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Abs t rac t .  In a simply-typed, call-by-value (CBV) language with first-class continua- 
tions, the usual CBV fixpoint operator can be defined in terms of a simple, infinitely- 
looping iteration primitive. We first consider a natural but flawed definition, based 
on exceptions and "iterative deepening" of finite unfoldings, and point out some of its 
shortcomings. Then we present the proper construction using full first-class continua- 
tions, with both an informal derivation and a proof that the behavior of the defined 
operator faithfully mimics a "built-in" recursion primitive. In fact, given an additional 
uniformity assumption, the construction is a two-sided inverse of the usual definition of 
iteration from recursion. Continuing, we show that the CBV looping primitive is in fact 
the direct-style equivalent of a continuation-passing-style fixpoint, and that this corre- 
spondence extends all the way to traditional definitions of these operators in terms of 
reflexive types. 

1. I n t r o d u c t i o n  

1.1. Background  and mot ivat ion  

l~ecursive definitions form a cornerstone of functional programming. It 
is commonly accepted that  many algorithms can be expressed much more 
clearly using recursion rather than iteration, and that  iteration itself is 
easily definable as (tail) recursion. But does this mean that  recursion is 
somehow the more fundamental  or general language construct? In this 
paper we will show that  the answer is "not necessarily": in Scheme-like 
languages full recursion can also be characterized as a particular pat tern  of 
iteration! 

The results presented here were inspired by a category-theoretic charac- 
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terization of languages with first-class continuations [7] in terms of what 
could now be called "classically-typed" [9] categories. Specifically, one 
can interpret the difference between data-driven (or, call-by-value) and 
demand-driven (call-by-nazne) evaluation in such a language as an instance 
of a categorical symmetry principle called duality. In this view, the cate- 
gorical "mirror image" of the CBN recursion operator turns out to be an 
iteration primitive in CBV; very informally, the relation is like between 
"inside-out" evaluation of . . . f ( f ( x ) ) . . .  in CBV and "outside-in" evalua- 
tion of of f ( f ( . . . x . . . ) )  in CBN. Moreover, the usual construction used to 
define iteration from recursion in CBN can be systematically turned "upside 
down", to express CBV recursion as a sugared form of simple iteration. 

We will not pursue this view here, however, but adopt a self-contained 
presentation not directly tied to category theory or symmetry considera- 
tions. This will allow us to draw directly upon the substantial body of 
existing results about continuations, e.g., [4, 5, 9, 17] for reasoning about 
the construction. An outline of the categorical approach is sketched in 
section 5. 

In many functional programming languages, it is actually possible to 
write recursive functions without any "explicit" recursion. For example, the 
Scheme definition [1] expresses le t rec  in terms of set!. More fundamentally, 
the well-known Y-combinator provides a uniform way of introducing self- 
reference. However, a closer analysis shows that all such definitions rely in 
one form or another on the very powerful and general concept of reflexive 
domains; once we admit those, we cannot make finer distinctions. It is 
worth investigating, therefore, the essence of recursion in a simply-typed 
setting; we will briefly return to "recursion from reflexivity" in sections 4.2 
and 4.3. 

The rest of this section sets up a common framework and introduces 
some specific notation. Rather than tie ourselves to the idiosyncrasies of 
any particular language, we will use a neutral, hopefully universally under- 
standable A-calculus notation. While we will often omit explicit types, they 
can easily be reconstructed. In particular, all the definitions can be directly 
translated into an ML-like language or (a typed variant of) Scheme. 

1.2. R e c u r s i o n  and  i t e r a t ion  

Let us first clarify what we mean by recursion and iteration in a CBV 
setting. As is well known, a higher-order functional language allows us to 
express recursive function definitions without any special syntax. Specifi- 
cally, we can replace syntactic forms like le t rec  with a functional fix that  
achieves the same effect: 

l e t ree  f = E1 in E2 ~ let f = fix (Af. El)  in E2 
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The le t  can now be simply expanded away or replaced by a/3-redex. (The 
la t ter  choice would interfere with ML-style polymorphic typing, though).  
fix owes its name to the fact that  for any function F : a -~ a ,  

f ixF = F ( f i xF)  : a 

In a CBV language, however, this equation must  be taken with a grain of 
salt. Because all functions are strict, it is easy to see that  taking fix F = ~a  
(a non- terminat ing term of type a)  trivially satisfies the equation. In fact, 
to be useful for CBV evaluation, fix F should reduce to a value in a finite 
number  of steps. More specifically, for every value F : (a  --+ fl) --+ a --+/3, 
the  following should hold: 

f ixF = h a . F ( f i x F )  a : a ~ f l  

This is usually known as the "CBV fixpoint" equation. 

Let us now consider iteration. In a functional setting, it is generally 
characterized as a special case of recursion, in which the recursive call 
happens to be a tail call. To capture this pat tern  as a functional, let us 
assume tha t  we have a "disjoint union" type with left and right injections 
and a case-construct .  Then we can express loops with the following tail.. 
recurs ive  definition, which repeatedly applies a function f : a -+/3 + a to a 
value, until the result is tagged as a left inject: 

repeat f = ha. ca se  f a o f  inl (b) --+ b fl inr (a') ~ repeat f a' : o~ ~ / 3  

A degenerate case of this is a loop with no exit: for f : a --+ c~, 

Ioop f = repeat (inr o f )  = ha.  loop f ( f  a) : ~ ~ /3 

Since the function loop f never actually returns a result, we can assign it 
any codomain type/3  whatsoever (but w.l.o.g, we can pick t5 as the empty  
type,  cf. section 3.1). Obviously, loop by itself is not very useful in a purely 
functional language, but  if we add an escaping construct like exceptions or 
first-class continuations, it is easy to recover repeat from it - analogously to 
the way tha t  a l o o p - e x i t - e n d l o o p  construct can simulate repea t -unt i l  
in an imperat ive language. 

1.3. Except ions  and cont inuat ions  

Likewise, let us quickly introduce the notation we will be using for excep- 
tions and continuations. In its most primitive form, an exception facility 
consists of two special forms: 

fail  and t r y  M1 else  M2 
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When evaluated, fail raises an exception, which, if not handled, terminates 
program execution. The t ry -e l se  construct first a t tempts  to evaluate M1. 
If this evaluation terminates normally with some value V, the result of 
the entire expression is V; M2 is ignored. But if evaluation of M1 raises 
an exception (not itself handled by an inner t ry ) ,  evaluation of M1 is 
abandoned, and the result of M2 is returned as the result of the whole 
expression. Any exception raised in M2 propagates outward as usual and 
in particular does not reactivate M2. 

A simple generalization consists of data-carrying exceptions, where a 
value can be passed from a fail to the handler. This in turn enables named 
exceptions, but we will not need such generality here. In particular, ML's 
exception facility uses ra ise  X for fail and M1 h a n d l e  X ~ M2 for t r y ,  
where X is an exception name. Scheme has no direct counterpart,  though 
an exception facility can be simulated using call/cc and set!. 

