
LISP AND SYMBOLIC COMPUTATION: An International Journal, 7, 11-38, 1994
~) 1994 Kluwer Academic Publishers - Manufactured in The Netherlands

Recursion from Iteration*

ANDRZEJ FILINSKI t (andrzej4-@cs.cmu.edu)

School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213-3891

Keywords : continuations, recursion, iteration, definability, uniformity.

Abs t rac t . In a simply-typed, call-by-value (CBV) language with first-class continua-
tions, the usual CBV fixpoint operator can be defined in terms of a simple, infinitely-
looping iteration primitive. We first consider a natural but flawed definition, based
on exceptions and "iterative deepening" of finite unfoldings, and point out some of its
shortcomings. Then we present the proper construction using full first-class continua-
tions, with both an informal derivation and a proof that the behavior of the defined
operator faithfully mimics a "built-in" recursion primitive. In fact, given an additional
uniformity assumption, the construction is a two-sided inverse of the usual definition of
iteration from recursion. Continuing, we show that the CBV looping primitive is in fact
the direct-style equivalent of a continuation-passing-style fixpoint, and that this corre-
spondence extends all the way to traditional definitions of these operators in terms of
reflexive types.

1. I n t r o d u c t i o n

1.1. Background and mot ivat ion

l~ecursive definitions form a cornerstone of functional programming. It
is commonly accepted that many algorithms can be expressed much more
clearly using recursion rather than iteration, and that iteration itself is
easily definable as (tail) recursion. But does this mean that recursion is
somehow the more fundamental or general language construct? In this
paper we will show that the answer is "not necessarily": in Scheme-like
languages full recursion can also be characterized as a particular pat tern of
iteration!

The results presented here were inspired by a category-theoretic charac-

*An earlier version of this work appeared in Proceedings of the 1992 ACM SIGPLAN
Workshop on Continuations.

tSupported in part by NSF Grant CCR-8922109 and in part by the Avionics Lab,
Wright Research and Development Center, Aeronautical Systems Division (AFSC),
U.S. Air Force, Wright-Patterson AFB, OH 45433-6543 under Contract F33615-90-C~
1465, ARPA Order No. 7597. The views and conclusions contained in this document are
those of the author and should not be interpreted as representing the official policies,
either expressed or implied, of the U.S. Government.

12 FILINSKI

terization of languages with first-class continuations [7] in terms of what
could now be called "classically-typed" [9] categories. Specifically, one
can interpret the difference between data-driven (or, call-by-value) and
demand-driven (call-by-nazne) evaluation in such a language as an instance
of a categorical symmetry principle called duality. In this view, the cate-
gorical "mirror image" of the CBN recursion operator turns out to be an
iteration primitive in CBV; very informally, the relation is like between
"inside-out" evaluation of . . . f (f (x)) . . . in CBV and "outside-in" evalua-
tion of of f (f (. . . x . . .)) in CBN. Moreover, the usual construction used to
define iteration from recursion in CBN can be systematically turned "upside
down", to express CBV recursion as a sugared form of simple iteration.

We will not pursue this view here, however, but adopt a self-contained
presentation not directly tied to category theory or symmetry considera-
tions. This will allow us to draw directly upon the substantial body of
existing results about continuations, e.g., [4, 5, 9, 17] for reasoning about
the construction. An outline of the categorical approach is sketched in
section 5.

In many functional programming languages, it is actually possible to
write recursive functions without any "explicit" recursion. For example, the
Scheme definition [1] expresses le t rec in terms of set!. More fundamentally,
the well-known Y-combinator provides a uniform way of introducing self-
reference. However, a closer analysis shows that all such definitions rely in
one form or another on the very powerful and general concept of reflexive
domains; once we admit those, we cannot make finer distinctions. It is
worth investigating, therefore, the essence of recursion in a simply-typed
setting; we will briefly return to "recursion from reflexivity" in sections 4.2
and 4.3.

The rest of this section sets up a common framework and introduces
some specific notation. Rather than tie ourselves to the idiosyncrasies of
any particular language, we will use a neutral, hopefully universally under-
standable A-calculus notation. While we will often omit explicit types, they
can easily be reconstructed. In particular, all the definitions can be directly
translated into an ML-like language or (a typed variant of) Scheme.

1.2. R e c u r s i o n and i t e r a t ion

Let us first clarify what we mean by recursion and iteration in a CBV
setting. As is well known, a higher-order functional language allows us to
express recursive function definitions without any special syntax. Specifi-
cally, we can replace syntactic forms like le t rec with a functional fix that
achieves the same effect:

l e t ree f = E1 in E2 ~ let f = fix (Af. El) in E2

RECURSION FROM ITERATION 13

The le t can now be simply expanded away or replaced by a/3-redex. (The
la t ter choice would interfere with ML-style polymorphic typing, though).
fix owes its name to the fact that for any function F : a -~ a ,

f ixF = F (f i xF) : a

In a CBV language, however, this equation must be taken with a grain of
salt. Because all functions are strict, it is easy to see that taking fix F = ~a
(a non- terminat ing term of type a) trivially satisfies the equation. In fact,
to be useful for CBV evaluation, fix F should reduce to a value in a finite
number of steps. More specifically, for every value F : (a --+ fl) --+ a --+/3,
the following should hold:

f ixF = h a . F (f i x F) a : a ~ f l

This is usually known as the "CBV fixpoint" equation.

Let us now consider iteration. In a functional setting, it is generally
characterized as a special case of recursion, in which the recursive call
happens to be a tail call. To capture this pat tern as a functional, let us
assume tha t we have a "disjoint union" type with left and right injections
and a case-construct . Then we can express loops with the following tail..
recurs ive definition, which repeatedly applies a function f : a -+/3 + a to a
value, until the result is tagged as a left inject:

repeat f = ha. ca se f a o f inl (b) --+ b fl inr (a') ~ repeat f a' : o~ ~ / 3

A degenerate case of this is a loop with no exit: for f : a --+ c~,

Ioop f = repeat (inr o f) = ha. loop f (f a) : ~ ~ /3

Since the function loop f never actually returns a result, we can assign it
any codomain type/3 whatsoever (but w.l.o.g, we can pick t5 as the empty
type, cf. section 3.1). Obviously, loop by itself is not very useful in a purely
functional language, but if we add an escaping construct like exceptions or
first-class continuations, it is easy to recover repeat from it - analogously to
the way tha t a l o o p - e x i t - e n d l o o p construct can simulate repea t -unt i l
in an imperat ive language.

1.3. Except ions and cont inuat ions

Likewise, let us quickly introduce the notation we will be using for excep-
tions and continuations. In its most primitive form, an exception facility
consists of two special forms:

fail and t r y M1 else M2

14 FILINSK1

When evaluated, fail raises an exception, which, if not handled, terminates
program execution. The t ry -e l se construct first a t tempts to evaluate M1.
If this evaluation terminates normally with some value V, the result of
the entire expression is V; M2 is ignored. But if evaluation of M1 raises
an exception (not itself handled by an inner t ry) , evaluation of M1 is
abandoned, and the result of M2 is returned as the result of the whole
expression. Any exception raised in M2 propagates outward as usual and
in particular does not reactivate M2.

A simple generalization consists of data-carrying exceptions, where a
value can be passed from a fail to the handler. This in turn enables named
exceptions, but we will not need such generality here. In particular, ML's
exception facility uses ra ise X for fail and M1 h a n d l e X ~ M2 for t r y ,
where X is an exception name. Scheme has no direct counterpart, though
an exception facility can be simulated using call/cc and set!.

