
SOLUTION OF THE PROBLEM OF THE FLOW 

AROUND A V-SHAPED WING WITH A STRONG 

SHOCK AT THE LEADING EDGE 

V. I .  L a p y g i n  UDC 533.69.01 

The influence of initial and boundary conditions on the numerical  solution of the p rob lem of the flow 
around a V-shaped wing with supersonic  leading edges is considered.  

Flow modes in the range of angles of at tack close to the shock detached f rom the leading edge are  in- 
vestigated,  and the real izabi l i ty  of the mode of flow around the V-shaped ring with a s t rong shock is shown. 

Two solutions with an attached compress ion  shock are  possible in the supersonic  gas flow around a 
wedge. Flow modes with weaker  compress ion  shocks are always rea l ized in the s imples t  cases  of flow 
around finite conical bodies,  cones,  t r iangular  wings with shocks attached along the edges. An exact solu- 
tion with a plane shock lying on the leading edges, which can be constructed in such a way that tlm shock in 
a plane perpendicular  to the leading edge is s trong [1], is obtained for a V-shaped wing. The possibil i ty of 
real iz ing such a solution has been studied experimental ly  [2, 3]. It appears f rom the tests that a flow mode 
around the V-shapedwing,  which is s imi la r  to the flow with a s t rong attached shock, actually occurs .  There  
are  no theoret ical  studies of this question. 

G. G. Chernyi [4] f i rs t  disclosed the existence of modes with a s t rong bow shock for plane t r iangular  
wings with subsonic leading edges. 

The f i rs t  flow mode shall be understood below t o b e t h e  solution with a weak shockat the leading edge, 
and the second flow mode shall be the solution with a s t rong shock. The meaning of the t e rms  "weak" and 
"strong" is the same as in the problem of the flow around a plane wedge. 

The influence of the initial (zero approximation) and boundary conditions on the numerica l  solution is 
investigated below by using the numerical  method in [5], the real izabfi i ty  of the second flow mode is shown, 
the mechanism for going f rom the f i r s t  to the second mode is clarif ied,  and an es t imate  is given of the do- 
main of variat ion of the governing pa rame te r s  of the problem for which the f i rs t  and second flow modes are  
real ized.  

1. I n v e s t i g a t i o n  o f  t h e  I n f l u e n c e  o f  t h e  I n i t i a l  

a n d  B o u n d a r y  C o n d i t i o n s  on  t h e  S o l u t i o n  

There are  nei ther  s t r ic t  mathematical  formulations nor  proofs of the existence and uniqueness for  
the major i ty  of gasdynamics  problems.  The situation is analogous for  numerical  methods of their  solution: 
investigations associa ted  with the convergence to the desi red solution and stabil i ty have been pe r fo rmed  
r igorous ly  only for l inear  equations. An indirect indicator of the uniqueness of a solution when a numerica l  
a lgor i thm is used to solve nonlinear equations is the independence f rom the select ion of the zero approxi-  
mation, which should evidently cor respond to the physical  meaning of the problem. The influence of the 
initial flow field on the soloution (see [5]) is clarif ied in this section by the example of flow around a V- 
shaped wing. 

Let  us consider  the flow around a V-shaped wing with 7 =100~ ~ =29 ~ at an angle of attack a =15 ~ 
to a s t r e a m  with M~o=3.95 (Fig. 1) under three distinct initial conditions: 1) the flow behind a weak shock 
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would lie below BC. 
the computat ion.  

at  the leading edge; 2) the flow behind a s t rong  shock at the edge; 
3) the unper turbed flow. The computat ional  domain OtA 'B 'C '  for  
1) (Fig. 2) has been se lec ted  in such  a manner  that the domain of 
influence of the plane of s y m m e t r y  is inside it. A rec tangu la r  
t rapezoid  OIABC (Fig. 2) has been se lec ted  as computat ional  do- 
main for  the computat ions  in 2) and 3), and it has been a s su med  
that the s t r e a m  p a r a m e t e r s  at the point A co r respond  to flow be-  
hind a s t rong shock for  2) and to the unper turbed s t r e a m  for  3). 
The p a r a m e t e r s  at all the remain ing  points of the segment  AB 
cor responded  to the unper turbed s t r e a m .  The segment  BC is a r -  
ranged in such  a manner  that the wake AD of the s t rong shock 

The values of the s t r e a m  p a r a m e t e r s  on the segments  AB and BC did not va ry  during 

The r e su l t s  of the computat ions a re  p re sen ted  in Figs.  3 and 4, where  the solid l ine co r responds  to 
1), the dashes  to 2), and the open c i r c l e s  to 3). On the graphs  p is the p r e s s u r e  r e f e r r e d  to twice the ve-  
loc i ty  head of the unper turbed s t r e a m ,  p is the densi ty r e f e r r e d  to the unper turbed s t r e a m  density,  s = 
p/p~t ,  where  ~=Cp/C v = 1.4, r is the dis tance between a point on the wing sur face  and the plane of s y m -  
me t ry ,  R is the dis tance between the leading edge and the plane of s y m m e t r y ,  and y is the distance between 
the point 01 and a point OIC on the axis of s y m m e t r y ,  h=O1A cos (T/2). 

