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Summary 

A numerical analysis has been developed for the design of ungrouted tensioned rockbolts as 
support of excavations under axisymmetric conditions. The bolts dimensions (length, cross- 
section, longitudinal and circumferential spacings), their stiffness, their pre-tension load and 
the delay of installation are taken into account. Moreover, the method effects three main 
improvements in the usual theory, taking into consideration: 1. the reaction force trans- 
ferred to the rock mass in the bolts anchoring zone, 2. the elastic recompression of the 
carrying ring surrounding the excavation due to the bolts preload, and 3. the relative 
displacement of the bolts ends which has a repercussion on their tension. 

Since the usual rock-support interaction analysis is only available when the rock mass 
and the support behave independently, an alternative solution has been explored for the 
bolting system (since it cannot be considered as an internal support). It consists to include 
the effect of the rockbolts into the ground reaction curve. 

In this paper, the principles of the analysis are explained and a numerical application is 
taken. 

1. Introduction 

For  a long time, bolting support  is frequently used to stabilize underground 
excavations in rock masses. The determination of the rock reinforcement require- 
ments has been commonly based on underground observations and on empirical 
approaches (rock mass classification systems). However, since a few years, this 
design procedure is completed by analytical and numerical evaluations. It enables 
a better qualitative and quantitative analysis of  the rockbolts parameters. 

Within the f ramework of this integral design method, this paper  describes a 
numerical analysis to calculate ungrouted tensioned rockbolts supporting excava- 
tions under axisymmetric conditions. 

After the presentation of  the basic assumptions, the main improvements 
propounded in the developed approach are detailed, and the definition of  a new 
ground reaction curve is introduced. Then, the principles of  the analysis are 
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explained; and finally, a numerical application is taken to underline the differences 
between the developed method and the usual theory. 

2. Basic Assumptions 

The developed method is based on some fundamental assumptions: 

2.1 Axisymmetry and Plane Strain Conditions 

The problem is axisymmetric; it means that the analysis applies to a circular gallery 
of radius r i driven in a homogeneous, isotropic rock mass subjected to a hydro- 
static in situ stress field (magnitude P0). It implies also to neglect the weight of the 
rock in the broken zone which develops around the excavation. 

The length of the gallery is such that the problem is in a plane strain situation. 

2.2 Model of  Rock Mass Behaviour 

The rock mass is assumed to have a perfect elastic-plastic behaviour and to be 
characterised by a Mohr-Coulomb's strength criterion: 

T = c + ~ t g ~ ,  (1) 

with ~- the shear strength 
cr the normal stress 

the angle of friction 
c the cohesion. 

The idealized stress-strain relationships used in the analysis presented later are 
shown in Fig. 1. The rock is first assumed to be linearly elastic with Young's 
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Fig. 1. Stress-strain re la t ion  of  the rock  mass  

modulus E and Poisson's ratio u. Then its behaviour becomes plastic and a non- 
associated flow rule is applied for the post-failure strains calculation: 
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o~ the dilatancy parameter 
Ae p and Ac p the increments of the major and minor principal strains (resp. 

the tangential et and radial er strains). 

2.3 Bolting Support System 

The ungrouted tensioned rockbolts are installed perpendicularly to the excavation 
surface, i.e. in radial directions (Fig. 2). Their characteristics are: 

st : the circumferential spacing 
sl : the longitudinal spacing 
L b : the free length of the shank 
Ab : the cross-sectional area of the shank 
E b : the Young's modulus of the bolting system, taking into account the 

deformation characteristics of the anchor, washer plate and bolt head. It 
can be measured from the load-extension curve determined by means of a 
pull-out test. 

Tb : the tension load in the bolt 
Tbo: the pre-tension load of the bolts 
Tbf: the ultimate strength of the bolting system obtained from a pull-out test. 