There are a number of essentially equivalent ways of introducing first-
class continuations in a functional language, all tracing back to Reynolds's
escape-opera tor [19] (or, less directly, to Landin's J-operator [14]). In gen-
eral, we need an operator g such that an expression g M invokes the proce-
dure M with a representation K of the evaluation context [6] surrounding
CM. If M ever invokes K with a value V, the then current context of
evaluation is abandoned, and control returns to the context represented by
K, as if g M had just returned V. For example,

2 + C (~ k . 3 + k 4) ~ 6

The difference from exceptions is that the entire captured context will be
reactivated even if the continuation K is actually returned out of the C-
expression (e.g., embedded in a closure or other data structure). While
potentially more complex to implement, such a facility exhibits a pleasant
uniformity of behavior, which makes it superior in many ways to exceptions
- both for both theoretical and practical purposes.

For concreteness in the following, we will adopt Griflin's simply-typed
formulation of first-class continuations [9], which uses essentially a typed
variant of Felleisen's C-operator [6]; the actual choice is not critical, how-
ever. We will generally emphasize applications of continuations as k 'v .
Similarly, we will write)¢x. M for the syntactic representation of a contin-
uation. And finally, we will use the notation --a for the type of a-accepting
continuations.

To a first approximation, readers familiar with the continuation facility
in Standard ML of New Jersey [4] can simply read g as callcc, ignore "'s in
)~-abstractions, and read k 'v as throw k v; Scheme programmers can read C

RECURSION FROM ITERATION 15

as call/cc and ignore annotations of both abstractions and applications. A
more precise characterization of g will be given in section 3.1.

1.4. T h e p r o b l e m

A crucial property underlying the entire development presented here is
that reduction in a simply-typed A-calculus is strongly normalizing [12],
and in particular a CBV strategy is sufficient to reduce every closed term
to a value. It can be proved (by CPS conversion back to the original
case) that the latter property holds even if we extend the language with
first-class continuations [9]. A similar argument works for exceptions not
carrying values, or values of base type only (if we allow functional values,
the domain of exceptions becomes self-referential).

Now, if we have a language that allows recursive definitions, we can
directly define fix by its characteristic equation; conversely, we can express
all recursive definitions in terms of fix. And either of these can easily
express the looping constructs. But we can also pose the question: does
fix really give us greater expressive power than repeat or loop? Or could
we in fact explicitly define a simply-typed function that behaves like fix
but uses only iteration and control operators? Perhaps surprisingly, the
answer is yes. In fact, we will give two such simulations: a simple, but
somewhat problematic, version based on exceptions, and a much better
one using general first-class continuations. We will show that the latter
is essentially equivalent to the usual CBV fixpoint operator, and consider
some implications of this equivalence.

2. I n f o r m a l d e r i v a t i o n

In this section, we give an intuitive, stepwise development of the solution.
A more formal treatment can be found in section 3.

2.1. A first a t t e m p t : r ecur s ion f rom loops and exceptions

Let us look at the fixpoint equation again (ignoring for now the value
requirements), and unfold it a few times:

f i xFa = F (f i x F) a = F (F (f i x F)) a = . . . = F ~ (f i x F) a

While we could clearly keep expanding the definition of fix ad infinitum, it
can be shown (e.g., [10, 4.4]) that any finite computation needs only a fixed
number of F's. In other words, for every terminating program (closed term
of base type) there exists an n such that if we replace fix F by F n (Ax. fail),
the result is unchanged. Unfortunately, we cannot tell in advance how

16 FILINSKI

many levels of unfolding will be needed, or in fact, whether there even
exists a bound - if the program never terminates , any prede te rmined n will
eventual ly lead to failure.

W h a t we can do, however, is to start the computa t ion with some number
of Fs , and if it runs out (signals an error), restart it with more; eventually,
we will ei ther find a large enough n or keep t rying forever. We need to
strike a balance between wasting work by underes t imat ing the number of
levels, and "overshooting" by sett ing up more Fs than necessary. A good
choice is to double the bound n each time; this ensures tha t we will only
make a constant factor more calls to F than we actually need. We thus
want a definition like the following:

fix F = ha. t r y F ()~x. fail) a
else t r y (F o F) (1x. fail) a

else t r y (F o F o F o F) (),x. fail) a
e lse . . .

which can easily be turned into a finite, i terative procedure:

fix F =)~a. repeat [)~F'. t r y inl(F' ()~x. fail) a)
else]nr (),f. F ' (F ' f))] F

(using the instance ¢ --+/~ + ¢ of repeat, where ¢ = (a -+ fl) -+ a -+ fl).

2.2. Analys i s

So do we really have a working fixpoint combinator? Our initial in tui t ion
and some quick tests would say yes. For instance, the canonical example,

fix[)~f.)~n, i f n = O t h e n 1 e lse n × f (n - 1)]5

does indeed evaluate to 120. Even non-linear recursive definitions like the
naive Fibonacci function work. On closer inspection, however, some serious
problems become apparent:

.

.

The "iterative deepening" paradigm wastes work: we typically need
a to ta l of twice as many recursive calls to compute the same result,
since the only information we recover from failed a t t empt s is "n was
not big enough". This in itself is perhaps not too bad, bu t is closely
related to:

The construct ion is not robust under language extensions: it inter-
feres with almost all computat ional effects we might want to add.
For example, any state manipulat ions done by the recursively-defined

RECURSION FROM ITERATION 17

function will be spuriously duplicated an unpredictable number of
times:

(let i = ref 0 in
fix [Af. An. (i := !i + 1; i f n = 0 t h e n !i else f (n - 1))] 5) ~ 13

A similar problem occurs with effects for communication, in partic-
ular I /O operations. Finally, the fixpoint definition monopolizes the
exception facility for its own internal purposes, seriously limiting its
general usability. In fact, our fix even interferes with itself:

3. Nested fixes may not work. For example, in

fix(~f. An. i f n = 0 t h e n 0 else fix(Aft. An. f n) (n - 1))5

the definition above will uselessly keep increasing the bound for f~
instead of for f . To deal with this, we not only need a named excep-
tion facility, but the ability to dynamically generate new exception
names. And in fact, even such a scheme is not general enough:

4. The definition only works for first-order recursive functions! In par-
ticular, we cannot use it to define recursive data structures with em-
bedded functional components, or even curried functions. Consider
the following:

f i x (~a .~m. An. i f m = 0 t h e n n else a (m - 1)(n + 1))34

It is easy to see that this definition returns the body An , . . . out of
the scope of the handler for a; after the first recursive call, execution
terminates with an unhandled exception.

The first two of these shortcomings are inherent to the basic approach,
and there is little we can do about them. But the last two, and perhaps
more serious ones are only due to our specific choice of exceptions as the
aborting mechanism. In other words, while an exception facility may be a
natural feature in a first-order language, it can easily lead to undesirable
results when used with higher-order functions - very much like dynamicMly-
scoped variables in Lisp 1.5.

In fact, we recognize problem 3 as essentially the "downward funarg"
problem: shadowing of lexical variables (even the "fix" is similar: use
unique names). Problem 4 corresponds to an "upward funarg": a function
returned from within a try-expression retains no record of its associated
exception handler. Both can be summarized in the standard observation
that the meaning of an exception (i.e., the handler associated to it) is be!ng
inappropriately determined by the context of use rather than of definition.
And a partial solution is indeed to use a statically-scoped construct, as
shown next.

