], is obtained for a V-shaped wing. The possibility of
realizing such a solution has been studied experimentally [2, 3]. Tt appears from the tests that a flow mode
around the V-shapedwing, which is similar to the flow with a strong attached shock, actually occurs. There
are no theoretical studies of this question.

G. G. Chernyi [4] first disclosed the existence of modes with a strong bow shock for plane triangular
wings with subsonic leading edges,

The first flow mode shall be understood below to be the solution with a weak shockat the leading edge,
and the second flow mode shall be the solution with a strong shock. The meaning of the terms "weak" and
"strong" is the same as in the problem of the flow around a plane wedge.

The influence of the initial (zero approximation) and boundary conditions on the numerical solution is
investigated below by using the numerical method in [5], the realizability of the second flow mode is shown,
the mechanism for going from the first to the second mode is clarified, and an estimate is given of the do-
main of variation of the governing parameters of the problem for which the first and second flow modes are
realized.

1. Investigation of the Influence of the Initial

and Boundary Conditions on the Solution

There are neither strict mathematical formulations nor proofs of the existence and uniqueness for
the majority of gasdynamics problems. The situation is analogous for numerical methods of their solution:
investigations associated with the convergence to the desired solution and stability have been performed
rigorously only for linear equations. An indirect indicator of the uniqueness of a solution when a numerical
algorithm is used to solve nonlinear equations is the independence from the selection of the zero approxi-
mation, which should evidently correspond to the physical meaning of the problem. The influence of the
initial flow field on the soloution (see [5]) is clarified in this section by the example of flow around a V-
shaped wing,

Let us consider the flow around a V-shaped wing with v =100°,  =29°30', at an angle of attack @ =15°
to a stream with M« =3.95 (Fig. 1) under three distinct initial conditions: 1) the flow behind a weak shock
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at the leading edge; 2) the flow behind a strong shock at the edge;

W’;_ s T P I 3) the unperturbed flow. The computational domain O,A'B'C' for
\ 7 ____7_‘_______"_°_\° 1) (Fig. 2) has been selected in such a manner that the domain of
0.770.95 < 1= 5 influence of the plane of symmetry is inside it. A rectangular
» trapezoid O;ABC (Fig. 2) has been selected as computational do-
p10.05 s € “"°°°, main for the computations in 2) and 3), and it has been assumed
ZF /’_"'ﬂ"}"*‘ ooorevoy0e2iel that the stream parameters at the point A correspond to flow be-
104 77 VIR hind a strong shock for 2) and to the unperturbed stream for 3).
The parameters at all the remaining points of the segment AB
Fig. 3 corresponded to the unperturbed stream. The segment BC is ar-

ranged in such a manner that the wake AD of the strong shock
would lie below BC. The values of the stream parameters on the segments AB and BC did not vary during
the computation.

The results of the compufations are presented in Figs. 3 and 4, where the solid line corresponds to
1), the dashes to 2), and the open circles to 3). On the graphs p is the pressure referred to twice the ve-
locity head of the unperturbed stream, p is the density referred to the unperturbed stream density, s =
p/p™, where n=c /cV =1.4, r is the distance between a point on the wing surface and the plane of sym-
metry, R is the distance between the leading edge and the plane of symmetry, and y is the distance between
the point O, and a point O,C on the axis of symmetry, h=0,A cos (y/2).

It is seen from the graphs presented that the results of computations for 1) and 3) are in good agree-
ment in the whole flow field, where the accuracy of determining the stream parameters for 1) is higher as
compared with 3). A sharp rise in p, p, s in the neighborhood of r/R=1 for 3) is seen clearly in the graphs
in Fig. 3, and this corresponds to a weak shock being formed at the leading edge.

Curves corresponding to 2) show that a solution different from the solution for 1) and 3) is obtained
in this case, hence let us note the following singularities:

1) The location of the bow shock is similar for all the modifications computed, particularly in the
neighborhood of the axis of symmetry.

2) The values of p, p, 8 are close to each other on and in some neighborhood of the bow shock in all
three modifications.

3) The values of p in the uniform stream domain on the wing are similar in all the modifications.
4) A narrow zone of high gradients in s (the entropy layer) exists near the wing surface.

Actually, the solution of the following problem has been obtained in the computation of 2): Let us
assume that a detached shock is formed in the flow around the leading edge, such that the stream parame-
ters behind it on the wing surface at the point A equal the corresponding stream parameters behind
a'strongm shock attached to the leading edge; let us assume further that the shock-layer thickness in
the neighborhood of the point A is small and less than the value of the mesh spacing in the y-axis
direction. Under these assumptions, the solution obtained for 2) is a solution of the problem of the flow
around a V-shaped wing with slightly blunted leading edges.

Indeed, conditions corresponding to a strong shock are conserved at the point corresponding to the
leading edge throughout the build-up process. Hence, there is a constant intensity perturbation on the edge
for all the iterations, whereupon a domain of entropy-layer type is formed near the wing surface, which is

440



000 005 6.17

,f»fggﬂ

7.8 glh 0.51

/\

Fig. 6

caused by the discrepancy between the solution as a whole and
the boundary conditions on the leading edge. The singularities
of the solution noted above indeed become conceivable {compare
with the results in [6], for example). Therefore, 2) to some de-
gree simulates the flow around a V-shaped wing with blunt lead-
ing edges and permits making qualitative deductions about the
flow picture.

Let us note that the solution obtained in 2) is not a flow
with the formation of a strong shock at the edge, as the abrupt
change in the stream parameters in the neighborhcod of the lead-
ing edge indicates.

