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A b s t r a c t .  Moggi's use of monads to factor semantics is used to model the composable 
continuations of Danvy and Filinski. This yields some insights into the type systems 
proposed by Murthy and by Danvy and Filinsld. Interestingly, modelling some aspects 
of composable continuations requires a structure that is almost, but not quite, a monad. 

1. I n t r o d u c t i o n  

Continuation-passing style was introduced to model one feature of pro- 
gramming languages - the jump - and to explicate the execution order of 
programs [14, 12]. Recently, Moggi has shown how monads, a notion from 
category theory, generalise the continuation-passing style transformation 
[9]. Monads can model a wide variety of features, including continuations, 
state, exceptions, input-output, non-determinism, and parallellism. Mon- 
ads have also been applied both as a way of structuring functional programs 
[16, 17] and as a way of introducing new features into functional languages 
[11]. 

It begins to seem as if any feature of a programming language can be 
modelled by a monad. Let's take the name 'Moggi's Hypothesis' as a con- 
venient label for this conjecture, although Moggi himself has never made 
such a rash claim. As we lack a uniform theory of programming language 
features, it is difficult to see how to verify such a hypothesis. However, it 
is easy to envision that it might be falsified by a counterexample. 

Composable continuations appear to be provide such a counterexam- 
ple. Usual continuations support the 'escape' operation, which is similar 
to Landin's J operator, Reynolds's escape operator, or 'call/cc' as found in 
Scheme [13] or SML/NJ [5]. This increases the progr.ammer's power of ex- 
pression greatly, though the resulting programs are sometimes rather devi- 
ous. Composable continuations, as devised by Danvy and Filinski [2, 3, 4], 
support additional operations 'shift' and 'reset'. These even further in- 
crease the programmer's power of expression, and can result in programs 
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of mind-boggling deviousness. (The operations 'shift' and 'reset' are similar 
to, but not the same as, the operations 'control' and. 'prompt'  of Felleisen 
[6].) Two different type systems for composable continuations have been 
devised, one by Danvy and Filinski [2], and the other by Murthy [10]. 

The purpose of this note is to explore the utility of monads for modelling 
composable continuations. A succession of models based on monads will be 
presented. One of these will correspond to the type system of Murthy, and 
another to the type system of Danvy and Filinski. The monad approach 
succeeds in providing a simple way to understand these type systems. On 
the other hand, some of the models will not quite be monads: one will have 
types more general than a monad, while another wiU have types less general 
than a monad. So Moggi's Hypothesis appears to be violated. However, 
the violation is fairly mild: all the models have the same basic structure as 
a monad, and satisfy the three monad laws; and monads provide a useful 
framework for parameterising the definition of two-level continuations. 

Kieburtz, Agapiev, and Hook have also examined the use of monads to 
model composable continuations [8]. Their model also turns out to be not 
quite a monad, though for a very different reason than the model presented 
here. In particular, their model has the right type for a monad, but fails to 
satisfy one of the three monad laws. However, their model seems to contain 
a spurious complication. Removing the complication appears to yield the 
model in this paper, which does satisfy all the monad laws. 

As a sidelight, the work presented here demonstrates the utility of a func- 
tional language as a 'power tool' for performing experiments in theoretical 
computer science. At various points we will need to know the most general 
type of a given form that can be assigned to a lambda expression. This 
was easily computed using an implementation of a functional language that 
encorporates the Hindley-Milner type reconstruction algorithm [7, 1]. The 
implementation used was Gofer, a dialect of Haskell implemented by Mark 
Jones; but any language based on Hindley-Milner types would be suitable. 

This paper is aimed at readers familiar with monads and composable 
continuations, but for completeness summaries of both will be presented. 
The remainder of this paper is organised as follows. Section 2 reviews 
monads. Section 3 reviews composable continuations, and shows how they 
can be modeled with monads (and in one case, with something more than a 
monad). Section 4 adapts this model to two-level continuations (and along 
the way spots something that is less than a monad). Section 5 critiques the 
work of Kieburtz, Agapiev, and Hook. Section 6 concludes. 
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2. M o n a d s  

For our purposes, a monad consists of a type constructor M and two op- 
erations. 

unit :: a - - + M a  
( , )  :: M a - - + ( a - - + M b ) - - + M b  

(We write '::' for 'has type' . )  If you are a functional programmer,  think 
of M as a type constructor in a functional language, and unit and , as 
polymorphic functions. If you are a domain theorist, think of M as an 
operation on domains, and unit a n d ,  as operations parameterised on the 
domains a and b. 