18 FILINSKI

2.3. F r o m e x c e p t i o n s to cont inuat ions

To make explicit the context in which to restart a computat ion that has
exceeded its current unfolding bound, we simply replace exceptions with
continuations:

f ixF = ~a. r e p e a t [~ F ' . g () ¢ k . k ' (i n l (F ' [: k x . C (~ ' d . k ' (i n r (F ' o F '))) l a))) I F

(The unused continuation d explicitly shows that a context is being dis-
carded.) This continuation-based approach solves the dynamic-scoping
problem of exceptions, but does not address our concerns about efficiency
and re-execution of computational effects. In fact, such problems are taken
to their logical conclusion: if the recursively-defined function returns a clo-
sure (containing an embedded continuation), even effects outside of the
function body may be duplicated. 1 Note that we are no worse off than
before, however: the original definition did not work at all in such cases.

So, to a certain extent, we can simulate recursive definitions with con-
tinuations. However, the definition is wasteful, interacts poorly with non-
functional extensions of the language, and looks ill-suited for formal rea-
soning about recursion (notably, relating our defined fix to the underlying
domain-theoretical fixpoint). Fortunately, we can do much better.

2.4. A proper solution: recursion from loops a n d c o n t i n u a t i o n s

While the above approach has some serious flaws, it contains a core of
t ruth. The problems can be traced back to the fact that the current appli-
cation context is simply discarded upon reiteration, forcing us to repeatedly
recompute the same information. However, the power of full first-class con-
t inuations allows us instead to add new levels of recursion "retroactively"
as they are needed, rather than committing to a fixed number at the outset.

Consider a recursive function definition in continuation-passing style:

face = ~n .~c . i f n = 0 t h e n c l else f a c e (n - 1) (~ r . c (n x r))

By general properties of CPS, the recursion has been turned into tail-
recursion. The observation we need to focus on is that the entire infor-
mation about a recursive call is encoded by the pair (n, c) of argument
vMue and return continuation; we will call such a pair an application con-
text. Our solution will center around making these contexts explicit without
actually converting the program to continuation-passing style.

1Particularly problematic are effects on the top-level environment in an interactive
setting. This is in fact a general problem with continuations in a typed language, and
is currently handled by a run-time test for "stale" continuations in the top-level loop of
SML/N:I.

RECURSION FROM ITERATION 19

In the examples below, we will use the following abbreviation:

FAC = Af. An. i f n = 0 t h e n 1 else n x f (n - 2)

We need to capture the context of a recursive call, in order to be able to
re instate it later. Our first step is therefore to define the following:

switch = /~l. Ax. C (A'q. l '(x , q)) : -~(a × ~fl) ~ a --+

switch I has the type of an ordinary procedure, but when applied to an c~-
typed value in a E-expecting context , it will capture and pass these to I.
For example,

k0(3 × s w i t c h k l (3 - 2)) , kl (2, Aa. ko(3 × a))

Using switch as our recursion base (instead of Ax. fail), we can define
step, which proceeds unti l the next recursive call:

step = A F . A (v , c) . C (A ' l . c ' (F (s w i t c h l) v))

step : ((a - -~f l) - - -*7- -*6) - - -~TX~6- - -+ax~f l

(In our definition of fix we will only use the instance 7 = a , 6 = ft.) step
expresses F as an application-context t ransformer, mapp ing an appl icat ion
context for F f to one for the first call of f . If F never applies f , step F
does not re turn. Cont inuing our example, we have:

kl (step FAC (3, k0)) > k l (2 , Aa. k o (3 × a))

kl (step FAC (0, ko)) > k01

Finally, we can define fix, which sets up the initial cont inuat ion, and then
repeatedly steps th rough the recursive calls:

= At . Aa.C(XT. Ioop (step r) (a , r))

: ((~ -~ Z) - ~ ~ - ~ Z) - ~ ~ - ~ Z

fix
fix

so tha t

ko (fix FAC 3)
....)

)

)

)

)

loop (step FA¢)(3, ko)
loop (step FAC)(step FAC (3, k0))
loop (step FAC) (2, Aa. k0 (3 x a))
,oop (step FAC)(0, Aa. ko(3 × (2 × (2 × a))))
(Aa. k0(3 x (2 x (1 x a)))) 1

ko(3 x (2 x (1 x 1)))

k0 6

And in fact, as we will see next, this construct ion also works for non-
linear recursion, higher-order types, and does not duplicate computa t iona l
effects.

20 FILINSKI

3. F o r m a l i z a t i o n

In this section, we will analyze the solution derived above. First , however,
we mus t pin down an exact formulat ion of first-class continuat ions.

3 .1 . F i r s t - c l a s s c o n t i n u a t i o n s in a t y p e d s e t t i n g

There are two major approaches to extending a t y p e d funct ional lan-
guage with first-class continuations. The one taken by S M L / N J is based
on in t roducing a new type constructor -~a to represent cont inuat ions ac-
cepting a - typed values. Continuat ions are captured with the operator
callcc : (-~a --+ ~) -+ & and invoked with throw : ~ a -+ (~ -+ ft. The ex-
ample in the in t roduct ion would thus be wri t ten as:

2 + callcc(Ak. 3 + throw k 4)

The details can be found in [4]; in the context of full ML, one mus t also
worry about potent ia l interactions with le t -po lymorphism [11].

The main pragmat ic problem with this approach is tha t it is awkward to
"prepend" an ordinary procedure f : a --+/~ to a cont inuat ion k : ~/~ and
get a new cont inuat ion (k o f) : -~c~. More generally, there is no convenient
syntactic representat ion of first-class continuations, making an equat ional
theory of program behavior painful at best. On the other hand , having a
dist inct type of first-class continuat ions simplifies reasoning (both manua l
and au tomated) about CPS versions of programs: unlike an ordinary pro-
cedure, a first-class cont inuat ion does not itself take an extra, effectively
useless, cont inuat ion parameter in CPS.

The other main al ternative is to represent cont inuat ions directly as pro-
cedures tha t do not return. We can make this restriction explicit by using
the existing funct ion space a --+ fl with an empty (i.e:, contMning no closed
values) codomain type fl = 0, and simply define ~(~ as an abbreviat ion of
a -+ 0. In this sett ing, the details work out more smoothly if the control
opera tor not only captures (a copy of) the surrounding evaluation context ,
bu t also removes it, so tha t it can only be resumed by an explicit applica-
t ion of the reified cont inuat ion [6]. Then the first-class cont inuat ion facility
can be represented by a single operator C : ((a --+ 0) -~ 0) -+ a. To apply a
cont inuat ion in (i.e., to escape from) a context expecting a /3- typed result ,
we can use a second C to explicitly discard the inner context . Our example
would thus be wri t ten as:

2 + C(~,'k. k '(3 + C()¢d. k '4))) > 6

(It is cus tomary to abbreviate the idiom)~z. C(Yd. z) : 0 ~ a as ~4, usually
pronounced "abort" .) This approach to typed first-class cont inuat ions is

R E C U R S I O N F R O M I T E R A T I O N 21

taken in Griffin's variant of Idealized Scheme [9] (which is actually much
closer to ML than to Scheme; its only Scheme-inspired characteristic is the
control operator), and it is the one we will be using in the following. 2

However, the two styles are essentially equivalent [4, 9]. In particular,
we can define the SML/NJ operators as

ca,,cc =

throw = Ak. ~x . . 4 (k ' x)

Conversely, given the SML/NJ primitives, we can define a C-operator. A
slight problem is that ML does not have a predefined empty type 0. Its
natural definition would be as a d a t a t y p e with no summands, but the
syntax does not allow this. Instead we can define

d a t a t y p e void = VOID of void

f un i (V O I D v) = i v : a

corresponding to the (inductive) type #t. t. The function i is the inclusion
from the empty type into another, defined by a degenerate form of primitive
recursion. It does not terminate because it does not even begin: since there
are no values of type void, i can never actually be invoked in a CBV setting,
so its definition does not matter; we could equally well have made the body
a fail or A v. In category-theoretical terms, 0 is an initial object for CBV
types and terms, and i is the associated unique morphism from 0 to any
type a.