Lbl 
81 

._ .i_ 
t I T 1  

Fig. 2. Lie of the rockbolts 

To keep the axisymmetry of the problem, it is assumed that the bolts spacings st 
and si are small enough to consider the gallery behaviour as uniform and 
independent of the location of a single bolt. Then, the support system provides 
an uniform radial pressure pp which is related to the load Tb in the bolts by: 

r b  
pp = - - .  (3) 

SlSt 

2.4 3D-Influence of the Working Face 

The three-dimensional effect of the working face is considered introducing a 
fictitious pressure pf on the inner face of the gallery (Panet, 1975; AFTES, 1986; 
Corbetta, 1990). This pressure depends on the unsupported span behind the 
excavation face. It allows to take into account the delay for support installation, 
with respect to the tunnelling process. 
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3. Main Improvements 

The present approach effects three main improvements in the usual "convergence- 
confinement" analysis; it takes into consideration: 

1. the reaction force transferred to the rock mass in the anchoring zone of the bolt, 
2. the elastic recompression of the carrying ring surrounding the excavation, 

induced by the bolts preload, 
3. the relative displacement of the bolts ends, and its repercussion on the tension in 

the rockbolts. 

3.1 Reaction Force in the Anchoring Zone 

Since the bolts have an unbonded length (Fig. 3), the load Tb in the shank is 
transferred without friction from the anchor head to the bond length (cement grout 
or resin). In consequence, the effect of these point anchored rockbolts must be 
simulated not only by an "action" pressure pp applied on the surface (radius ri) , 
but also by a "reaction" pressure pp.ri/r e on the inner face of the anchoring zone 
(radius re). This influence is schematically represented in Fig. 4. 

[= free length -__ 
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. . . . .  v . l . , , . ~  . . . .  ~ ^ ~ ^ ~  ~ , L , ~  ~'~, 

~ l l i t l l t l l l l l l i l l i l l l i l l l l l l ~  

F i g ,  3. P o i n t  a n c h o r e d  r o c k b o l t s  

3.2 Elastic Recompression Due to the Pretension Load 

In order to determine the stresses and displacements into the carrying ring 
(ri <_r<_ re) induced by the bolts preload Tb0 (i.e. by the pressures 
Ppo = Tbo/(Sl.St) and ppo.ri/re applied at the inner and outer faces of the bolted 
ring), use is made of the Lam6's formulas (1852) (Appendix A): 

1 

c r , = p p ~  1 - ~ -  

(4) 

(5) 
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Fig. 4. Support pressure pp and reaction pressure pp.rL/r e induced by the rockbolting system 
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These radial c~,. and tangential ~r t stresses due to the pretension load are 
represented in Fig. 5. It can be noted that the radial stress is bigger than the tangential 
one, and that the latter takes negative values (i.e. tension) between ri and rx/?~7 e. 
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Fig. 5. Radial cr and tangential Ct stresses due to the bolting pressures Ppo and Ppo.ri/re 

Now, this situation is just the opposite to the usual one encountered around 
underground excavations (where o- t > ar in both elastic and plastic zones); and 
consequently, the superposition of the preload to the initial situation before the 
bolts installation, will always be benefic, owing to the reduction of the difference 
between the major and minor principal stresses. 
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More particularly, if a part of the carrying ring was characterised by a plastic 
behaviour before the bolts installation, it will find temporarily an elastic behaviour 
again. Indeed, in a Mohr's circles plot (Fig. 6), the circles initially tangent to the 
Coulomb's straight line before the bolts preload, become then detached owing to 
the recompression of the carrying ring. 

.r  b e f o r e  the bol t s  / q ~  
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Fig. 6. Evolution of the Mohr's circles following the bolts preload 

3.3 Tension Increase  in the R o c k b o l t s  

After the support installation, the excavation restarts and the influence of the working 
face reduces progressively (this effect is simulated by a gradual decrease of the fictitious 
pressure applied on the gallery inner sides). The subsequent loosening of the rock mass 
induces an increase of the convergences. Figure 7 illustrates especially the relative 
displacement of the bolts ends and the elongation/kL b undergone by the shank: 