There are a number of essentially equivalent ways of introducing first- 
class continuations in a functional language, all tracing back to Reynolds's 
escape-opera tor  [19] (or, less directly, to Landin's J-operator [14]). In gen- 
eral, we need an operator g such that  an expression g M  invokes the proce- 
dure M with a representation K of the evaluation context [6] surrounding 
CM. If M ever invokes K with a value V, the then current context of 
evaluation is abandoned, and control returns to the context represented by 
K,  as if g M  had just returned V. For example, 

2 + C ( ~ k . 3 + k 4 )  ~ 6 

The difference from exceptions is that  the entire captured context will be 
reactivated even if the continuation K is actually returned out of the C- 
expression (e.g., embedded in a closure or other data structure). While 
potentially more complex to implement, such a facility exhibits a pleasant 
uniformity of behavior, which makes it superior in many ways to exceptions 
- both for both theoretical and practical purposes. 

For concreteness in the following, we will adopt Griflin's simply-typed 
formulation of first-class continuations [9], which uses essentially a typed 
variant of Felleisen's C-operator [6]; the actual choice is not critical, how- 
ever. We will generally emphasize applications of continuations as k 'v .  
Similarly, we will write )¢x. M for the syntactic representation of a contin- 
uation. And finally, we will use the notation --a for the type of a-accepting 
continuations. 

To a first approximation, readers familiar with the continuation facility 
in Standard ML of New Jersey [4] can simply read g as callcc, ignore "'s in 
)~-abstractions, and read k 'v  as throw k v; Scheme programmers can read C 
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as call/cc and ignore annotations of both abstractions and applications. A 
more precise characterization of g will be given in section 3.1. 

1.4. T h e  p r o b l e m  

A crucial property underlying the entire development presented here is 
that reduction in a simply-typed A-calculus is strongly normalizing [12], 
and in particular a CBV strategy is sufficient to reduce every closed term 
to a value. It can be proved (by CPS conversion back to the original 
case) that the latter property holds even if we extend the language with 
first-class continuations [9]. A similar argument works for exceptions not 
carrying values, or values of base type only (if we allow functional values, 
the domain of exceptions becomes self-referential). 

Now, if we have a language that allows recursive definitions, we can 
directly define fix by its characteristic equation; conversely, we can express 
all recursive definitions in terms of fix. And either of these can easily 
express the looping constructs. But we can also pose the question: does 
fix really give us greater expressive power than repeat or loop? Or could 
we in fact explicitly define a simply-typed function that behaves like fix 
but uses only iteration and control operators? Perhaps surprisingly, the 
answer is yes. In fact, we will give two such simulations: a simple, but 
somewhat problematic, version based on exceptions, and a much better 
one using general first-class continuations. We will show that the latter 
is essentially equivalent to the usual CBV fixpoint operator, and consider 
some implications of this equivalence. 

2. I n f o r m a l  d e r i v a t i o n  

In this section, we give an intuitive, stepwise development of the solution. 
A more formal treatment can be found in section 3. 

2.1. A first  a t t e m p t :  r ecur s ion  f rom loops and exceptions 

Let us look at the fixpoint equation again (ignoring for now the value 
requirements), and unfold it a few times: 

f i xFa  = F ( f i x F ) a  = F ( F ( f i x F ) ) a  = . . . =  F ~ ( f i x F ) a  

While we could clearly keep expanding the definition of fix ad infinitum, it 
can be shown (e.g., [10, 4.4]) that any finite computation needs only a fixed 
number of F's.  In other words, for every terminating program (closed term 
of base type) there exists an n such that if we replace fix F by F n (Ax. fail), 
the result is unchanged. Unfortunately, we cannot tell in advance how 
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many  levels of unfolding will be needed, or in fact, whether  there even 
exists a bound  - if the program never terminates ,  any prede te rmined  n will 
eventual ly  lead to failure. 

W h a t  we can do, however, is to start  the computa t ion  with some number  
of Fs ,  and if it runs out (signals an error), restart  it with more; eventually,  
we will ei ther find a large enough n or keep t rying forever. We need to 
strike a balance between wasting work by underes t imat ing  the number  of 
levels, and "overshooting" by sett ing up more Fs  than  necessary. A good 
choice is to double the bound  n each time; this ensures tha t  we will only 
make  a constant  factor more calls to F than  we actually need. We thus 
want  a definition like the  following: 

fix F = ha. t r y  F ()~x. fail) a 
else t r y  ( F  o F)  (1x. fail) a 

else t r y  ( F  o F o F o F )  (),x. fail) a 
e lse  . . .  

which can easily be turned into a finite, i terative procedure:  

fix F = )~a. repeat [)~F'. t r y  inl(F' ()~x. fail) a) 
else ]nr (),f. F '  (F '  f))]  F 

(using the  instance ¢ --+/~ + ¢ of repeat, where ¢ = (a  -+ fl) -+ a -+ fl). 

2.2. Analys i s  

So do we really have a working fixpoint combinator? Our  initial in tui t ion 
and some quick tests would say yes. For instance, the canonical example,  

fix[)~f.)~n, i f  n = O  t h e n  1 e lse  n × f ( n -  1)]5 

does indeed evaluate to 120. Even non-linear recursive definitions like the  
naive Fibonacci function work. On closer inspection, however, some serious 
problems become apparent:  

. 

. 

The  "iterative deepening" paradigm wastes work: we typically need 
a to ta l  of twice as many  recursive calls to compute  the  same result,  
since the  only information we recover from failed a t t empt s  is "n was 
not  big enough".  This in itself is perhaps not too bad,  bu t  is closely 
related to: 

The  construct ion is not robust  under  language extensions: it inter- 
feres with almost all computat ional  effects we might  want  to  add. 
For example,  any state manipulat ions done by the recursively-defined 
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function will be spuriously duplicated an unpredictable number  of 
times: 

( let  i = ref 0 in 
fix [Af. An. (i := !i + 1; i f  n = 0 t h e n  !i else f ( n  - 1))] 5) ~ 13 

A similar problem occurs with effects for communication, in partic- 
ular I /O operations. Finally, the fixpoint definition monopolizes the 
exception facility for its own internal purposes, seriously limiting its 
general usability. In fact, our fix even interferes with itself: 

3. Nested fixes may not work. For example, in 

fix(~f. An. i f  n = 0 t h e n  0 else fix(Aft. An. f n ) ( n  - 1))5 

the definition above will uselessly keep increasing the bound for f~ 
instead of for f .  To deal with this, we not only need a named excep- 
tion facility, but the ability to dynamically generate new exception 
names. And in fact, even such a scheme is not general enough: 

4. The definition only works for first-order recursive functions! In par- 
ticular, we cannot use it to define recursive data structures with em- 
bedded functional components, or even curried functions. Consider 
the following: 

f i x (~a .~m.  An. i f  m = 0 t h e n  n else a ( m -  1)(n  + 1) )34  

It is easy to see that  this definition returns the body An , . . .  out of 
the scope of the handler for a; after the first recursive call, execution 
terminates with an unhandled exception. 

The first two of these shortcomings are inherent to the basic approach, 
and there is little we can do about them. But the last two, and perhaps 
more serious ones are only due to our specific choice of exceptions as the 
aborting mechanism. In other words, while an exception facility may be a 
natural  feature in a first-order language, it can easily lead to undesirable 
results when used with higher-order functions - very much like dynamicMly- 
scoped variables in Lisp 1.5. 