Given 0 and i, we can now define C as:

C : Af . c a l l c c (A k . i (f (A x . (t h r o w k x) : void)))

It is worth emphasizing that in our typed setting, .4 actually has ab-
solutely no "aborting" operational behavior - it only serves to keep the
types matching up. In fact, expanding its definition in terms of SML/NJ
primitives gives simply:

.4 =) ~ z . C (A ' d . z) = Az. ca l lcc ()~k . i ([A 'd . z] (Ax . throwkx)) =)~z. i z = i

In particular, the instance .4 : 0 --+ 0 is just the identity function on the
empty type.

2In fact, we can get a reasonable third alternative by taking only negation and prod-
ucts as primitives and def ine a -* fl as -~(a × -~fl). While such a minimalist approach
has merits (in particular, it seems well suited for reasoning about both direct-style and
continuation-passing style versions of a term), we prefer for now a presentation more
directly related to existing languages and formalisms.

22 FILINSKI

3.2. Equational reasoning about continuations

Before we commence with actual proofs, let us briefly outline the general
methodology. The goal is, as usual, to show that certain terms can be sub-
stituted for others without changing the meaning of a program. However,
rather than attempting to enumerate all such possible replacements valid
for a particular language, we take the axiomatic (aka. logical) approach
and concentrate on proving equivalences that hold in all languages whose
equivalence theories include a set of axioms.

This gives us a more conservative notion of equivalence, but the result-
ing theory is usually much more robust under language extensions: if we
derive a result from a set of axioms, it also holds in any "well-behaved" ex-
tension of the language with additional constructs. For example, Moggi's
computational),-calculus (a strict superset of Plotkin's)`~-calculus) is valid
for CBV functional languages with a large variety of computational effects
(state, nondeterminism, exceptions, continuations, etc.) [16]. The inher-
ent modularity of the axiomatic approach makes feasible program-behavior
theories of considerable scope and generality, e.g., [22].

Of particular interest to us are equational theories Th (usually axioma-
tized as "core" of generic equations together with a set of b-like rules for
the primitive operations) that are "evaluation-complete", in the sense that
for any program M (closed term of base type) and value V,

M , ~ V iff Th ~- M = V

where M ~ V means that M evaluates to V. (The "only if" direction is
valid for all types, but two functional terms may be provably equal with-
out one evaluating to the other.) Such a property tells us that when a
program evaluates to a value, we can "tell why", i.e., what equivalences
the evaluation depended on. In particular we only need to verify that an
implementation - within the language or externally to it - of any feature
(like continuations, state, or fixpoints) satisfies its axiomatic description,
to ensure that any program using the implementation will get the correct
result.

An axiomatization of CBV),-calculus equivalence with this property was
developed by Plotkin [17]; while the theory itself is quite simple, the actual
proof of the biimplication is non-trivial. (An alternative is to take the above
as the declarative definition of evaluation; the challenge is then to develop
an effective procedure for proving programs equal to values). Both Plotkin's
proof technique and others (e.g., taking advantage of typing to use logical
relations) can be generalized to larger languages and different evaluation
orders (see, e.g., [10] for examples and further references). In our proofs,
we will be using Felleisen's extensions for modeling control operators.

RECURSION FROM ITERATION 23

Since the language we are using is a proper subset of Felleisen's untyped
one, we can directly use the equational reasoning principles developed for
the latter. In particular, we have the following rules taken from [5, 20], with
the addition of (A~nig), which captures the property noted above about 0.
Further, this rule was used to replace two instances of .4 in Felleisen's
original rules with the identity functions, which were in turn eliminated
using (fl~):

(Ax. M) V = [V/x]M (t3v)
(Ax .E[x])M = E[M] (x ¢ F V (M)) (/3f~)

E [(A x . M) M t] = (Ax .E[M])M' (x ¢ F V (E)) (/3lift)
(;,x.Vx) = v (x ¢ Fv(v))

C(,Vk.k 'M) = M (k ¢ F V (M)) (Celira)
V(CM) = C(Yk.U'(;x.k'(Vz))) (k,x ¢ F V (V , M)) (Cllyt)

C(A'k. CM) = g(A'k .M'(A'z .x)) (Cidem)
v = `4 (v : 0

Here, V's are values and M's are arbitrary expressions, E[.] is an evalua-
tion context (i.e., a context such that in E[M], M will be evaluated next;
in particular, E[.] may be empty, giving the rule (Ax. x) M = M (/3id)).
Remember also that "-annotated abstractions and applications are special
cases of the general forms, and so are also covered by the above laws.

3.3. C o r r e c t n e s s proof

The failures of our original, exception-based solution should have alerted
us to the fact that several things can go wrong. How do we know that the
"proper" definition of fix in section 2.4 contains no such surprises? We need
to prove that fix actually has the expected behavior in all cases. We will do
this in two different ways, since each provides useful insight. In this section,
we use direct-style reasoning to show that fix satisfies its defining equation;
in section 4.1 we consider the definition of fix in continuation-passing style.

Let us first formalize the meaning of iteration and recursion operators.

D e f i n i t i o n 1 A (CBV) iteration operator is a type-indexed family of func-
tions loops : (a -+ a) -+ a -+ 0 such that for any value f : a ---+ a,

loop s f = Ax. loops f (f x) (loop)

A (CBV) recursion operator is a type-indexed family of functions fixs,~ :
(¢ ~ ¢) --+ ¢, where ¢ = a ~ /3, such that for any value F : ¢ ~ ¢,

fix~,z F = Aa. F (fixs,z F) a (fix)

24 FILINSKI

(We will usually omit the type subscripts where they are clear form the
context.) Coalescing the definitions of section 2.4, we can now state:

P r o p o s i t i o n 1 If loop is an iteration operator, the fix defined by

fix,~,~, =
)~F/)~a.C(A°r. loop~×_~Z [A(v, c).C()¢l. c*(F [~x.C(~°q. l*(x, q))] v))] (a, r))

is a recursion operator (denoted by FiX(loop) in the following).

Proof."

fix F
d°~ ,~a.

cI~ ~ ,~a.

2XB~
h a .

C idern
~- h a .

~i~ ha.
celi--= m ha.

~ ×-=Y ha.
do~ ha.