A L b  = ( u r i -  uri,ppO) - (Ure - ure,ppo), (7) 

with uri,ppo and Ure,ppO the displacements after the bolts preloading. 
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Fig. 7. Relative displacement of the bolts ends 
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This length variation ALb has a repercussion on the tension Tb in the rockbolts: 

ALbEbAb 
r~ = r~o + ~ r b  : Too ~ (8) 

Lb 

In consequence, the pressures pp and pp.ri/re generated at the inner and outer 
faces of  the carrying ring, are the sum of  two contributions: 

Pp = Ppo + Ape - Too + ATb (9) 
SlSt 

4. Ground Reaction Curve of a Bolted Rock Mass 

The rock-support interaction analysis requires the calculation of two variables: the 
radial wall convergence uri and the internal support pressure Pi. Usually, the 
equilibrium is found by the intersection of two characteristic lines in a (uri,pi) 
diagram: the ground response curve C~ and the support reaction line CU (Fig. 8). 
However, this kind of presentation is only available when the rock mass and the 
support behave independently; e.g. a concrete or shotcrete lining and steel arches. 

Fig. 8. 
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Rock-support  interaction: convergence curve Co and confinement curve Cf 

Now, as explained previously, the bolting system cannot be considered as an 
internal support since: 

- the bolts transfer their reaction into the rock mass, 
- their preload induces a recompression of  the carrying ring, 
- their elongation depends on the rock mass convergences and has a repercussion 

on their tension. 

For  these reasons, an alternative solution has been explored: it consists to 
include the effect of the ungrouted bolts into the ground reaction curve. Such a 
curve C~b is shown in Fig. 9 near the characteristic line of an unsupported rock 
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mass C~ (usual presentation). A reaction line Cf for an internal support is also 
drawn. The equilibrium is reached when this line meets the curve of the bolts 
supported rock mass. Let's note that such a presentation has also been used by 
Stille et al. (1989) and Holmberg (1991) for grouted bolts. 
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F i g .  9. G r o u n d  r e a c t i o n  c u r v e  Cvb f o r  a r o c k  m a s s  s u p p o r t e d  w i t h  r o c k b o l t s  

5. Principles of the Numerical Analysis 

Within the specified assumptions, two calculation methods have been developed: 
an analytical one and a numerical one (Labiouse, 1993). Only the second approach 
will be presented hereafter. 

Owing to the axial symmetry, the numerical analysis can be founded upon an 
one-dimensional model. Figure 10 illustrates the gridpoints (1) to (nbre) in the 
bolted zone (ri <_ r <_ re) , and (nbre + 1) to (nb) in the rock mass (r >_ re). Two 
nodes are used at the bolts anchoring point (radius re) in order to simulate the 
discontinuities induced by the reaction pressure pp.r i / r  e. 
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F i g .  10. O n e - d i m e n s i o n a l  m o d e l  u s e d  f o r  t h e  n u m e r i c a l  a n a l y s i s  

5.1 Calculation Procedure 

Figure 11 presents a simplified "flow" diagram of the calculation procedure 
followed to take into account the three main improvements above-mentioned. 
The numbers between square brackets are explained hereafter in the text. 
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At the initial situation (bolts installation, [1]), the stresses, strains and 
displacements around the excavation are evaluated using usual analytical formulas 
(Appendix B). Then, just after the bolts preload [2], the situation is obtained by 
adding to the previous one the elastic distributions induced by the pressures PpO 
and ppo.ri/re applied at the inner and outer faces of the reinforced zone (see 
Fig. 5). 

Afterwards, the pressure applied by the rock mass on the carrying ring is 
gradually reduced [3]. The same analytical formulas as previously are used again to 
estimate the stresses, strains and displacements in the rock mass [4]. 

At the interface between the carrying ring and the rock mass [5], one can 
express the continuity of the displacement and the discontinuity of the radial stress 
(rise with a magnitude of pp.ri/re). From this, it is possible to calculate the 
tangential stress as well as the strains at gridpoint (nbre). 