In fact, we recognize problem 3 as essentially the "downward funarg" 
problem: shadowing of lexical variables (even the "fix" is similar: use 
unique names). Problem 4 corresponds to an "upward funarg": a function 
returned from within a try-expression retains no record of its associated 
exception handler. Both can be summarized in the standard observation 
that  the meaning of an exception (i.e., the handler associated to it) is be!ng 
inappropriately determined by the context of use rather than of definition. 
And a partial solution is indeed to use a statically-scoped construct, as 
shown next. 
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2.3. F r o m  e x c e p t i o n s  to cont inuat ions  

To make explicit the context in which to restart a computat ion that  has 
exceeded its current unfolding bound, we simply replace exceptions with 
continuations: 

f ixF = ~a. r e p e a t [ ~ F ' . g ( ) ¢ k . k ' ( i n l ( F ' [ : k x . C ( ~ ' d . k ' ( i n r ( F '  o F ' ) ) ) l a ) ) ) I F  

(The unused continuation d explicitly shows that  a context is being dis- 
carded.) This continuation-based approach solves the dynamic-scoping 
problem of exceptions, but does not address our concerns about efficiency 
and re-execution of computational effects. In fact, such problems are taken 
to their logical conclusion: if the recursively-defined function returns a clo- 
sure (containing an embedded continuation), even effects outside of the 
function body may be duplicated. 1 Note that  we are no worse off than  
before, however: the original definition did not work at all in such cases. 

So, to a certain extent, we can simulate recursive definitions with con- 
tinuations. However, the definition is wasteful, interacts poorly with non- 
functional extensions of the language, and looks ill-suited for formal rea- 
soning about recursion (notably, relating our defined fix to the underlying 
domain-theoretical fixpoint). Fortunately, we can do much better. 

2.4. A proper solution: recursion from loops a n d  c o n t i n u a t i o n s  

While the above approach has some serious flaws, it contains a core of 
t ruth.  The problems can be traced back to the fact that  the current appli- 
cation context is simply discarded upon reiteration, forcing us to repeatedly 
recompute the same information. However, the power of full first-class con- 
t inuations allows us instead to add new levels of recursion "retroactively" 
as they are needed, rather than committing to a fixed number  at the outset. 

Consider a recursive function definition in continuation-passing style: 

face = ~n .~c .  i f n  = 0 t h e n  c l  else f a c e ( n -  1 ) ( ~ r . c ( n  x r)) 

By general properties of CPS, the recursion has been turned into tail- 
recursion. The observation we need to focus on is that  the entire infor- 
mation about a recursive call is encoded by the pair (n, c) of argument  
vMue and return continuation; we will call such a pair an application con- 
text. Our solution will center around making these contexts explicit without 
actually converting the program to continuation-passing style. 

1Particularly problematic are effects on the top-level environment in an interactive 
setting. This is in fact a general problem with continuations in a typed language, and 
is currently handled by a run-time test for "stale" continuations in the top-level loop of 
SML/N:I. 
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In the examples below, we will use the following abbreviation: 

FAC = Af. An. i f n  = 0 t h e n  1 else n x f ( n -  2) 

We need to capture the context of a recursive call, in order to be able to 
re instate  it later. Our  first step is therefore to define the following: 

switch = /~l. Ax. C ( A'q. l '(  x , q ) ) : -~( a × ~fl  ) ~ a --+ 

switch I has the type  of an ordinary procedure,  but  when applied to an c~- 
typed  value in a E-expecting context ,  it will capture and pass these to I. 
For example,  

k0(3 × s w i t c h k l ( 3 -  2)) , kl  (2, Aa. ko(3 × a)) 

Using switch as our recursion base (instead of Ax. fail),  we can define 
step, which proceeds unti l  the next  recursive call: 

step = A F . A ( v , c ) . C ( A ' l . c ' ( F ( s w i t c h l ) v ) )  

step : ( (a - -~f l ) - - -*7- -*6) - - -~TX~6- - -+ax~f l  

(In our definition of fix we will only use the instance 7 = a ,  6 = ft.) step 
expresses F as an application-context t ransformer,  mapp ing  an appl icat ion 
context  for F f to one for the first call of f .  If F never applies f ,  step F 
does not  re turn.  Cont inuing our example, we have: 

kl (step FAC (3, k0)) > k l ( 2 ,  Aa. k o ( 3 × a ) )  

kl (step FAC (0, ko)) > k01 

Finally, we can define fix, which sets up the initial cont inuat ion,  and then  
repeatedly  steps th rough  the recursive calls: 

= At .  Aa.C(XT. Ioop (step r ) ( a , r ) )  

: ( (~ -~  Z ) - ~  ~ - ~  Z ) - ~  ~ - ~  Z 

fix 
fix 

so tha t  

ko (fix FAC 3) 
.... ) 

) 

) 

) 

) 

loop (step FA¢)(3, ko) 
loop (step FAC)(step FAC (3, k0)) 
loop (step FAC) (2, Aa. k0 (3 x a)) 
,oop (step FAC)(0, Aa. ko(3 × (2 × (2 × a)))) 
(Aa. k0(3 x (2 x (1 x a)))) 1 

ko(3 x (2 x (1 x 1))) 

k0 6 

And  in fact, as we will see next,  this construct ion also works for non- 
linear recursion, higher-order types,  and does not duplicate computa t iona l  
effects. 
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3. F o r m a l i z a t i o n  

In this section, we will analyze the solution derived above. First ,  however,  
we mus t  pin down an exact formulat ion of first-class continuat ions.  

3 .1 .  F i r s t - c l a s s  c o n t i n u a t i o n s  in  a t y p e d  s e t t i n g  

There  are two major  approaches to extending a t y p e d  funct ional  lan- 
guage with first-class continuations.  The  one taken by S M L / N J  is based 
on in t roducing  a new type constructor  -~a to represent cont inuat ions  ac- 
cepting a - typed  values. Continuat ions are captured with the operator  
callcc : (-~a --+ ~) -+ & and invoked with throw : ~ a  -+ (~ -+ ft. The  ex- 
ample  in the  in t roduct ion  would thus be wri t ten as: 

2 + callcc(Ak. 3 + throw k 4) 

The  details can be found in [4]; in the context of full ML, one mus t  also 
worry about  potent ia l  interactions with le t -po lymorphism [11]. 

The  main  pragmat ic  problem with this approach is tha t  it is awkward to 
"prepend"  an ordinary procedure f : a --+/~ to a cont inuat ion k : ~/~ and 
get a new cont inuat ion (k o f )  : -~c~. More generally, there is no convenient  
syntactic representat ion of first-class continuations,  making an equat ional  
theory of program behavior  painful at best. On the other  hand ,  having a 
dist inct  type  of first-class continuat ions simplifies reasoning (both  manua l  
and au tomated )  about  CPS versions of programs: unlike an ordinary pro- 
cedure, a first-class cont inuat ion does not itself take an extra,  effectively 
useless, cont inuat ion parameter  in CPS. 