Roughly speaking, type M a represents a computat ion that  yields a value 
of type  a. The purpose of unit is to take values into computations.  If v :: a 
is a value, then unit v :: M a represents the computat ion that  does nothing 
except yield the value v. The purpose o f ,  is to combine two computat ions,  
where the second computat ion may  depend on a vMue yielded by the first. 
If m :: M a is a computat ion and k :: a -+ M b is a function from values to 
computat ions,  then m ,  k :: M b represents the computat ion that  performs 
computat ion m, applies k to the value yielded by the computat ion,  and 
then performs the computat ion that  results. 

The monad operations must satisfy three laws. 

(left unit)  unit v , ( ,kw.  k w) = k v 
(right unit)  m .( ,kv .  unitv) = m 
(associative) ( m * ( ~ v .  kv ) ) . ( )~w,  hw) = m . ( , k v . ( k v , ( , ~ w ,  hw)))  

The laws may  be simplified by rewriting ()~w. k w) as k, and so on. The form 
shown here was chosen because in practice one tends to w r i t e ,  followed by 
a l ambda  abstraction. 

2.1. T h e  t r a n s l a t i o n  

There is a s tandard call-by-value translation of lambda calculus into a 
monad.  

~x]p 

[de]p 
M p  
[d + 4p 
[if c then d else e]p 
[let x = d in e~p 
[[letrec f = (Ax. d) in e~p 

= unit (p x) 
= u n i t ( ~ v . [ d p [ v / x ] )  
= ~d~p. (~k. [ 4 p .  (Av. k v)) 
= unit n 
= [d~p*(~v. M p * ( ~ w .  un i t ( v+  w))) 
= [[c~p~(Av.if v then [[d]p else [[e]]p) 
= [d~p.(~v.Mpivlx]) 
= letrec k = (~v .[d]pik / f ,v /x] )  

in [dp[k//] 
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Here c, d, e range over terms in the source language, x, f  range over vari- 
ables in the source language, n ranges over constants, v, w, k range over 
values (or variables in the target language), and p ranges over environments 
mapping source variables to values (or to target variables). Since this is a 
call-by-value translation, 'letrec' expressions are valid only if the recursive 
variable is bound to a function definition. A representative sampling of 
expressions has been given; it is straightforward to add others. 

This translation can be viewed in two ways. If the right-hand side is taken 
as meta-syntax,  with v, w, k as values, then the result is an interpreter, or a 
denotational  semantics. If the right-hand side is taken as a target  language, 
with v, w, k as variables in the target language, then the result is a compiler. 
The source and target languages are both lambda calculus, but  the target  
language contains unit and , as additional constructs (or as predefined 
constants,  if you prefer). 

2.2. T y p e s  

If viewed as a compiler, the translation takes simply-typed lambda  cal- 
culus into simply-typed lambda calculus. The translation on types is as 
follows. 

][a --* b] = [[a] --* M ~[b] 

Here I ranges over base types such as Int or Bool, and a, b range over types. 
As with terms, the source and target languages contain the same types,  
except the target  language contains M as an additional type constructor.  
The typed source te rm 

Xl :: a l , . . . , x n  :: an [- e :: b 

translates into the typed target term 

vl :: ~al~,...,v~ :: ~a~ ~ ~e]p:: M[b~ 

where p = [Vl/Xl,..., Vn/Xn]. 
There is a problem if the source language includes 'let '  polymorphism, 

as found in the Hindley-Milner type system: translating 'let '  i n t o ,  loses 
polymorphism. Thus we will limit our attention,  as do Danvy and Filinski 
and Murthy,  to a source language without 'let '  polymorphism. This is a 
serious restriction; an alternative approach might be based on stronger type  
systems such as polymorphic lambda calculus [15]. 