Let F be given. Then

BF
i%

C(h°r. Ioopih(v , c). C()¢l. c°(F [hx. C()¢q. l°(x, q))] v))] (a, r))
c(r~. [hx. loop Br (BF x)] (a, ~))
C(rr. loop BF (C()¢l. r ' (F [hx. C()¢q. l'(x, q))] a))))
6(h'r. C(kk. [h'1. r ' (F [kz. C(h'q. l°@, q))] a)] °

(f t . k'0oop Br t))))
C(r~. e(rk. ~'(r [h~. e(rq. k'Ooop BF (~, q)))] ~)))
C(h°r. [h°k. r°(F [hx. C(h°q. k°(Ioop BF (x, q)))] a)l°(h°x, x))
C(h'r. r'(F [hx. C()¢q. ()Oz. x)'(Ioop BF (x, q)))] a))
C(h°r. r°(F [hx. C(h°q. loop BF (x, q))] a))
F [hx. C(h°q. loop BF (x, q))] a
F [ha. C(h'r. loop BF (a, r))] a
F (fix F) a

(In the step using (C~yt) we have used the fact that loop BF, while not
syntactically a value, is equal to one by (loop),) |

This proof is completely generic in F, and hence also applicable to F 's
which themselves make use of first-class continuations. And since the equa-
tional rules are valid even for languages with stores or other effects, we know
that the construction will work correctly in any such extension.

Although it almost goes without saying, let us verify at this point that
i teration is indeed definable from recursion:

P r o p o s i t i o n 2 If fix is a recursion operator, the loop defined by

loops = Af. fix,~,0 [AI. Ax. 1 (f x)]

is an iteration operator (denoted by L00P(fix) in the following).

R E C U R S I O N F R O M I T E R A T I O N 25

Proofl For arbitrary f,

loop f d°-----' f ix [:~t. ,~z. Z (f x)]

~a. [at. :~. l (f ~)] (fix [at. :~. l (f ~)]) a
~ '~ Aa. (fix[A/. Ax./(fz)]) (fa)

loop y (f a)

|

This tells us how to obtain recursion from iteration as well as vice versa.
But we can get an even stronger result, as we will see next.

3.4. U n i f o r m i t y

Suppose we start with a "real" language like SML/NJ or Scheme tha t al-
ready includes full recursive definitions of functions. We can directly define
loop in such a language, check that it satisfies the i terat ion equation, and
then proceed with reasoning about recursive programs using the "recursion
from iterat ion" approach. We already know that everything we could prove
using the CBV fixpoint equation, we can obtain from only (loop) and the
definition of fix. But might it happen that we could also prove something
tha t would not be true of the original fixpoints? In particular, could a pro-
gram using the new fix terminate normally (i.e., be equal to a value) while
the same program writ ten with the original fix looped? Fortunately, given
an additional, natural constraint on the recursion operator, the answer is
no. This ext ra condition is uniformity.

In domain theory, a fixpoint operator is a CP0- indexed family of func-
tions fixa : (a--+a)-+a such that for any F : a- ,a , f ix~(r) = F(f ix~(F)) .
Such a fix is said to be uniform if for any F : a -+ a, G : a / ~ a I, and strict
H : ~ ---> o~ I,

H o F = a o H =~ H (f i x ~ (F)) = f ix , , (a)

The intuition behind this condition is that we expect to have H(f ix(F)) =
H(F(F(F(...)))) = G(H(F(F(...)))) = . . . = G(G(G(...))) = fix(G). 3

In an arbi t rary CBV language with first-class continuations and possibly
other effects, it is not completely clear what the exact axiomatic analog of
uniformity should be. However, the following definitions will suffice for our
purposes:

3 Uniformi ty does not follow from the fixpoint equation alone. For example, consider
a f ixpoint opera to r with fixN± (F) = (F(0) -= 0) --* 0 ~] F(_L). I t is easy to check t ha t
f ix(F) is always a fixpoint of F : N± --~ N±, but taking F = G = id, H = s u c c , we have
H o F = G o H, yet H(f ix (F)) = succ(O) ¢ 0 = fix(G). And in fact, one can show tha t in
the par t icu la r f ramework of C P O ' s and continuous functions, the uni formity condi t ion
is equivalent to finding least f ixpoints [10, Thm. 4.18].

26 FILINSKI

D e f i n i t i o n 2 We say that a C B V func t ion h : ~ --+ fl is total i f f o r every
value a : ~, there exists a value b : /3 such that h a = b. A func t iona l
H : (ax -+ ~2) --+ t31 --+ f12 is called r i g i d / f there exist total H1 and H2 such
that

H = ~ t . A z . (* I l z) (t (H ~ z))

(Th i s is a s t ronger condi t ion than domain-theoret ic strictness, and ensures
that H will actually apply its argument) .

D e f i n i t i o n 3 A C B V recursion operator will be called uniform i f f o r any
F : ¢ -+ ¢, G : ¢' --+ ¢', and rigid H : ¢ --+ ¢' (4) = a --+ 13, ¢' = a ' --+ 3 ') ,

H o (At. Az. F t z) = G o H => g(fixs,/~ F) = fixs,,3, G

(where f l o f2 is C B V composi t ion Ax. A (f~ x)) .

The double rl-wrapping of F is necessary for the same reason tha t we need
it in the CBV fixpoint equation: F t may not be a value even if t is.

First , let us check tha t uniformity is preserved by our fix-construction,
i.e., t ha t we get "uniform recursion from uniform i terat ion". Again, the
uniformity condit ion is somewhat simpler for i teration:

D e f i n i t i o n 4 We say that an i teration operator loop is un i form i f f o r any
f : a --+ a, g : it' -+ a ' and total h : a ' -+ a,

f o h = h o g ~ (Ioops f) o h = l o o p s , g

P r o p o s i t i o n 3 / f loop is uni form, so is FIX(loop).

Proof : Given any F, G, and H satisfying the premise of the fix-
uniformity condition above, let B_ be as in the proof of Prop. 1, and
take

h = ~(, , k). (H~ u, m . k'(H1 u t)):
By our assumptions on H1 and H2, h is a total function. Using the
equational theory of CBV with continuations, it is straightforward
(though slightly tedious) to verify that BF o h = h o BG, meaning
that we can use the uniformity of loop to get (taking somewhat larger
steps in the equational proofs):

H(fix F) = Au. (H, u) (fix F (H, u))
= ;~u. (H1 u) (C()¢r. loop BE (H, u, r)))
= Au. C(A°k. loop B e (H2 u, A't. k ' (g l u t)))
= ~u. c (rk . loop BF (h (u, k)))
= ~u. e (rk . loop B~ (~, k))
= fix G

I.e., the defined fix is uniform. |

RECURSION FROM ITERATION 27

Conversely,

P r o p o s i t i o n 4 I f fix is uniform, so is L00P(f ix) .

P roof : Let f , g, and total h be given, with f o h = h o g. Take

F = A s . A x . s (f x) , G = A s . Ax.s(gx) , H = A u . Ay .u (hy)

This H is rigid (with H1 = Ay. Az. z , / /2 = h), so

I o o p f o h = (fixF) oh = H(f ixF) = fixG = Ioopg

because

H o [At. Az. F t z] = At. A y . t (f (h y)) = Au. Ax .u (h (gx)) -= G o H

|

R e t u r n i n g to the problem ment ioned at the beginning of this section, we
can now state:

P r o p o s i t i o n 5 Let fix' be a uniform recursion operator. Define an itera-
t ion operator loop = L00P(f ix ') , and let fix = FiX(loop). Then fix = fix'.