The  other  main  al ternative is to represent cont inuat ions directly as pro- 
cedures tha t  do not return.  We can make this restriction explicit by using 
the  existing funct ion space a --+ fl with an empty  (i.e:, contMning no closed 
values) codomain  type  fl = 0, and simply define ~(~ as an abbreviat ion of 
a -+ 0. In this sett ing, the details work out more smoothly  if the  control  
opera tor  not  only captures (a copy of) the surrounding evaluation context ,  
bu t  also removes it,  so tha t  it can only be resumed by an explicit applica- 
t ion of the  reified cont inuat ion [6]. Then  the first-class cont inuat ion facility 
can be represented by a single operator  C : ( (a  --+ 0) -~ 0) -+ a.  To apply a 
cont inuat ion  in (i.e., to escape from) a context expecting a /3- typed  result ,  
we can use a second C to explicitly discard the inner context .  Our example  
would thus  be wri t ten as: 

2 + C(~,'k. k '(3 + C()¢d. k '4))) > 6 

(It is cus tomary  to abbreviate the idiom )~z. C(Yd. z) : 0 ~ a as ~4, usually 
pronounced  "abort" . )  This approach to typed  first-class cont inuat ions  is 
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taken in Griffin's variant of Idealized Scheme [9] (which is actually much 
closer to ML than to Scheme; its only Scheme-inspired characteristic is the 
control operator),  and it is the one we will be using in the following. 2 

However, the two styles are essentially equivalent [4, 9]. In particular, 
we can define the SML/NJ operators as 

ca,,cc = 

throw = Ak. ~x . . 4  ( k ' x )  

Conversely, given the SML/NJ primitives, we can define a C-operator. A 
slight problem is that  ML does not have a predefined empty  type 0. Its 
natural  definition would be as a d a t a t y p e  with no summands,  but the 
syntax does not allow this. Instead we can define 

d a t a t y p e  void = VOID of  void 

f un  i ( V O I D v )  = i v :  a 

corresponding to the (inductive) type #t. t. The function i is the inclusion 
from the empty  type into another, defined by a degenerate form of primitive 
recursion. It does not terminate because it does not even begin: since there 
are no values of type void, i can never actually be invoked in a CBV setting, 
so its definition does not matter; we could equally well have made the body 
a fail or A v. In category-theoretical terms, 0 is an initial object for CBV 
types and terms, and i is the associated unique morphism from 0 to any 
type a. 

Given 0 and i, we can now define C as: 

C : Af .  c a l l c c ( A k . i ( f ( A x . ( t h r o w k x ) :  void))) 

It is worth emphasizing that  in our typed setting, .4 actually has ab- 
solutely no "aborting" operational behavior - it only serves to keep the 
types matching up. In fact, expanding its definition in terms of SML/NJ 
primitives gives simply: 

.4 = ) ~ z . C ( A ' d . z ) =  Az. ca l lcc ( )~k . i ( [A 'd . z] (Ax . throwkx) )  = )~z. i z  = i 

In particular, the instance .4 : 0 --+ 0 is just the identity function on the 
empty  type. 

2In fact, we can get a reasonable third alternative by taking only negation and prod- 
ucts as primitives and def ine  a -*  fl as -~(a × -~fl). While such a minimalist approach 
has merits  (in particular,  it  seems well suited for reasoning about both direct-style and 
continuation-passing style versions of a term), we prefer for now a presentation more 
directly related to existing languages and formalisms. 



22 FILINSKI 

3.2. Equational reasoning about continuations 

Before we commence with actual proofs, let us briefly outline the general 
methodology. The goal is, as usual, to show that certain terms can be sub- 
stituted for others without changing the meaning of a program. However, 
rather than attempting to enumerate all such possible replacements valid 
for a particular language, we take the axiomatic (aka. logical) approach 
and concentrate on proving equivalences that hold in all languages whose 
equivalence theories include a set of axioms. 

This gives us a more conservative notion of equivalence, but the result- 
ing theory is usually much more robust under language extensions: if we 
derive a result from a set of axioms, it also holds in any "well-behaved" ex- 
tension of the language with additional constructs. For example, Moggi's 
computational ),-calculus (a strict superset of Plotkin's )`~-calculus) is valid 
for CBV functional languages with a large variety of computational effects 
(state, nondeterminism, exceptions, continuations, etc.) [16]. The inher- 
ent modularity of the axiomatic approach makes feasible program-behavior 
theories of considerable scope and generality, e.g., [22]. 

Of particular interest to us are equational theories Th (usually axioma- 
tized as "core" of generic equations together with a set of b-like rules for 
the primitive operations) that are "evaluation-complete", in the sense that 
for any program M (closed term of base type) and value V, 

M , ~  V iff Th ~- M = V 

where M ~ V means that M evaluates to V. (The "only if" direction is 
valid for all types, but two functional terms may be provably equal with- 
out one evaluating to the other.) Such a property tells us that when a 
program evaluates to a value, we can "tell why", i.e., what equivalences 
the evaluation depended on. In particular we only need to verify that an 
implementation - within the language or externally to it - of any feature 
(like continuations, state, or fixpoints) satisfies its axiomatic description, 
to ensure that any program using the implementation will get the correct 
result. 

An axiomatization of CBV ),-calculus equivalence with this property was 
developed by Plotkin [17]; while the theory itself is quite simple, the actual 
proof of the biimplication is non-trivial. (An alternative is to take the above 
as the declarative definition of evaluation; the challenge is then to develop 
an effective procedure for proving programs equal to values). Both Plotkin's 
proof technique and others (e.g., taking advantage of typing to use logical 
relations) can be generalized to larger languages and different evaluation 
orders (see, e.g., [10] for examples and further references). In our proofs, 
we will be using Felleisen's extensions for modeling control operators. 
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Since the language we are using is a proper subset of Felleisen's untyped 
one, we can directly use the equational reasoning principles developed for 
the latter. In particular, we have the following rules taken from [5, 20], with 
the addition of (A~nig), which captures the property noted above about 0. 
Further,  this rule was used to replace two instances of .4 in Felleisen's 
original rules with the identity functions, which were in turn eliminated 
using (fl~): 

(Ax. M)  V = [V/x]M (t3v) 
(Ax .E[x])M = E[M] (x ¢ F V ( M ) )  (/3f~) 

E [ ( A x . M ) M  t] = (Ax .E[M])M'  (x ¢ F V ( E ) )  (/3lift) 
(;,x.Vx) = v (x ¢ Fv(v) )  

C(,Vk.k 'M) = M (k ¢ F V ( M ) )  (Celira) 
V(CM) = C(Yk.U'(;x.k'(Vz))) (k,x ¢ F V ( V , M ) )  (Cllyt) 

C(A'k. CM) = g(A'k .M'(A'z .x))  (Cidem) 
v = `4 ( v :  0 

Here, V's are values and M's are arbitrary expressions, E[.] is an evalua- 
tion context (i.e., a context such that  in E[M], M will be evaluated next; 
in particular, E[.] may be empty, giving the rule (Ax. x ) M  = M (/3id)). 
Remember  also that  "-annotated abstractions and applications are special 
cases of the general forms, and so are also covered by the above laws. 