It is seen  f r o m  the graphs  p re sen t ed  that the r e su l t s  of computat ions for  1) and 3) a re  in good a g r e e -  
ment  in the whole flow field,  where  the a c c u r a c y  of de te rmin ing  the s t r e a m  p a r a m e t e r s  for  1) is h igher  as 
compa red  with 3). A sha rp  r i s e  in p, p ,  s in the neighborhood of r / R  = 1 fo r  3) is seen  c l ea r ly  in the graphs  
in Fig. 3, and this co r r e sponds  to a weak shock being fo rmed  at the leading edge. 

Curves  cor responding  to 2) show that a solution different  f r o m  the solution for  1) and 3) is obtained 
in this case ,  hence le t  us note the following s ingula r i t i es :  

1) The locat ion of the bow shock is s i m i l a r  for  all  the modif icat ions computed,  pa r t i cu l a r l y  in the 
neighborhood of the axis of s y m m e t r y .  

2) The values  of p, p ,  s a re  c lose  to each  other  on and in some neighborhood of the  bow shock in all 
three  modif icat ions.  

3) The values of p in the uni form s t r e a m  domain on the wing a re  s i m i l a r  in all the modif icat ions.  

4) A na r row zone of high gradients  in s (the en t ropy  layer)  exis ts  nea r  the wing sur face .  

Actual ly,  the solution of the following p r o b l e m  has been obtained in the computat ion of 2): Le t  us 
a s s u m e  that a detached shock is fo rmed  in the flow around the leading edge, such that the s t r e a m  p a r a m e -  
t e r s  behind it on the wing su r f ace  at the point A equal the cor responding  s t r e a m  p a r a m e t e r s  behind 
a s t rong-Shock  a t tached to the leading edge; let us a s s u m e  fu r the r  that  the shock - l aye r  th ickness  in 
the neighborhood of the point A is smal l  and l e s s  than the value of the mesh  spac ing  in the y - ax i s  
direction.  Under these a s sumpt ions ,  the solution obtained for  2) is a solution of the p rob l em of the flow 
around a V-shaped wing with s l ight ly blunted leading edges.  

Indeed, conditions cor responding  to a s t rong  shock a re  conse rved  at the point cor responding  to the 
leading edge throughout the bui ld-up p r o c e s s .  Hence, there  is a constant  intensi ty  pe r tu rba t ion  on the edge 
for  all the i t e ra t ions ,  whereupon a domair~ of e n t r o p y - l a y e r  type is f o r m e d  n e a r  the wing su r face ,  which is 
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caused  by the d i sc repancy  between the solution as a whole and 
the boundary conditions on the leading edge. The s ingular i t ies  

/.3 - -  1 - -  ~ of the solution noted above indeed become conceivable (compare  
with the r e su l t s  in [6], for  example) .  The re fo re ,  2) to some de-  c z ; .?70 

. . . . .  ing edges and p e r m i t s  making quali tat ive deductions about the 
~ _ ~ !  flow pic ture .  

~ _ Let  us note that the solution obtained in 2) is not a flow 
Z s J ' ~ - - - ' ~ ' - ~  ~ \ \ i  "~// with the fo rmat ion  of a s t rong  shock at the edge, as the abrupt  

~ ~  ~x~/ / '  change in the s t r e a m  p a r a m e t e r s  in the neighborhood of the l ead -  
~ ' - - - - -  - - ~  ing edge indicates .  

2 q /  _. The analys is  c a r r i e d  out on the dependence of the solution 
0.5 

ZO i ~ k k  ~ on the initial and boundary conditions shows that if the p e r t u r b a -  
tions introduced ar t i f ic ia l ly  into the solution (because of the spe -  

/5 / e i f tc  method of ass igning the boundary conditions) a re  d iscarded ,  
the solution is unique, where  the f i r s t  flow mode is r ea l i zed  for  

0.I 
0.q 0.6 r/~R the cons ide red  values of 3~, r  Moo, a .  

Fig. 7 Let  us emphas ize  the s ingular i ty  in the behavior  of the 
solution in the neighborhood of the r ight  boundary,  which is im-  

por tan t  to the subsequent  ana lys i s :  I f  the values of the s t r e a m  p a r a m e t e r s  on the r ight  boundary do not 
co r r e spond  to the solution which is r ea l i zed  as a whole,  then this d i sc repancy  is mani fes ted  as  an abrupt  
change in the values  of the p a r a m e t e r s  nea r  the r ight  boundary of the computat ional  domain, and which of 
the poss ib le  modes is r e a l i z ed  can always be de termined.  