2.3. F o r  c a t e g o r i s t s  only 

Categorists will recognize M as a monad with unit as its unit a n d ,  as 
its Kleisli star. The free use of lambda calculus means tha t  we are working 
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in a cartesian closed category. It is assumed t h a t ,  is itself represented as 
an arrow in that  category, rather than just  an operator  on arrows. That  is, 
we assume for each object  a and b an arrow 

(a =~ M b) ~ ( M  a =v M b) 

where ) denotes an arrow in the category, and =~ denotes exponentia- 
tion. This is stronger than the assumptions made by Moggi. When we use 
' letrec' ,  we also assume for each object  a and b an arrow 

((a ~ M b) ~ (a ::v M b)) ~ (a ~ M b) 

to model  fixpoints. 

3. C o n t i n u a t i o n s  

The usual continuation passing style arises as a special case of the monad 
translation. We define our monad as follows. 

t y p e M a  = (a--+ 0)--+ 0 

unit  :: a ~ M a 
(*) :: M a - - + ( a - - + M b ) - * M b  
eval :: M O - +  0 

unit  v = $c. c v 
m * k  = )~c.m(,~v.  k v c )  
eval m = m id 

Here 0 is the type  of answers, and id = (,~v. v) is the identi ty function. 
We have added one extra  operation, eval, to the monad, which can be used 
to extract  the answer from a 'top-level' computation.  

Subst i tu t ing these defintions of unit a n d ,  into the call-by-value monad 
translat ion and simplifying yields the usual call-by-value continuation- 
passing style translation. A pleasant property of this translation is tha t  
a source program is always given the same call-by-value semantics, regard- 
less of whether  the target program is given a call-by-value or call-by-name 
semantics. 

Monads are in a sense just  an abstraction of continuation passing style, 
and the second argument  t o ,  is very similar to a continuation. In a sense, 
we have continuations at two levels: at the meta-level, we have the con- 
t inuat ion k :: a ~ M b and at the object  level we have the continuation 
c :: a --+ O. (Section 4 will introduce yet another level of continuation.)  
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3.1. Escape  

We now extend our source language with an 'escape' operation, similar 
to Landin's J operator, Reynolds' escape operator, or 'call/cc' as found in 
Scheme or SML/NJ. First, we extend the translation. 

[[escape f . e ] l p =  escape ( )~k. [elp[k /f]) 

Second, we add a corresponding new operation to the monad. 

escape :: ((a --+ M b) --+ M a) --+ M a 
escapeh = Ac .h(Av .  Ac ' . cv )  c 

The 'escape' operation binds the specified variable to a function that,  if 
called, returns its argument to the context surrounding the 'escape'. 

For example, the term below has the value 101. 

1 + ( e s c a p e f . ( 1 0 + ( f 1 0 0 ) ) )  = 1 + 1 0 0  

Here f is bound to a function that passes its argument to the context 
surrounding the 'escape'. 

The type of escape says something about what type the 'escape' construct 
might have in a typed programming language. Using the type translation 
of Section 2.2, the type of 'escape' is the translation of the type ((a -+ 
b) -+ a) -+ a, so one might expect an 'escape' construct to have the latter 
type. And indeed, the type of 'escape' in SML/NJ is very similar to this. 
However, it is not identical, as extra cleverness is required to get maximum 
polymorphism; see the discussion by Duba, Harper, and MacQueen [5]. 

3.2. Shift  a n d  rese t  

We further extend our source language with the operations 'shift' and 
'reset' defined by Danvy and Filinski. Again, first we extend the translation. 

[shift f . 4 P  = shift ()~k. [e]p[k/f]) 
[[reset e]p = reset(leap) 

Second, we add corresponding operations to the monad. 

shift :: ( ( a - - + M O ) - + M O ) ~ M a  
reset :: M O - + M O  

s i/th = 
resetm = )~c.c(mid)  
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The 'shift' operation binds the specified variable to the context between 
the 'shift' and the nearest (dynamically) enclosing 'reset' (or 'shift'); the 
body of the 'shift' returns its value to the nearest enclosing 'reset'. Here 
are three examples. 

Example 1. The three terms below have the values 121, 101, and 1121, 
respectively. 

l + ( r e s e t ( 1 0 + ( s h i f t f . ( f ( f l 0 0 ) ) ) ) )  = 1 + ( 1 0 + ( 1 0 + 1 0 0 ) )  
1 + (reset (10 + (shift f .  100))) = 1+100  
1 + (reset (10 + (shift f . ( ( f  100) + (f 1000))))) 

= 1 + ( ( 1 0 +  1 0 0 ) + ( 1 0 +  1000)) 

In each case, f is bound to a function that behaves as the context between 
the 'shift' and the enclosing 'reset'; that is, f adds 10 to its argument. 