3.3. C o r r e c t n e s s  proof 

The failures of our original, exception-based solution should have alerted 
us to the fact that  several things can go wrong. How do we know that  the 
"proper" definition of fix in section 2.4 contains no such surprises? We need 
to prove that  fix actually has the expected behavior in all cases. We will do 
this in two different ways, since each provides useful insight. In this section, 
we use direct-style reasoning to show that fix satisfies its defining equation; 
in section 4.1 we consider the definition of fix in continuation-passing style. 

Let us first formalize the meaning of iteration and recursion operators. 

D e f i n i t i o n  1 A (CBV) iteration operator is a type-indexed family of func- 
tions loops : (a -+ a) -+ a -+ 0 such that for any value f : a ---+ a, 

loop s f = Ax. loops f (f  x) (loop) 

A (CBV) recursion operator is a type-indexed family of functions fixs,~ : 
(¢ ~ ¢) --+ ¢, where ¢ = a ~ /3, such that for any value F : ¢ ~ ¢, 

fix~,z F = Aa. F (fixs,z F) a (fix) 
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(We will usually omit the type subscripts where they are clear form the 
context.) Coalescing the definitions of section 2.4, we can now state: 

P r o p o s i t i o n  1 If loop is an iteration operator, the fix defined by 

fix,~,~, = 
)~F/)~a.C( A°r. loop~×_~Z [A(v, c).C( )¢l. c*( F [~x.C( ~°q. l*(x, q))] v))] (a, r)) 

is a recursion operator (denoted by FiX(loop) in the following). 

Proof." 

fix F 
d°~ ,~a. 

cI~ ~ ,~a. 

2XB~ 
h a .  

C idern  
~- h a .  

~i~ ha. 
celi--= m ha. 

~ ×-=Y ha. 
do~ ha. 

Let F be given. Then 

BF 
i% 

C( h°r. Ioopih(v , c). C( )¢l. c°( F [ hx. C( )¢q. l°(x, q))] v) )] (a, r) ) 
c( r~. [hx. loop Br ( BF x)] (a, ~)) 
C(rr. loop BF (C()¢l. r ' (F  [hx. C()¢q. l'(x, q))] a)))) 
6(h'r. C(kk. [h'1. r ' (F  [kz. C(h'q. l°@, q))] a)] ° 

(f t .  k'0oop Br  t)))) 
C( r~. e( rk.  ~'( r [h~. e( rq. k'Ooop BF (~, q)))] ~))) 
C( h°r. [ h°k. r°( F [hx. C( h°q. k°(Ioop BF (x, q)))] a)l°(h°x, x)) 
C(h'r. r'(F [hx. C()¢q. ()Oz. x)'(Ioop BF (x, q)))] a)) 
C(h°r. r°( F [hx. C(h°q. loop BF (x, q))] a)) 
F [hx. C(h°q. loop BF (x, q))] a 
F [ha. C(h'r. loop BF (a, r))] a 
F (fix F) a 

(In the step using (C~yt) we have used the fact that loop BF, while not 
syntactically a value, is equal to one by (loop),) | 

This proof is completely generic in F,  and hence also applicable to F 's  
which themselves make use of first-class continuations. And since the equa- 
tional rules are valid even for languages with stores or other effects, we know 
that  the construction will work correctly in any such extension. 

Although it almost goes without saying, let us verify at this point that  
i teration is indeed definable from recursion: 

P r o p o s i t i o n  2 If  fix is a recursion operator, the loop defined by 

loops = Af.  fix,~,0 [AI. Ax. 1 ( f  x)] 

is an iteration operator (denoted by L00P(fix) in the following). 
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Proofl For arbitrary f,  

loop f d°-----' f ix [:~t. ,~z. Z (f  x)] 

~a. [at. :~. l ( f  ~)] (fix [at. :~. l ( f  ~)]) a 
~ '~ Aa. (fix[A/. Ax./(fz)])  (fa) 

loop y (f a) 

| 

This tells us how to obtain recursion from iteration as well as vice versa. 
But we can get an even stronger result, as we will see next. 

3.4. U n i f o r m i t y  

Suppose we start with a "real" language like SML/NJ or Scheme tha t  al- 
ready includes full recursive definitions of functions. We can directly define 
loop in such a language, check that  it satisfies the i terat ion equation, and 
then proceed with reasoning about recursive programs using the "recursion 
from iterat ion" approach. We already know that  everything we could prove 
using the CBV fixpoint equation, we can obtain from only (loop) and the 
definition of fix. But might it happen that  we could also prove something 
tha t  would not be true of the original fixpoints? In particular,  could a pro- 
gram using the new fix terminate normally (i.e., be equal to a value) while 
the same program writ ten with the original fix looped? Fortunately,  given 
an additional,  natural  constraint on the recursion operator,  the answer is 
no. This ext ra  condition is uniformity. 

In domain theory, a fixpoint operator is a CP0- indexed  family of func- 
tions fixa : (a--+a)-+a such that  for any F :  a- ,a ,  f ix~(r)  = F(f ix~(F)) .  
Such a fix is said to be uniform if for any F : a -+ a,  G : a / ~ a I, and strict 
H : ~ ---> o~ I, 

H o F = a o H =~ H ( f i x ~ ( F ) ) =  f ix , , (a )  

The intuition behind this condition is that  we expect to have H(f ix(F))  = 
H(F(F(F(...)))) = G(H(F(F(...)))) = . . . =  G(G(G(...))) = fix(G). 3 

In an arbi t rary CBV language with first-class continuations and possibly 
other  effects, it is not completely clear what the exact axiomatic analog of 
uniformity should be. However, the following definitions will suffice for our 
purposes: 

3 Uniformi ty  does not  follow from the fixpoint equation alone. For example,  consider 
a f ixpoint  opera to r  with fixN± ( F )  = (F(0 )  -= 0) --* 0 ~] F(_L). I t  is easy to check t ha t  
f ix(F)  is always a fixpoint of F : N± --~ N±,  but  taking F = G = id, H = s u c c ,  we have 
H o F = G o H,  yet  H( f ix (F) )  = succ(O) ¢ 0 = fix(G). And  in fact,  one can show tha t  in 
the  par t icu la r  f ramework of C P O ' s  and continuous functions, the uni formity  condi t ion 
is equivalent  to  finding least f ixpoints [10, Thm.  4.18]. 



26 FILINSKI 

D e f i n i t i o n  2 We say that a C B V  func t ion  h : ~ --+ fl is total  i f  f o r  every 
value a : ~, there exists a value b : /3 such that h a  = b. A func t iona l  
H : (ax -+ ~2) --+ t31 --+ f12 is called r i g i d / f  there exist total H1 and H2 such 
that 

H = ~ t . A z . ( * I l z ) ( t ( H ~ z ) )  

(Th i s  is a s t ronger  condi t ion than domain-theoret ic  strictness,  and ensures  
that H will actually apply its argument) .  

D e f i n i t i o n  3 A C B V  recursion operator will be called uniform i f  f o r  any  
F : ¢ -+ ¢, G : ¢'  --+ ¢', and rigid H : ¢ --+ ¢'  (4) = a --+ 13, ¢'  = a '  --+ 3 ' ) ,  

H o (At. Az. F t  z)  = G o H => g(fixs,/~ F )  = fixs,,3, G 

(where f l  o f2 is C B V  composi t ion Ax. A (f~ x ) ) .  