P roof : For an arbitrary F let

G = ,ks. A(v, c). s (BE(v, c)) and g = At. A(a, r). r°(t a)

H is rigid (with H1 = A(a, r). Ax. r 'x and H~ = A(a, r). a), and the
fix-uniformity precondition is satisfied:

G o H = Au. [As. A(v, c). s (BF (v, c))]([At. A(a, r). r°(t a)] u)
= Au. A(v, c). [A(a, ~). ~'(u a)] (~F (v, e))
= Au. A(v, c). [A(a, ~). ~'(~ a)]

(c(:¢l. ~'(F [A~. C(A,q. l'(~. q))] v)))
= Au. A(v, c). C()¢k. c°(F LAx. C(A'q. k°(q°(u x)))] v))
= Au. A(v, c). c '(F LAx. C(A'q. q°(u x))] v)
= Au. A(v, c). c ' (r LAx. u ~] v)
= Au. A(v, e). c ' (r ~ v)
= A~. [At. A(v, c). ~'(t v)] (A~. r ~ z)
= Au.H(Az . F u z)
= H o (A t . Az. F t z)

28 FILINSKI

so we can use uniformity of fix' to get (remember that by the fixpoint
equation fix' F is a value):

fix F = An. C()¢r. loop BE (a, r))
= Aa. C(A'r. [fix' (A1. Ap. l(BF p))] (a, r))
= A~. e(a'r, fix'a (~, r))
= Aa. C(A'r. H (fix' F) (a, r))
= Aa. e(~'r. [At. A(a, r). r°(t a)] (fix' F) (a, r))
= Aa. C(A'r. r'(fix' F a))
= ha. fix' F a
= fix' F

Thus, since F was arbitrary, we have fix - fix'. |

In pa r t i cu la r , the re is no way to d is t inguish the def ined fix f rom the
"na t ive" fix' in any p r o g r a m contex t . For comple teness , let us also no t e the
converse resul t :

P r o p o s i t i o n 6 Let loop' be a uniform iteration operator, fix = FiX(loop') ,
and loop = L00P(f ix) . Then loop = loop'.

P r o o f i Let f be arbitrary. Then

loop f
= fix (As. Ay. s (yy))
= [AF. Aa. C(A'r. loop' BF (a, r))] (As. Ay. s (f y))
= Aa.C (A'r. loop'

[A(v, c). C(h'l. c'([As. Ay. s (f y)] [hx. C(A'q. l°(x, q))] v))] (a, r))
: Aa. C()¢r. loop' [A(v, c). C(A°l. c°([Ax. C()¢q. l°(x, q))] (f v)))] (a, r))
= ha. c(~'r, loop' [A(v, c). c (m. lax. r(~, c)] (f v))] (a, r))
= Aa. C(rr. loop' [A(v, c). C(rl. r (f ~, c))] (a, r))
= Aa. C(r r . loop' [A(v, c). (f v, c)] (a, r))
= Aa. C(Yr. loop' f ([A(a, r). a] (a, r)))
= Aa. fl, (loop' f a)
= Aa. l o o p ' f a
= loop' f

using uniformity of loop' and the fact that

f o [A(a, r). a] = [A(a, r). a] o [A(v, c). (f v, c)]

(expressing the observation that the continuation is loop-invariant, as
expectable from a tail-recursive definition). |

RECURSION FROM ITERATION 29

Summarizing the results, iteration and recursion are related as follows:

T h e o r e m In any simply-typed C B V language with first-class continua-
tions, there exist parameterized values FIX(.) and LOOP(.) with the follow-
ing properties:

i . I f loop is an iteration operator, FiX(loop) is a recursion operator; i f
loop is uniform, so is FIX(loop), and then LOOP(FIX(loop)) = loop.

2. I f fix is a recursion operator, LOOP(fix) is an iteration operator;/]'fix
is uniform, so is LOOP(fix), and then FIX(LOOP(fix)) : fix.

Given this equivalence, one may wonder why the construction of fix from
loop appears so much more complicated than the converse. Par t of the
reason is that the A-syntax used for expressing them is biased towards
reasoning directly about values, while continuations must first be reified to
be denotable. In a more abstract notation (cf. section 5) the definition of
fix from loop is no larger than the natural definition of loop from fix.

4. I t e r a t i o n a n d r e c u r s i o n in p e r s p e c t i v e

In this section, we will show some additional results about iteration and
recursion, and their relationship to other language constructs.

4.1. R e c u r s i o n f r o m i t e r a t i o n in C P S

Let us first note that the type of loops f : a --+ 0 coincides with the
type of a-accepting continuations. And in fact, annotating the CBV it-
eration equation accordingly, we see that loop actually creates a recursive
continuation: if f : a --+ a then

loop f : A'a. (loop f) ' (f a) : -~a (loop')

We will adopt this characterization of loop in the following.

Consider now the CPS counterparts of loop and fix. We use essentially the
usual CBV CPS translation [17], extended to typed C [9], and written with
continuations first for technical convenience (as in [20]). Also, when reason-
ing about CPS versions of terms, it becomes preferable to make -~a a sepa-
rate type from the function space a--+ 0 (and ensure that ,~'-abstractions are
only used with "-applications). Then we can omit the spurious 0-accepting
continuation parameters in the translations of first-class continuations and
get the translation scheme:

30 FILINSKI

x~ = Ak. kx
(hx.M)~ = hk.k(~k, hx. Mck)

(MN)~ = hk.M~(hf.N~(ha, f k a)) = hk .M~(hf .N~(fk))
= hk.k(hx.M i)

(M'N)~ = hi.M~(hf. Nc(ha. fa)) =)d.M~N~
(CM)c = $k.M~(~f. f k)

(where i : 0 -+ o is the nowhere-defined continuation with answer type o).
A further simplification is made possible by the observation that there

is no need to transform "trivial" (parts of) functions [19] into CPS. In
particular, the computational content of a curried function t = hx. by. M is
fully captured by the CPS variant t~, = hx. (by. M)c, with the property that
(t x)c = hk. k (t~, x); if t must be passed unapplied to some other function,
it can always be wrapped in an ~/v-redex hx. t x before transformation.

The CPS version of the iteration equation then becomes, after some ad-
ministrative simplifications (which can actually be built into the translation
itself [2, 20]):

toop , L = ha. L (ha'. Ioop , L a') a L (Ioop , L)

I.e, loop satisfies the CBV iteration equation precisely when [oop~, is a
fixpoint combinator (with type ((a --+ o) --+ a ~ o) ~ a --+ o) at the CPS
level!

Now, consider the CPS version of fix (based on the continuation-creating
loop, and observing that with the translation above, the CPS counterpart
of the idiom hx. C(h'k. M) reduces to simply hk. hx. Me):

fixc, Fc = ha. hr. Ioop~, [h/. h(v, c). Fc (hi. f c v) [hq. hx. l(x, q)]] (a, r)

The CPS variant of the CBV recursion equation is:

fixc, Fc = hk. ha. F~ (hf. f k a) (fixc, Fc)

And it is easy to verify that our fixc, satisfies this equation:

BFc
¢%,,

fixc, Fc = ha. hv. looPc,[M.)~(v,c).F~(hf, f cv)[hq, hx.l(x,q)]](a,r)
= ha. hr.[M.h(v,c).Fc(hf, fcv)[hq.)~x.l(x,q)]](Ioopc, BF~)(a,r)
= Aa. hr. F~(hf. f r a) [hq.)~x. Ioop~, BFc (x, q)]]
= ha. At. F~(hf. f r a) (fix~, F~)

RECURSION FROM ITERATION 31

(The proof is somewhat shorter than in the direct-style case because we
were able to simplify the CPS term first).