Example 2. Here is a very odd way of reversing a list. 

letrec perverse = (AI. if null l 
then [] 
else (shift/ .  head I: / (perverse (tail l)))) 

in (reset (perverse [1, 2, 3])) 

(Here head, tail, null, [], and : (cons) are the usual operations on lists.) 
This returns [3, 2, 1]. For an explanation, consult Danvy and Filinski [2]. 

Example 3. Here is an even stranger program. 

let g = (reset (if (shift f . f )  then 2 else 3)) 
in (9 True) + (9 False) 

Here f (and hence g) is bound to the function that returns 2 if passed True, 
and 3 if passed False, hence the value of the given term is 5. Application 
of a similar idea to implement backtracking has been explored by Danvy 
and Filinski [3]. 

Despite the worryingly convoluted nature of the examples, it is this abil- 
ity to express and encapsulate features such as backtracking that (may) 
make composable continuations worthy of study. 

3.3. Laws of  escape  and  shift 

Various properties are satisfied by the 'escape' and 'shift' operators. 

[escape f .  eli = Jell, f not free in e 
[shift f . / e ]  = [el, f not free in e 
[escape f .  eli = [shift f ' . f '  (let f = ()~x. shift f " . f '  x) in e)~, 

ff not free in e 
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The third equation acts as a definition of 'escape' in terms of 'shift'. 

The above equations in the source language are equivalent to the follow- 
ing in the target language. 

e s c a p e ( ~ k . m )  = m 
shi f t  ( )~k. m * k ) = m 

escape h = shift ( h ( shift ( k' x ) ) , k') 

Each of these can be shown straightforwardly from the definitions of escape,  
shi f t ,  and * together with the laws of lambda calculus. 

3.4. W h a t  about  the  t y p e s ?  

Consider again the types given for shif t  and reset .  

shi f t  :: ( ( a - - + M O ) - - + M O ) ~ M a  
reset  :: M O ~ M O 

These are the most general type that  can be derived for the given definition 
of M. 

Here the types are less satisfactory than with escape. A disturbing num- 
ber of O's are creeping in. Recall that  0 is the type of answers returned 
at the ' top level'. It doesn't seem reasonable that  uses of 'shift ' and 'reset' 
be restricted to apply to terms that  have the same type as the top-level 
context. 

Nonetheless, these typings are suitable for building an interpreter (or 
equivalently, a denotational semantics). This works because in an inter- 
preter there is only a single 'value' type (into which all others are em- 
bedded) and one takes 0 to be this type. In short, the interpreter works 
because it is essentially untyped. 

We now look at better types for the monads, which correspond to the 
type systems proposed by Murthy [10] and Danvy and Filinski [2]. 

3.5. M u r t h y  t y p e s  

One way to generalise is to parameterise the monad M by the answer 
type. Here is the result, giving the most general types than can now be 
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inferred for the previous definitions. 

t y p e M o a  = ( a ~ o ) ~ o  

unit  :: a - + M o a  
( , )  :: i o a ~ ( a ~  M o b ) - - +  M o b  
eval :: M o o - - + o  
escape :: ( ( a ~ M o b ) - - + M o a ) ~ M o a  
shift :: ((a ~ M o p )  --+ M p p )  ~ M p a  
reset :: M p p --+ M o p  

Voila! The resulting types correspond to those used by Mnr thy  [10, 
Section 4.2]. His type system in fact applies to a more general language: 
each 'shift '  and 'reset '  operation has a level n, where 0 < n < m, and there 
are m - 1 possible levels. The system here arises in the special case where 
m = 2 and n = 1. For that  case, his rules reduce to roughly the following, 
with some simplification and change of notation. 

r ,  x :  a ~ Ks,o[p] F- e :  Ks,,[p] r ~- e :  K~,,[p] 
r ~- shift x. e : K~,,[a] r t- reset e : K~,o[p] 

Murthy ' s  Ks,o[a] corresponds to our type M o a, and his typing rules cor- 
respond directly to the typings given above for shift and reset. (We will 
see in Section 4.1 what it is that  his s corresponds to.) 