The  double rl-wrapping of F is necessary for the same reason tha t  we need 
it in the  CBV fixpoint equation: F t may  not be a value even if t is. 

First ,  let us check tha t  uniformity is preserved by our fix-construction, 
i.e., t ha t  we get "uniform recursion from uniform i terat ion".  Again,  the  
uniformity condit ion is somewhat  simpler for i teration: 

D e f i n i t i o n  4 We say that an i teration operator loop is un i form i f  f o r  any  
f : a --+ a, g : it' -+ a '  and total  h : a '  -+ a,  

f o h = h o g  ~ ( Ioops f )  o h = l o o p s ,  g 

P r o p o s i t i o n  3 / f  loop is uni form,  so is FIX(loop). 

Proof :  Given any F, G, and H satisfying the premise of the fix- 
uniformity condition above, let B_ be as in the proof of Prop. 1, and 
take 

h = ~( , ,  k). (H~ u, m .  k'(H1 u t)): 
By our assumptions on H1 and H2, h is a total function. Using the 
equational theory of CBV with continuations, it is straightforward 
(though slightly tedious) to verify that BF o h = h o BG, meaning 
that we can use the uniformity of loop to get (taking somewhat larger 
steps in the equational proofs): 

H(fix F) = Au. (H, u) (fix F (H, u)) 
= ;~u. (H1 u) (C()¢r. loop BE (H, u, r))) 
= Au. C(A°k. loop B e  (H2 u, A't. k ' ( g l  u t)))  
= ~u. c (rk .  loop BF (h (u, k))) 
= ~u. e (rk .  loop B~ (~, k)) 
= fix G 

I.e., the defined fix is uniform. | 
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Conversely,  

P r o p o s i t i o n  4 I f  fix is uniform, so is L00P(f ix) .  

P roof :  Let f ,  g, and total h be given, with f o h = h o g. Take 

F = A s .  A x . s ( f x ) ,  G = A s .  Ax.s(gx) ,  H = A u .  Ay .u (hy)  

This H is rigid (with H1 = Ay. Az. z , / /2  = h), so 

I o o p f o h  = (fixF) oh  = H( f ixF)  = fixG = Ioopg 

because 

H o [At. Az. F t z ]  = At. A y . t ( f ( h y ) )  = Au. Ax .u (h (gx ) )  -= G o H  

| 

R e t u r n i n g  to  the  problem ment ioned  at the  beginning of this section,  we 
can now state:  

P r o p o s i t i o n  5 Let  fix' be a uniform recursion operator. Define an itera- 
t ion operator loop = L00P(f ix ' ) ,  and let fix = FiX(loop). Then fix = fix'. 

P roof :  For an arbitrary F let 

G = ,ks. A(v, c). s (BE(v, c)) and g = At. A(a, r). r°(t a) 

H is rigid (with H1 = A(a, r). Ax. r 'x and H~ = A(a, r). a), and the 
fix-uniformity precondition is satisfied: 

G o H = Au. [As. A(v, c). s (BF (v, c))]([At. A(a, r). r°(t a)] u) 
= Au. A(v, c). [A(a, ~). ~'(u a)] (~F (v, e)) 
= Au. A(v, c). [A(a, ~). ~'(~ a)] 

(c(:¢l. ~'(F [A~. C(A,q. l'(~. q))] v))) 
= Au. A(v, c). C()¢k. c°(F LAx. C(A'q. k°(q°(u x)))] v)) 
= Au. A(v, c). c '(F LAx. C(A'q. q°(u x))] v) 
= Au. A(v, c). c ' ( r  LAx. u ~] v) 
= Au. A(v, e). c ' ( r  ~ v) 
= A~. [At. A(v, c). ~'(t v)] (A~. r ~ z) 
= Au.H(Az .  F u z )  
= H o ( A t .  Az. F t z )  
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so we can use uniformity of fix' to get (remember that  by the fixpoint 
equation fix' F is a value): 

fix F = An. C()¢r. loop BE (a, r)) 
= Aa. C(A'r. [fix' (A1. Ap. l(BF p))] (a, r)) 
= A~. e(a'r, fix'a (~, r)) 
= Aa. C(A'r. H (fix' F)  (a, r)) 
= Aa. e(~'r.  [At. A(a, r). r°(t a)] (fix' F)  (a, r)) 
= Aa. C(A'r. r'(fix' F a)) 
= ha. fix' F a 
= fix' F 

Thus,  since F was arbitrary, we have fix - fix'. | 

In  pa r t i cu la r ,  the re  is no way to d is t inguish  the  def ined fix f rom the  
"na t ive"  fix' in any  p r o g r a m  contex t .  For  comple teness ,  let  us also no t e  the  
converse  resul t :  

P r o p o s i t i o n  6 Let loop' be a uniform iteration operator, fix = FiX(loop') ,  
and loop = L00P( f ix ) .  Then loop = loop'. 

P r o o f i  Let f be arbitrary. Then 

loop f 
= fix (As. Ay. s (yy)) 
= [AF. Aa. C(A'r. loop' BF (a, r))] (As. Ay. s ( f  y)) 
= Aa.C (A'r. loop' 

[A(v, c). C(h'l. c'([As. Ay. s ( f  y)] [hx. C(A'q. l°(x, q))] v))] (a, r)) 
: Aa. C()¢r. loop' [A(v, c). C(A°l. c°([Ax. C()¢q. l°(x, q))] ( f  v)))] (a, r)) 
= ha. c(~'r, loop' [A(v, c). c (m.  lax. r(~, c)] ( f  v))] (a, r)) 
= Aa. C(rr. loop' [A(v, c). C(rl. r ( f  ~, c))] (a, r)) 
= Aa. C( r r .  loop' [A(v, c). ( f  v, c)] (a, r)) 
= Aa. C(Yr. loop' f ([A(a, r). a] (a, r))) 
= Aa. fl, (loop' f a) 
= Aa. l o o p ' f a  
= loop' f 

using uniformity of loop' and the fact that  

f o [A(a, r). a] = [A(a, r). a] o [A(v, c). ( f  v, c)] 

(expressing the observation that  the continuation is loop-invariant, as 
expectable from a tail-recursive definition). | 
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Summarizing the results, iteration and recursion are related as follows: 

T h e o r e m  In any simply-typed C B V  language with first-class continua- 
tions, there exist parameterized values FIX(.) and LOOP(.) with the follow- 
ing properties: 

i .  I f  loop is an iteration operator, FiX(loop) is a recursion operator; i f  
loop is uniform, so is FIX(loop), and then LOOP(FIX(loop)) = loop. 

2. I f  fix is a recursion operator, LOOP(fix) is an iteration operator;/]'fix 
is uniform, so is LOOP(fix), and then FIX(LOOP(fix)) : fix. 

Given this equivalence, one may wonder why the construction of fix from 
loop appears so much more complicated than the converse. Par t  of the 
reason is that  the A-syntax used for expressing them is biased towards 
reasoning directly about values, while continuations must first be reified to 
be denotable. In a more abstract notation (cf. section 5) the definition of 
fix from loop is no larger than the natural definition of loop from fix. 