Thus, it is the continuation semantics of CBV iteration that corresponds
to a domain-theoreticai fixpoint, while an explicit CBV fixpoint combina-
tor fix just adds some administrative argument-shuffling with no apparent
domain-theoretical significance. But why did we then need control opera-
tors to recover fix from loop? The reason is that in fixc,, the continuations
are permuted in an "illegal" way, so that the term does not have a g-free
direct-style counterpart [3]. Another way of seeing this is that the type of
the "loop-to-fixpoint transformer",

Ioop2fix = Moop. HX(loop)
: × - × × [((- Z) 8]

is "classical" in the sense of [9], while all pure lambda-terms have types that
correspond to intnitionistically valid propositions. In particular, taking
a = -~fl in the above, the term Ioop2fix(Af.,V(t,c).t 'c)(),g.g) has type
-~-~f~ ~ f~ and is in fact equal to g. (This does not mean, of course, that
recursion cannot be implemented with a simple control stack: the particular
pat tern of continuation passing used here is essentially that of applicative
coroutining [22] between the recursive computation and a purely iterative
"controller" that needs no additional stack space).

4.2. R e c u r s i o n a n d i t e r a t i o n f r o m ref lex ive t y p e s

Up to now, we have considered only a simply-typed language. In particu-
lar, this meant that well-known "non-recursive" definitions of recursion like
the Y-combinator were not expressible. It is perfectly possible, however, to
consider such definitions in a simply-typed framework with explicit domain
isomorphisms. This lets us analyze exactly what properties of our semantic
domain we rely on to make the definition work.

Consider the CBV Y-combinator [18]:

Y F = [Ax.)~a.F(x x)a] [Ax. Aa .F(x x)a]

This Y is untypable because x needs to have a type r which is itself of the
form r -+ ..-. While we can clearly not get such an identity in a simply-
typed setting, all we really need is an isomorphism between the types, i.e.,
for any pair of types a and ~, a type

sapp~,z --= #t . t -~ (a --~/3)

equipped w i th a pair of funct ions ~ , Z : (sapp~,~-~ c~--+ ~) ~ s a p p ~ , z : ~ , p ,
such tha t for any / : sapp~,z ~ c~ --+ ~ and 8 " sapp~,z

~ , Z (~ , f l f) --- f and ~ , f l (¢~,~s) = s

32 FILINSKI

Note that t occurs negatively (i.e., to the left of an odd number of arrows)
in the #-expression. This is the hallmark of a "reflexive" definition, which
requires us to go from set-theoretic models to domain-theoretic ones to
find a solution [21]. (In ML, we would use a parameterized d a t a t y p e to
define the recursive type sappy,z: • is the constructor; we get ~ by pattern
matching.) We can now write the Y-combinator as

Y r = [hs. ha .F(+~ ~) a] (~ [h~. h a . r (¢ s ~) a])

What about loops? It is easy to see that the combinator

k f = [hx. ha. x x (fa)] [hx. ha. x x (fa)]

has the right operational property (i.e., L f a = k f (f a)). We get a clearer
picture, however, if we eliminate unnecessary currying and replace general
functions by continuations where possible:

k f =)¢a.[)C(x,a).(x'(x, fa))]'([)C(x,a).z'(z, fa)],a)

The type of x is now
s t h r ~ = #t.-~(t × a)

and we can insert the corresponding isomorphisms to get a wall-typed term.
Again, t occurs negatively (in fact, directly under a negation) in its defin-
ing type expression. Since we already know how to recover Y from L, we
have thus reduced our domain-theoretic requirement from a type for self-
applicable functions to one for self-throwable continuations (i.e., functions
with codomain 0).

Finally, consider the CPS transformation of L (still omitting the isomor-
phisms for readability):

L c f c = ha. [h(x,a). fc(ha'.x (x,a/))a] ([h(x,a). fc(hat, x (x,a'))a],a)

or, in curried form,

L¢A = ha. [hx. ha. A (ha'. x x a') a] [hx. ha. A (ha'. ~ x a') a] a ~ V f~

Once again, looping in direct style corresponds to a fixpoint in CPS!

4.3. Recurs ion from other constructs

Let us finally mention for completeness that even if a language does not
explicitly provide reflexive types, many other language features implicitly
provide a comparable facility. In particular, their denotational descrip-
tions inherently involve reflexive domains. Consider for example the way
recursion is expressed in the Scheme report [1] (essentially):

f ixF = let r = ref(hx.fail) in (r := F(hx.!rx); It)

RECURSION FROM ITERATION 33

(The ~?-redex around !r serves to delay evaluation until the correct value of
r has been plugged in.) In such a language, where storable procedures can
themselves access the store, the denotation of the type ~ ~ / ~ becomes:

where a is the domain representing the store. Let us simplify slightly and
stipulate that first-class (in particular, storable) functions are not allowed
to modify the store, only read it; and let us further consider a store con-
taining only a single cell of type a. If we are then allowed to store functions
of type a ~ / 3 , we must have

= - - -

which is precisely the recursive domain equation for the Y-combinator
above. And in fact, writing out the ref-based definition above with explicit
store-passing shows a structure essentially identical to the Y-combinator.

A similar observation lets us construct fixpoints from exceptions carry-
ing functional values. In a language with no computational effects other
than named exceptions, there is a simple correspondence between exception
names (expressions of type exn in SML [15]) and functions of type 1 ~ 0, be-
cause such a function must essentially have the form)~0- ra i seX for some
exception expression X. And then we need only to introduce an exception
Psi carrying values of type (1 ~ 0) -+ a ~ f~ (in effect, a constructor of
type (exn --+ c~ ~/~) ~ exn, with its inverse given through exception-pattern
matching) to get our usual reflexive domain.

5. R e l a t e d w o r k

A fair amount is known about transforming recursive programs into iter-
ative form, the so-called "flowchartability" problem. Most such work has
been done in an explicitly procedural setting (e.g., [8]), or for first-order
recursion equations [23]. However, some extensions to higher-order call-by-
name functional programs are reported in [13]. Interestingly, the methods
in the latter work rely heavily on a notion of contexts, but the author
apparently never draws any connections to continuation-passing style, let
alone first-class continuations.

The present paper solves a somewhat different problem: instead of con-
sidering general program transformations, we restrict ourselves to defining
a fixpoint combinator - a purely local construction made possible only by
the additional expressive power of a control operator.

Despite the order of presentation above, the definition of fix from itera-
tion and control operators did not evolve from exceptions over the notion

34 FILINSKI

of "single-stepping" a recursive definition. In fact, the exception-based so-
lution was found last, during a (failed) a t tempt to show that exceptions
and i teration could not express recursion. The operational explanation of
fix in section 2.4 was partly suggested by a CW'92 referee. But the actual
fix-term (though in a rather different notation) was obtained completely
unexpectedly from the category-theoretical analysis of the symmetry be-
tween CBV iteration and CBN recursion mentioned in the introduction.
Let us briefly sketch it here:

Informally, by taking a language like (typed) Scheme or SML/NJ, but
expressed in a notat ion with syntactic symmetry between values and contin-
uations, the abstract principle of duality can be used to expose a number
of otherwise obscured semantic symmetries involving data types, control
structures, and evaluation strategies. Specifically, i teration involves "tying
a loop" around a function with two (disjunctive) outputs:

fo '.
. 7 i z

. ~ I

Symmetrically, we get recursion from a function With two (conjunctive)
inputs:

:]°

. 714
4

I

Both of these use first-order constructs only (i.e., - ° is a special form, not
a functional). However, if we have a representation of higher-order functions
(specifically, for every pair of types a and T, a type a ~ r representing the
function space, together with combinator apply : (a =~ r) × a - . r) , we
can take]3 = a ~ a, and f = apply : (a ~z a) × a ~ a in the above to
get fix = apply ° : (a ~ a) ~ a. A dual construction allows us to define a
first-class i teration construct similar to loop.