Examples 1 and 2 are well-typed in this system, but Example 3 is not. 

3.6. D a n v y  a n d  F i l insk i  t y p e s  

An even more general type system results if the monad is given two type 
parameters ,  replacing (a -~ o) -+ o by the more general (a ~ p) --+ o. 
This makes sense, in that  there is no reason why the type p re turned by a 
composable continuation need be the same as the type o re turned by the 
entire computat ion.  Here is the new result, again inferring the most general 
types consistent with the definitions. 

t ype  M o p a  = (a ~ p ) - +  o 

unit  :: a -+ M o o a 
( . )  :: i o p a ~ ( a ~ M p q b ) ~ i o q b  
eval :: M o p p  ~ o 
escape :: ( ( a - - + i p q b ) - - + i o p a ) - - + i o p a  
shift  :: ( ( a - - + M o o p ) ~ i q r r ) - - ~ i q p a  
reset :: M p q q ~ M o o p 

Voila again! The new types correspond to those used by Danvy and 
Filinski [2]. Tha t  paper uses the notation r , p  ~- e : a, o where F is an 
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environment mapping variables to types, e is an expression, a is the type  
of e, and p and o are the 'old' and 'new' continuation types. Corresponding 
to this, we would say that  the translation of e has type M o p a. Tha t  paper  
also writes the type of functions in the form a/p ~ b/o, where a is the 
argument  type,  b is the result type, and again p and o are the 'old' and 
'new' continuation types. Corresponding to this, we would say tha t  the 
translation of the function has type a --+ M o p b. The typing rules given 
in tha t  paper can then be seen to correspond to the types of the monad 
operations given above. 

The resulting type scheme is general enough so that  Examples 1, 2, and 
3 are all well typed.  

3.7. I t ' s  no t  a m o n a d !  

Our model  of Danvy and Filinski's type system is quite satisfactory. But 
it is not a monad.  In a m o n a d , ,  should have the type 

(*) :: M a ~ ( a ~ M b ) ~ M b .  

To model  Murthy 's  type s y s t e m , ,  has the type 

( , )  :: M o a ~ ( a ~ M o b ) ~ M o b ,  

and this still matches the monad pattern,  where M in the former corre- 
sponds to M o in the latter. But for our second a t t e m p t , ,  has the type  

( , )  :: M o p a ~ ( a ~ M p q b ) - - . M o q b ,  

and this is too general to be a monad: the three type constructors Mop,  
M p q, and M o q are quite distinct. 

So the monad methodology has led to a successful modeling of 'shift '  
and 'reset ' ,  but  in the process we had to create something more general 
than  a monad.  Note that  the generalisation is fairly mild. We still use a 
type  constructor  and two operations unit and , ,  and one can verify tha t  
the three monad laws are still satisfied. It is just that  the type o f ,  is too 
general. 

4. T w o - l e v e l  c o n t i n u a t i o n s  

The semantics given for 'shift' and 'reset'  allows applications of continu- 
ations to be nested, as in the phrase c p (c v). As a result, one loses the  
pleasant property  that  a source program is always assigned the same se- 
mantics regardless of whether  the target program is taken as call-by-vMue 
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or call-by-need. This property can be regained by taking the definitions of 
'shift' and 'reset' and translating them into continuation-passing style. 

What is now required is two levels of continuations. The lower level, 
called L, is identical to the previous monad M. 

t y p e L a  = (a--+ 0 ) - +  0 

unitL :: a - - + L a  
(*L) :: L a - ~ ( a - ~ L b ) - ~  La  
evalL :: L O - +  O 

unitL v = Ag. g v 
l * L e  = )~g. l (Av.  e v g )  
evalL l = I i d  

This uses 'first-level' continuations, g :: a -+ O. 