4. I t e r a t i o n  a n d  r e c u r s i o n  in p e r s p e c t i v e  

In this section, we will show some additional results about iteration and 
recursion, and their relationship to other language constructs. 

4.1. R e c u r s i o n  f r o m  i t e r a t i o n  in C P S  

Let us first note that  the type of loops f : a --+ 0 coincides with the 
type of a-accepting continuations. And in fact, annotating the CBV it- 
eration equation accordingly, we see that  loop actually creates a recursive 
continuation: if f : a --+ a then 

loop f : A'a. (loop f ) ' ( f  a) : -~a (loop') 

We will adopt this characterization of loop in the following. 

Consider now the CPS counterparts of loop and fix. We use essentially the 
usual CBV CPS translation [17], extended to typed C [9], and written with 
continuations first for technical convenience (as in [20]). Also, when reason- 
ing about CPS versions of terms, it becomes preferable to make -~a a sepa- 
rate type from the function space a--+ 0 (and ensure that  ,~'-abstractions are 
only used with "-applications). Then we can omit the spurious 0-accepting 
continuation parameters in the translations of first-class continuations and 
get the translation scheme: 
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x~ = Ak. kx  
(hx.M)~ = hk.k(~k, hx. Mck) 

(MN)~ = hk.M~(hf.N~(ha, f k a ) ) =  hk .M~(hf .N~( fk) )  
= hk.k(hx.M i) 

(M'N)~ = hi.M~(hf. Nc(ha. fa))  = )d.M~N~ 
(CM)c = $k.M~(~f. f k )  

(where i : 0 -+ o is the nowhere-defined continuation with answer type o). 
A further simplification is made possible by the observation that there 

is no need to transform "trivial" (parts of) functions [19] into CPS. In 
particular, the computational content of a curried function t = hx. by. M is 
fully captured by the CPS variant t~, = hx. (by. M)c, with the property that 
(t x)c = hk. k (t~, x); if t must be passed unapplied to some other function, 
it can always be wrapped in an ~/v-redex hx. t x before transformation. 

The CPS version of the iteration equation then becomes, after some ad- 
ministrative simplifications (which can actually be built into the translation 
itself [2, 20]): 

toop , L = ha. L (ha'. Ioop , L a') a L (Ioop , L) 

I.e, loop satisfies the CBV iteration equation precisely when [oop~, is a 
fixpoint combinator (with type ((a --+ o) --+ a ~ o) ~ a --+ o) at the CPS 
level! 

Now, consider the CPS version of fix (based on the continuation-creating 
loop, and observing that with the translation above, the CPS counterpart 
of the idiom hx. C(h'k. M) reduces to simply hk. hx. Me): 

fixc, Fc = ha. hr. Ioop~, [h/. h(v, c). Fc (hi.  f c  v) [hq. hx. l(x, q)]] (a, r) 

The CPS variant of the CBV recursion equation is: 

fixc, Fc = hk. ha. F~ (hf. f k a) (fixc, Fc) 

And it is easy to verify that our fixc, satisfies this equation: 

BFc 
¢%,, 

fixc, Fc = ha. hv. looPc,[M.)~(v,c).F~(hf, f cv)[hq, hx.l(x,q)]](a,r) 
= ha. hr.[M.h(v,c).Fc(hf, fcv)[hq.)~x.l(x,q)]](Ioopc, BF~)(a,r ) 
= Aa. hr. F~(hf. f r a) [hq. )~x. Ioop~, BFc (x, q)]] 
= ha. At. F~(hf. f r  a) (fix~, F~) 
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(The proof is somewhat shorter than in the direct-style case because we 
were able to simplify the CPS term first). 

Thus,  it is the continuation semantics of CBV iteration that  corresponds 
to a domain-theoreticai fixpoint, while an explicit CBV fixpoint combina- 
tor fix just adds some administrative argument-shuffling with no apparent 
domain-theoretical significance. But why did we then need control opera- 
tors to recover fix from loop? The reason is that  in fixc,, the continuations 
are permuted in an "illegal" way, so that  the term does not have a g-free 
direct-style counterpart [3]. Another way of seeing this is that  the type of 
the "loop-to-fixpoint transformer", 

Ioop2fix = Moop. HX( loop) 
: × - × × [((- Z) 8 ]  

is "classical" in the sense of [9], while all pure lambda-terms have types that  
correspond to intnitionistically valid propositions. In particular, taking 
a = -~fl in the above, the term Ioop2fix(Af.,V(t,c).t 'c)(),g.g) has type 
-~-~f~ ~ f~ and is in fact equal to g. (This does not mean, of course, that  
recursion cannot be implemented with a simple control stack: the particular 
pat tern  of continuation passing used here is essentially that  of applicative 
coroutining [22] between the recursive computation and a purely iterative 
"controller" that  needs no additional stack space). 

4.2. R e c u r s i o n  a n d  i t e r a t i o n  f r o m  ref lex ive  t y p e s  

Up to now, we have considered only a simply-typed language. In particu- 
lar, this meant  that  well-known "non-recursive" definitions of recursion like 
the Y-combinator were not expressible. It is perfectly possible, however, to 
consider such definitions in a simply-typed framework with explicit domain 
isomorphisms. This lets us analyze exactly what properties of our semantic 
domain we rely on to make the definition work. 

Consider the CBV Y-combinator [18]: 

Y F = [Ax. )~a.F(x x)a] [Ax. Aa .F(x  x)a] 

This Y is untypable because x needs to have a type r which is itself of the 
form r -+ ..-. While we can clearly not get such an identity in a simply- 
typed setting, all we really need is an isomorphism between the types, i.e., 
for any pair of types a and ~, a type 

sapp~,z --= #t .  t -~ ( a  --~/3) 

equipped w i th  a pair  of funct ions ~ , Z  : (sapp~,~-~ c~--+ ~ ) ~ s a p p ~ , z  : ~ , p ,  
such tha t  for any / : sapp~,z ~ c~ --+ ~ and 8 " sapp~,z 

~ , Z  ( ~ , f l  f )  --- f and ~ , f l  (¢~,~s) = s 
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Note that t occurs negatively (i.e., to the left of an odd number of arrows) 
in the #-expression. This is the hallmark of a "reflexive" definition, which 
requires us to go from set-theoretic models to domain-theoretic ones to 
find a solution [21]. (In ML, we would use a parameterized d a t a t y p e  to 
define the recursive type sappy,z: • is the constructor; we get ~ by pattern 
matching.) We can now write the Y-combinator as 

Y r = [hs. ha .F(+~ ~) a] (~ [h~. h a . r ( ¢ s  ~) a]) 

What  about loops? It is easy to see that the combinator 

k f = [hx. ha. x x (fa)]  [hx. ha. x x (fa)]  

has the right operational property (i.e., L f a = k f ( f  a)). We get a clearer 
picture, however, if we eliminate unnecessary currying and replace general 
functions by continuations where possible: 

k f = )¢a.[)C(x,a).(x'(x, fa))]'([)C(x,a).z'(z, fa)],a) 

The type of x is now 
s t h r ~  = #t.-~(t × a) 

and we can insert the corresponding isomorphisms to get a wall-typed term. 
Again, t occurs negatively (in fact, directly under a negation) in its defin- 
ing type expression. Since we already know how to recover Y from L, we 
have thus reduced our domain-theoretic requirement from a type for self- 
applicable functions to one for self-throwable continuations (i.e., functions 
with codomain 0). 