Taking a closer look at the above data-flow diagrams, however, we see
tha t they are essentially equivalent: only the direction of arrows is reversed.
Notably, viewing demands as data in the recursion diagram, we get precisely
the i terat ion diagram. Moreover, there is a natural definition of fo in terms
of fix, which gives rise to an abstract "mirror-image" definition of f° from
loop. Translating this correspondence back to a tradit ional syntax (and

RECURSION FROM ITERATION 35

completely obscuring the symmetry in the process), we get a representation
of recursion from iteration.

6. C o n c l u s i o n a n d i s sues

In a simply-typed CBV language with control operators, we can define
recursion in terms of iteration. A crude solution using only exceptions is
possible, but is fundamentally flawed in several ways. Two major problems
of such a definition - its self-interference and first-order nature - are directly
related to the dynamic scoping of exceptions, and can be solved by simply
switching to a continuation-based escape mechanism. Nevertheless, the
definition is still far from perfect. However, using the full power of first-class
continuations and a paradigm of context-switching as opposed to aborting
computations, we can get a fixpoint provably equivalent to the "real" one.

In fact, the additional expressive power of first-class continuations lets
us decompose the usual CBV fixpoint combinator into an iterative core,
whose semantics corresponds directly to a fixpoint combinator at the CPS
level, and an administrative wrapping presenting a more convenient and
general interface. In other words, in the presence of a call/cc-like operator,
reasoning about CBV recursion can be reduced to reasoning about simple
loops - effectively making general recursion a special case of tail recursion!

In perspective, this equivalence of iteration and recursion gives another
reason for why a construct for first-class continuations should be considered
a natural part of a CBV language, especially one already providing some
form of exception mechanism: a sharper tool (continuations) allows us to
craft a much better fixpoint than a blunt one (exceptions).

But perhaps the most significant issue raised by the results presented here
is that what appears to be a canonical domain-theoretic construct can to
a large extent be analyzed in isolation from the actual semantic model.
In fact, the line of research sketched in section 5 suggests that closely
related concepts like strictness, eager/lazy datatypes, etc., also admit a
more abstract, "continuation-theoretic" character izat ion- applicable even
in a language where all evaluations are finite. A further exploration of these
~deas and their relation to other current work on continuations would seem
a natural direction for further research.

A c k n o w l e d g m e n t s

I want to thank John Reynolds for support, and Olivier Danvy, Matthias
Felleisen, Dan Friedman, Carolyn Talcott and the referees for their encour-
agement and helpful comments on various drafts of this paper.

36 FILINSKI

References

1. Clinger, W. and Rees, J. Revised 4 report on the algorithmic language
Scheme. Lisp Pointers, 4, 3 (July 1991) 1-55.

2. Danvy, O. and Filinski, A. Representing control: A study of the CPS
transformation. Mathematical Structures in Computer Science, 2, 4
(December 1992) 361-391.

3. Danvy, O. and Lawall, J. L. Back to direct style II: First-class con-
tinuations. In Proceedings of the 1992 ACM Conference on Lisp and
Functional Programming, San Francisco, California (June 1992) 299-
310.

4. Duba, B. F., Harper, R., and MacQueen, D. Typing first-class contin-
uations in ML. In Proceedings of the Eighteenth Annual ACM Sympo-
sium on Principles of Programming Languages, Orlando, Florida (Jan-
uary 1991) 163-173.

5. Felleisen, M. and Hieb, R. The revised report on the syntactic theories
of sequential control and state. Theoretical Computer Science, 103, 2
(1992) 235-271.

6. Felleisen, M., Friedman, D. P., Kohlbecker, E., and Duba, B. Reasoning
with continuations. In Proceedings of Symposium on Logic in Com-
puter Science, IEEE, Cambridge, Massachusetts (June 1986) 131-141.

7. Filinski, A. Declarative continuations: An investigation of duality in
programming language semantics. In Pitt, D. H. et al., editors, Cate-
gory Theory and Computer Science, Manchester, UK (September 1989)
224-249.

8. Greibach, S. Theory of Program Structures: Schemes, Semantics, Ver-
ification. Lecture Notes in Computer Science 36 (1975).

9. Griffin, T. G. A formulae-as-types notion of control. In Proceedings of
the Seventeenth Annual ACM Symposium on Principles of Program-
ming Languages, San Francisco, California (January 1990) 47-58.

10. Gunter, C. A. Semantics of Programming Languages: Structures and
Techniques. The MIT Press (1992).

11. Harper, R. and Lillibridge, M. Polymorphic type assignment and CPS
conversion. In Proceedings of the ACM SIGPLAN Workshop on Con-
tinuations, San Francisco, California (June 1992) 13-22. Revised ver-
sion in Lisp and Symbolic Computation (this issue).

RECURSION FROM ITERATION 37

12. Hindley, J. R. and Seldin, J. P. Introduction to Combinators and A-
Calculus. Volume 1 of London Mathematical Society Student Texts,
Cambridge University Press (1986).

13. Kfoury, A. J. The Translation of Functional Programs into Tail-
Recursive Form (Part I). BUCS Tech Report 87-003, Computer Science
Department, Boston University (January 1987).

14. Landin, P. J. A correspondence between ALGOL60 and Church's
lambda notation. Communications of the ACM, 8 (1965) 89-101 and
158-165.

15. Milner, R., Torte, M., and Harper, R. The Definition of Standard ML.
The MIT Press (1990).

16. Moggi, E. Computational lambda-calculus and monads. In Proceed-
ings of the Fourth Annual Symposium on Logic in Computer Science,
IEEE, Pacific Grove, California (June 1989) 14-23.

17. Plotkin, G. D. Call-by-name, call-by-value and the A-calculus. Theo-
retical Computer Science, 1 (1975) 125-159.

18. Reynolds, J. C. Gedanken - a simple typeless language based on the
principle of completeness and the reference concept. Communications
of the ACM, 13, 5 (May 1970) 308-319.

19. Reynolds, J. C. Definitional interpreters for higher-order programming
languages. In Proceedings of 25th A CM National Conference, Boston
(August 1972) 717-740.

20. Sabry, A. and Felleisen, M. Reasoning about programs in continuation-
passing style. In Proceedings of the 1992 A CM Conference on Lisp and
FunctionM Programming, San Francisco, California (June 1992) 288-
298. Revised and extended version in Lisp and Symbolic Computation
(this issue).

21. Scott, D. S. Continuous lattices. In Proceedings of 1971 Dalhousie
Conference, Springer-Verlag (1972) 97-136.

22. Talcott, C. A theory for program and data type specification. Theo-
retical Computer Science, 104, 1 (1992) 129-159.

23. Walker, S. A. and Strong, g. R. Characterizations of flowchartable
recursions. Journal of Computer and System Sciences, 7 (1973) 404-
447.