The upper level is the new monad M. The definition of M a has changed 
in that the old answer type 0 is replaced by the new answer type L a. The 
operations unitL, * i ,  and evalL are used to manipulate values of type L a. 

t y p e M a  = ( a - + L a ) - + L a  

uni t  :: a - - + M a  
( , )  :: i a - + ( a - + i a ) - + i a  
eval :: M O - +  0 
escape :: ( ( a -+  i a ) -+  i a)--+ M a 
shif t  :: ((a -+ i a) -+ i a) --+ i a 
reset :: M a - - + M a  

uni t  v = )~c. c v 
m , k  = A c . m ( A v .  k v e )  
eval m = evaIL ( m unitL ) 
escape h = Ac. h ()~v. Ac(  c v) c 
shift  h = )~c. h ()~v. Ac'. c v *L (Av'.  e' v ' ) )  un i t i  
reset m = )~c. m unitL •L ()~v. c V) 

This uses 'second-level' continuations, e :: a --+ L a. The definitions of unit ,  
, ,  and escape remain unchanged, while evaI, shift ,  and reset have been 
rewritten in terms of the continuation-passing operations of the lower level. 
For instance, the phrase c I (c v) in the old definition of shift  is replaced by 
c v * L  c I v ' ) .  

One advantage of the monad approach is that the translation need not 
be changed at all, only the monad definitions. This contrasts with the 
previous attempts to explain the two-level style, where the two levels of 
continuations had to be interwoven with the translation scheme. 
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The type of M was chosen to correspond to that  used by Danvy and Fil- 
inski, where a is their 'value' type and 0 is their 'answer' type. Expanding 
out the definitions of unitL, *L, and evalL in the definitions of eval, shift, 
and reset yields definitions corresponding to those given by Danvy and 
Filinski. 

eval m 
shift h 
r e s e t  m 

= m()~v.~g,  g v ) i d  
= 

= c v g )  

Different definitions for the monad L would yield different definitions for 
the monad M. In particular, one might choose L to be the identity monad. 

type La  = a 

unitL v = v 
V ' k L  C ~- e V 

evaIL v = v 

Expanding then yields the original definitions of eval, shift, and reset given 
in Section 3. 

The laws of Section 3.3 still hold with the new definitions. Furthermore,  
they hold regardless of the definition of L chosen, so long as it satisfies 
the right unit law for monads. An interesting question is whether there 
are other laws of 'escape' and 'shift' that  depend upon the left unit  or 
associative law of L. 

The types shown above are the most general that  can be inferred for 
the given definition of M. However the types are highly unsatisfactory in 
that  M a appears uniformly everywhere. In particular, recall that  from the 
definition of a monad, the type o f ,  should be 

(*) :: M a - + ( a - - + M b ) - + M b .  

But the type given above is 

(*) :: M a - + ( a ~ M a ) - + M a .  

So the structure above is more specific than a proper monad. Compare 
this with the situation in Section 3.6, where the structure was more general 
than a proper monad. 

For the purposes of building an interpreter, this doesn't  matter ,  as we are 
only interested in one type anyway (the 'value' type). Nonetheless, that  our 
model  does not form a proper monad is somewhat disturbing. Fortunately, 
it turns out that  the various generalisations suggested previously fix this 
problem. 
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4.1. M u r t h y  t y p e s  

Recall that to model Murthy's type system, we used continuations pa- 
rameterised on the answer type. 

t y p e M o a  = ( a ~ o ) - - + o  

The corresponding type for the two-level system is as follows. 

t y p e L o a  = ( a - - + o ) ~ o  
t y p e M s o a  - ( a - +  L s o ) ~  L s o  

With these new type definitions, the two-level monad operations can be 
given exactly the same types as in Section 3.5 with M everywhere replaced 
by M s, except that now eval  :: M s s s ~ s. This explains where the extra 
parameter s in Murthy's notation comes from: we now have the more 
precise correspondence between Ks,o[a] and M s o a. 

The overspecialisation has been fixed: the type o f ,  is now correct for 
this to be a monad. 

4.2. D a n v y  a n d  Fil inski  t y p e s  

To model Danvy and Filinski's system, we used continuations parame- 
terised over two types. 

t y p e M o p a  = ( a --. p ) ~ o 

The corresponding type for the two-level system is as follows. 

t y p e L o a  = ( a - + o ) - - + o  
t y p e M s o p a  = ( a ~ L s p ) ~ L s o  

With these new type definitions, the two-level monad operations can be 
given exactly the same types as in Section 3.6 with M everywhere replaced 
by M s ,  except that now eva l  :: M s p p --+ s.  