Finally, consider the CPS transformation of L (still omitting the isomor- 
phisms for readability): 

L c f c =  ha. [h(x,a). fc(ha'.x (x,a/))a] ([h(x,a). fc(hat, x (x,a'))a],a) 

or, in curried form, 

L¢A = ha. [hx. ha. A (ha'. x x a') a] [hx. ha. A (ha'. ~ x a') a] a ~ V f~ 

Once again, looping in direct style corresponds to a fixpoint in CPS! 

4.3. Recurs ion  from other  constructs  

Let us finally mention for completeness that even if a language does not 
explicitly provide reflexive types, many other language features implicitly 
provide a comparable facility. In particular, their denotational descrip- 
tions inherently involve reflexive domains. Consider for example the way 
recursion is expressed in the Scheme report [1] (essentially): 

f ixF = let r = ref(hx.fail)  in (r := F(hx.!rx);  It) 
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(The ~?-redex around !r serves to delay evaluation until the correct value of 
r has been plugged in.) In such a language, where storable procedures can 
themselves access the store, the denotation of the type ~ ~ / ~  becomes: 

where a is the domain representing the store. Let us simplify slightly and 
stipulate that  first-class (in particular, storable) functions are not allowed 
to modify the store, only read it; and let us further consider a store con- 
taining only a single cell of type a. If we are then allowed to store functions 
of type a ~ / 3 ,  we must have 

= - - -  

which is precisely the recursive domain equation for the Y-combinator 
above. And in fact, writing out the ref-based definition above with explicit 
store-passing shows a structure essentially identical to the Y-combinator. 

A similar observation lets us construct fixpoints from exceptions carry- 
ing functional values. In a language with no computational effects other 
than named exceptions, there is a simple correspondence between exception 
names (expressions of type exn in SML [15]) and functions of type 1 ~ 0, be- 
cause such a function must essentially have the form )~0- ra i seX for some 
exception expression X. And then we need only to introduce an exception 
Psi carrying values of type (1 ~ 0) -+ a ~ f~ (in effect, a constructor of 
type (exn --+ c~ ~/~)  ~ exn, with its inverse given through exception-pattern 
matching) to get our usual reflexive domain. 

5. R e l a t e d  w o r k  

A fair amount  is known about transforming recursive programs into iter- 
ative form, the so-called "flowchartability" problem. Most such work has 
been done in an explicitly procedural setting (e.g., [8]), or for first-order 
recursion equations [23]. However, some extensions to higher-order call-by- 
name functional programs are reported in [13]. Interestingly, the methods 
in the latter work rely heavily on a notion of contexts, but the author 
apparently never draws any connections to continuation-passing style, let 
alone first-class continuations. 

The present paper solves a somewhat different problem: instead of con- 
sidering general program transformations, we restrict ourselves to defining 
a fixpoint combinator - a purely local construction made possible only by 
the additional expressive power of a control operator. 

Despite the order of presentation above, the definition of fix from itera- 
tion and control operators did not evolve from exceptions over the notion 
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of "single-stepping" a recursive definition. In fact, the exception-based so- 
lution was found last, during a (failed) a t tempt  to show that  exceptions 
and i teration could not express recursion. The operational explanation of 
fix in section 2.4 was partly suggested by a CW'92 referee. But the actual  
fix-term (though in a rather  different notation) was obtained completely 
unexpectedly from the category-theoretical analysis of the symmetry  be- 
tween CBV iteration and CBN recursion mentioned in the introduction.  
Let us briefly sketch it here: 

Informally, by taking a language like ( typed) Scheme or SML/NJ,  but  
expressed in a notat ion with syntactic symmetry  between values and contin- 
uations, the abstract  principle of duality can be used to expose a number  
of otherwise obscured semantic symmetries involving data  types, control 
structures,  and evaluation strategies. Specifically, i teration involves "tying 
a loop" around a function with two (disjunctive) outputs:  

fo '. 
. . . . .  7 i  z 

. . . . . . .  ~ I 

Symmetrically,  we get recursion from a function With two (conjunctive) 
inputs: 

: ]° 

. . . . .  714  
4 

I . . . . . . .  

Both of these use first-order constructs only (i.e., - °  is a special form, not 
a functional).  However, if we have a representation of higher-order functions 
(specifically, for every pair of types a and T, a type a ~ r representing the 
function space, together with combinator apply : (a =~ r )  × a - .  r ) ,  we 
can take ]3 = a ~ a,  and f = apply : (a  ~z a)  × a ~ a in the above to 
get fix = apply ° : (a  ~ a)  ~ a. A dual construction allows us to define a 
first-class i teration construct similar to loop. 

Taking a closer look at the above data-flow diagrams, however, we see 
tha t  they are essentially equivalent: only the direction of arrows is reversed. 
Notably, viewing demands as data in the recursion diagram, we get precisely 
the i terat ion diagram. Moreover, there is a natural  definition of fo in terms 
of fix, which gives rise to an abstract "mirror-image" definition of f°  from 
loop. Translating this correspondence back to a tradit ional syntax (and 
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completely obscuring the symmetry in the process), we get a representation 
of recursion from iteration. 

6. C o n c l u s i o n  a n d  i s sues  

In a simply-typed CBV language with control operators, we can define 
recursion in terms of iteration. A crude solution using only exceptions is 
possible, but is fundamentally flawed in several ways. Two major problems 
of such a definition - its self-interference and first-order nature - are directly 
related to the dynamic scoping of exceptions, and can be solved by simply 
switching to a continuation-based escape mechanism. Nevertheless, the 
definition is still far from perfect. However, using the full power of first-class 
continuations and a paradigm of context-switching as opposed to aborting 
computations,  we can get a fixpoint provably equivalent to the "real" one. 

In fact, the additional expressive power of first-class continuations lets 
us decompose the usual CBV fixpoint combinator into an iterative core, 
whose semantics corresponds directly to a fixpoint combinator at the CPS 
level, and an administrative wrapping presenting a more convenient and 
general interface. In other words, in the presence of a call/cc-like operator, 
reasoning about CBV recursion can be reduced to reasoning about simple 
loops - effectively making general recursion a special case of tail recursion! 

In perspective, this equivalence of iteration and recursion gives another 
reason for why a construct for first-class continuations should be considered 
a natural  part  of a CBV language, especially one already providing some 
form of exception mechanism: a sharper tool (continuations) allows us to 
craft a much better fixpoint than a blunt one (exceptions). 

But perhaps the most significant issue raised by the  results presented here 
is that  what appears to be a canonical domain-theoretic construct can to 
a large extent be analyzed in isolation from the actual semantic model. 
In fact, the line of research sketched in section 5 suggests that  closely 
related concepts like strictness, eager/lazy datatypes, etc., also admit  a 
more abstract, "continuation-theoretic" character izat ion-  applicable even 
in a language where all evaluations are finite. A further exploration of these 
~deas and their relation to other current work on continuations would seem 
a natural  direction for further research. 
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