2 .  P a s s a g e  f r o m  t h e  F i r s t  t o  t h e  S e c o n d  F l o w  M o d e  

Le t  us se lec t  a V-shaped  wing with the angle 3/=100 ~ r =29~ ' as the object  of invest igat ion and let  
us cons ider  the flow around it at Moo =3.95 at all angles of a t tack  down to a detached bow shock (a0). Le t  
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a M denote the angle of attack corresponding to the flow around a wing with a s t rong plane shock at the lead- 
ing edges. In this case the s t r e a m  behind the shock is uniform. For  the wing under considerat ion a M = 
36~ ' , ~0=41~ 

Let us examine the isobars of the stream field around the wing for ~ =20 ~ (dashes) and ~ =31 ~ (solid 
lines, Fig. 5) and the shape of the shocks for various values of a (Fig. 6) obtained as the loci of points of 
maximum pressure gradient. It is seen from the figures presented that the flow for a < ~IYi occurs with the 
formation of a Maeh-type bow wave and an inner shock. As the angle of attack increases, the central part 
of the stream domain bounded by the central shock BC, the plane of symmetry OIC , and the inner shock BD 
increases (Fig. 6) so that the inner shock is displaced to the leading edge and the central shock is displaced 
upwards. 

In order to determine the flow modes based on the deductions in See. 1, the flow was analyzed by using 
the stream behind both a strong shock on the edge and behind a weak shock as the initial field. The results 

are shown in Fig. 7 as the diagram of the pressure coefficient distribution over the wing span (Cp =2(p-p~/ 
p V~2). It is seen in the graphs presented that a characteristic sharp diminution in Cp is observed near the 
leading edge for angles of attack a < a M (compare with Fig. 3), in a calculation from the strong shock pa- 
rameters (dashes), while the behavior of the curve for a > a M is distinct from the behavior of the curve 
for a < a M and is characterized by fluctuations in the value of Cp near the right boundary. These fluctua- 
tions are explained by the small number of grid points behind the shock at the right boundary (just one) and 

are a numerical effect not related to the physical flow picture. 

Presented in Fig. 8 are Cp(~'} diagrams obtained when using the parameters behind a strong shock as 
the initial field for a wing with T =70~ r =20~ Moo =6 for diverse r~(aM=39~ The behavior of the 
curves is analogous to those of Fig. 7. It should be noted that the numerical solution for a =a M agrees 

with the exact solution w~th high accuracy. 

As follows from the results in See. I, the behavior of the Cp(r) curves presented in Figs. 7 and 8 in- 
dicates the realization of the first flow mode for a < a M and the second for ~_>aly i. 

It has been remarked above that the inner shock approaches the leading edge as a increases, as is 
seen well in Fig. 7. The position of the shock from r s at the wing wall for T =i00 ~ r =29~ ', M~o =3.95 is 
illustrated in Fig. 9 as a function of the angle of attack. It is seen that as a -~M the inner shock ap- 
proaches the leading edge and r 3 =R for a =a M. As a increases further, the first flow mode is not realized 

since the inner shocktendsto"depart" behind the edge. 

The mechanism of second flow-mode formation becomes comprehensible: The second flow mode is 
a result of the inner shock wave "displacing" the weak shock being formed at the leading edge. 

It is interesting to note that as a increases, not only the size of the central flow domain but also the 
qualitative nature of both the isobar field and the pressure diagram vary (Figs. 5 and 7). If the pressure 
diagram at the wall is monotone for moderate angles of attack ~ < 15-20 ~ then as a increases the mono- 
toneity is spoiled and a break occurs directly behind the inner shock front and a pressure rise is again 

observed in the neighborhood of the plane of symmetry. 

Effects analogous to those noted above were also observed in experiment [3], namely, as a increased 
r s increased,  and an abrupt nonmonotoneity is cha rac te r i s t i c  for  the spanwise p re s su re  d iagram for  a < (~M 
behind the inner shock front,while the quantity Cp along the span varies  slightly for a ->a M and is a lmost  
constant. This qualitative agreement  with experiment  indicates that the sharply nonmonotone nature of the 
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behavior  of Cp('~) is explained not only by the effect of inner shock interaction with the boundary l aye r  but 
also by the proper t ies  of the inviscid par t  of the flow. 

It follows f rom the analysis  conducted that, if a flow mode with a plane s t rong shock on the leading 
edges exists for Moo --- const  in the 0< a < n 0 range of angles of at tack and the Mach number  in the flow be-  
hind the wave is hence g rea te r  than one, then the flow occurs  at a < a M w i t h  the formation of a weak shock 
at the edge. For  a > a M the plane of the s t rong shock being formed a ~ h e  edge is below the plane res t ing  
on the leading edge, hence the initial shock direct ion is into the wing. However, a numerical  computation 
indicates the existence of a convex wave (Fig. 6). This says that for a > a M  either a mode with a s t rong 
shock which has an inflection near  the leading edge is real ized and is not captured in the computation be- 
cause of its nearness  to the leading edge, or  a mode with a detached wave is real ized.  

The same situation evidently holds also for  a =cons[  when Moo var ies  in the neighborhood of that num- 
ber  Moo where the flow with one plane s t rong shock is real ized.  

The passage f rom the f i rs t  to the second flow mode has been considered above with v iscos i ty  effects 
neglected. In real i ty ,  because of the presence  of a separat ion zone ahead of the inner shock and the appear-  
ance of a new shock within the flow in this com~ection, the passage f rom a flow with the formation of the f i rs t  
mode into the second occurs  for  a < a M. 

The author is grateful to A. L. Goner and N. A. Ostapenko for  useful discussion of the resea rch .  
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