The overspecialisation has been fixed too well: we have gone back to a 
model that is too general to be a monad. 

4.3. Mul t ip l e  levels 

There are more general definitions of 'shift' and 'reset' that work for an 
arbitrary number of levels. It may be possible to model these by a hierarchy 
of monads. 

type M ° a - -  a 

t y p e M  l o l a  =- ( a ~ M  ° o l ) - - ~ M  °ol 
t y p e M  2o2ola  = ( a ~ M  l o 2 o l ) - - + M  lo2ol  
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Here M ° is the identity monad, M 1 is the previous L, and M 2 is the pre- 
vious M, in the Murthy type system. In general, the type M rn om . . .  ol a 

corresponds to Murthy's  Kom...ol [a]. It remains to be seen whether the gen- 
eralised definitions of 'shift' and 'reset', and the corresponding type system, 
fit into the monad framework. 

5. R e l a t i o n  t o  K i e b u r t z ,  A g a p i e v ,  a n d  H o o k  

Kieburtz, Agapiev, and Hook also model composable continuations using 
something that  is almost, but not quite, a monad [8]. In their case, the 
reason for failure is entirely different. The types are all right, but  one of 
the monad laws fails to hold. 

Their model is based on a sequence of three type constructors, each 
accompanied by appropriate un i t  a n d ,  operations. 

type T a  = (a--+ 0)--+ 0 
t y p e S a  = (a--+ O ) ~ a  
t y p e R a  = T ( S a )  

The first two of these are monads, but the third fails to satisfy one of the 
monad laws. 

However, on close examination, their model appears to be overly com- 
plicated. The 'continuation'  passed to computations of type S a appears 
always to be ignored! It is therefore possible to simplify their system greatly, 
by eliding all the unexamined continuations. The result is that  the type 
S a becomes simply the type a, and the type R a becomes identical to T a. 
The simplified definitions are essentially the same as those given in Sec- 
tion 3 of this paper. The failure to satisfy a monad law seems due to the 
introduction of a spurious continuation. 

A closer comparison between the papers is clouded by two points. First, 
they make some strong assumptions about the answer type 0 in order to 
give eval  the type M a -+ a. The same effect seems to be achieved here by 
parameterising on the answer type, and giving eval  the type M o o -+ o. 
Second, they use a version of 'shift' that  differs slightly from Danvy and 
Filinski's definition, though regretably their paper fails to make that  clear. 

6. C o n c l u s i o n  

We have succeeded in using monads to model composable continuations. 
Along the way, we have encountered some counter-examples to what might 
be called 'Moggi's hypothesis': the conjecture that  every programming lan- 
guage feature can be modeled by a monad. One of our models had types 
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too general to be a monad, and another had types too specific. Every con- 
cept is better understood by knowing its limits, so it is good to have at last 
found a place where monads don't (quite) reach. 

Nonetheless, it seems fair to count this as a victory for the monad ap- 
proach. All of our models were obtained by starting from the obvious 
monad model and modifying it in straightforward ways. This led directly 
to type systems Mready reported in the literature, and provided useful 
insight for understanding and relating these systems. Further, the factori- 
sation of two-level continuations into two levels of monads may prove to be 
a useful generalisation. 

This work was aided by using an implementation of a functional language 
as a 'power tool' for performing experiments. The various monads were im- 
plemented in Haskell, and the various types given given above were derived 
automatically using the Hindley-Milner algorithm embedded in the Haskel] 
implementation. A simple compiler based on the monad translation was 
written in Haskell, and used to translate the examples given in Section 3.2 
into Haskell. The resulting code was type-checked in conjunction with the 
various monads, thereby testing the power of the induced type systems. 

Several questions remain for future consideration. What, if any, is the 
categorical nature of the various generalisations of monad discussed? Are 
there better type systems for composable continuations outside the stric- 
tures of the Hindley-Milner system? 

One goal of composable continuations with multiple levels was to be 
able to factor different effects into different levels. Danvy and Filinski 
claim it is relat~Lvely easy to combine different effects uniformly in this 
way. Monads are also intended to factor effects in a way which eases their 
combination. However, there is no uniform rule for combining any two 
monads. This paper has used monads to shine some light on composable 
continuations. Will composable continuations shed light on the problem of 
combining monads? 
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