The analysis carried out on the dependence of the solution
on the initial and boundary conditions shows that if the perturba-
tions introduced artificially into the solution (because of the spe-
cific method of assigning the boundary conditions) are discarded,
the solution is unique, where the first flow mode is realized for
the considered values of vy, ¥, M, ¢.

Let us emphasize the singularity in the behavior of the
solution in the neighborhood of the right boundary, which is im-

portant to the subsequent analysis: If the values of the stream parameters on the right boundary do not

correspond to the solution which is realized as a whole, then this discrepancy is manifested asanabrupt
change in the values of the parameters near the right boundary of the computational domain, and which of
the possible modes is realized can always be determined.

Passage from the First to the Second Flow Mode

Let us select a V-shaped wing with the angle y =100°, ¢ =29°30' as the object of investigation and let
us consider the flow around it at M~ =3.95 at all angles of attack down to a detached bow shock (ay. Let
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oy denote the angle of attack corresponding to the flow around a wing with a strong plane shock at the lead-
ing edges. In this case the stream behind the shock is uniform. For the wing under consideration o=
36°8', ag=41°. '

Let us examine the isobars of the stream field around the wing for o =20° {dashes) and & =31° (solid
lines, Fig. 5) and the shape of the shocks for various values of a (Fig. 6) obtained as the loci of points of
maximum pressure gradient. It is seen from the figures presented that the flow for a < a1y occurs with the
formation of a Mach-type bow wave and an inner shock. As the angle of attack increases, the central part
of the stream domain bounded by the central shock BC, the plane of symmetry O,C, and the inner shock BD
increases (Fig. 6) so that the inner shock is displaced to the leading edge and the central shock is displaced
upwards.

In order to determine the flow modes based on the deductions in Sec. 1, the flow was analyzed by using
the stream behind both a strong shock on the edge and behind a weak shock as the initial field. The results
are shown in Fig. 7 as the diagram of the pressure coefficient distribution over the wing span (Cp =2(p— D/
pwsz). It is seen in the graphs presented that a characteristic sharp diminution in Cp is observed near the
leading edge for angles of attack a < apy (compare with Fig. 3), in a calculation from the strong shock pa-
rameters (dashes), while the behavior of the curve for @ >ayy is distinet from the behavior of the curve
for @ < oy and is characterized by fluctuations in the value of C, near the right boundary. These fluctua-
tions are explained by the small number of grid points behind the shock at the right boundary (just one) and
are a numerical effect not related to the physical flow picture.

Presented in Fig. 8 are C,(F) diagrams obtained when using the parameters behind a strong shock as
the initial field for a wing with y =70°, ¥ =20°, M« =6 for diverse a{ap;=39°30"). The behavior of the
curves is analogous to those of Fig. 7. It should be noted that the numerical solution for a =a ) agrees
with the exact solution with high accuracy.

As follows from the results in Sec. 1, the behavior of the C_(r) curves presented in Figs. 7 and 8 in-
dicates the realization of the first flow mode for @ < ajy and the second for a =ay.

It has been remarked above that the inner shock approaches the leading edge as « increases, as is
seen well in Fig. 7. The position of the shock from rg at the wing wall for 7y =100°, ¥ =29°30', M« =3.95 is
illustrated in Fig. 9 as a function of the angle of attack. It is seen that as o 0y the inner shock ap-
proaches the leading edge and ry=R for o =a. As « increases further, the first flow mode is not realized
since the inner shocktendsto "depart" behind the edge.

The mechanism of second flow-mode formation becomes comprehensible: The second flow mode is
a result of the inner shock wave "displacing" the weak shock being formed at the leading edge.

It is interesting to note that as ¢« increases, not only the size of the central flow domain but also the
qualitative nature of both the isobar field and the pressure diagram vary (Figs. 5 and 7). If the pressure
diagram at the wall is monotone for moderate angles of attack @ < 15-20°, then as ¢ increases the mono-
toneity is spoiled and a break occurs directly behind the inner shock front and a pressure rise is again
observed in the neighborhood of the plane of symmetry.

Effects analogous to those noted above were also observed in experiment [3], namely, as ¢ increased
rg increased, and an abrupt nonmonotoneity is characteristic for the spanwise pressure diagram foro <oy
behind the inner shock front,while the quantity Cp along the span varies slightly for a = oy and is almost
constant. This qualitative agreement with experiment indicates that the sharply nonmonotone nature of the
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behavior of Cp(f') is explained not only by the effect of inner shock interaction with the boundary layer but
also by the properties of the inviscid part of the flow.

It follows from the analysis conducted that,if a flow mode with a plane strong shock on the leading
edges exists for M, =const in the 0< o < a4 range of angles of attack and the Mach number in the flow be-
hind the wave is hence greater than one, then the flow occurs at ¢ < o, with the formation of a2 weak shock
at the edge. For @ > oy the plane of the strong shock being formed a%vgche edge is below the plane resting
on the leading edge, hence the initial shock direction is into the wing. However, a numerical computation
indicates the existence of a convex wave (Fig. 6). This says that for a > a ) either a mode with a strong
ghock which has an inflection near the leading edge is realized and is not captured in the computation be-
cause of its nearness to the leading edge, or a mode with a detached wave is realized.

The same situation evidently holds also for a =const when M_, varies in the neighborhood of that num-
ber M, where the flow with one plane strong shock is realized.

The passage from the first to the second flow mode has been considered above with viscosity effects
neglected. In reality, because of the presence of a separation zone ahead of the inner shock and the appear-
ance of a new shock within the flow in this connection, the passage from a flow with the formation of the first
mode into the second oceurs for o <apq

The author is grateful to A. L. Gonor and N. A, Ostapenko for useful discussion of the research.
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