Then [6], the situation in the bolted zone is obtained numerically using a 
step by step procedure that successively determines the stresses, strains and 
displacement at the discretization points (from (nbre-1) to (1)). For this 
process, three behaviours need to be distinguished (Fig. 12): elastic, plastic 
and elasto-plastic. They will be treated succinctly in subheadings 5.2, 5.3 and 
5.4. 

_J Loop i--- nbre...2 
/ 

-I _ step - 1 

I 
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Aar(i), Au,(i) 
? at(i-l),  at(i-l), u~(i-1), et(i-1), e~(i-1) 

/ 
Elastic Elastic-plastic 
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(eft. 5.2) (cfr. 5.4) 

? 
,rt(i-1) _< x.~(i-1)+ 2.c.v'X 

Yes 

\ 
Plastic i 

behaviour 
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Fig. 12. Determination of the stresses, strains and displacements in the bolted ring 

This step by step sequence of calculation is repeated several times till the 
unknown variables at node (1) are determined. So, can be calculated the conver- 
gence uri at the excavation surface and the associated internal pressure Pi [7]. On 
the other hand, since the bolts ends have a relative displacement 
ALb = A u r i -  AUre = AUr(1)-  Aur(nbre), their tension will increase and the 
pressure pp generated by the bolting support need to be brought up to date [8]. 
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These three latter variables Uri,P i and pp are used to draw: 

- in a (uri,Pi) diagram the ground reaction curve of  the bolted rock mass, 
- in a (uri,Pp) diagram the evolution o f  the tension in the rockbolts.  

29 

5.2 Elastic Behaviour 

Let 's first consider that  the ring (i - 1) which lies between radii r(i - 1) and r(i) has 
an elastic behaviour  (Fig. 13). Using Lam6's formula  (A-3) given in appendix A, 
the increment  of  displacement at node (i), i.e. Aur(i),  can be expressed as: 

A u r ( i ) =  ( 1 + @ ( 1 - 2 u )  r i 

~ - S g }  zx~r ( i -  l ) r : ( ,  �9 2(1 - ~) 

where Ao-~(i-  1) and Ao-~(i) are the pressure variations on the inner and outer  
faces o f  the ring [r ( i -  1), r(i)]. 
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Fig. 13. Stresses and displacements when the ring ( r ( i  - 1), r ( i ) )  has an elastic behaviour 

Rewrit ing the above equation,  one obtains: 

1 
A ~ . ( i -  1) = 

2(1 - u ) r 2 ( i -  1) 

] 2xu,(i)E[r2(i) - r 2 ( i -  1)]. 
• zNCrr(i)[(1 - 2u)r2(i) + r 2 ( i -  1)] - ~ ~ v ~ - ( ~ )  ' 

(11) 
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So, if the radial stress variation Ao-r(i ) and the convergence increment Aur(i)  
occuring at node (i) are known, an updated value of the stresses, strains and 
displacements at any point in the ring can be calculated using Lam6's formulas 
(A-l) to (A-5). More particularly, at gridpoint ( i -  1): 

1 [2A~rr(i)r2(i) - Aar( i  - 1)[r2(i) + r 2 ( i -  1)]], (12) A a , ( i -  1) = r2(i ) _ r 2 ( i _  1) 

(1 + u ) r ( i -  1) 
A u , . ( i -  1) -- E [ 7 ~ 7 ~ ( - 7 - _ - ] )  ] 

x {2(1 - u)Aar( i )r2( i )  - A a ~ ( i -  1)[r2(i) + (1 - 2u)r2(i - 1)]], (13) 

(1 
Ae , ( i - -  1) = E[r2(i ) _ r 2 ( i _  1)] 

• [2(1 - u)Aar(i)r2( i )  - A a r ( i -  1)[re(i) + (1 - 2 u ) r 2 ( i -  1)]], (14) 

(1 
Ae,.( i -  1) = E[r2(i ) _ r 2 ( i _  1)] 

• [-2uAo-r(i)r2(i)  + Ao-~ ( i -  1)[r2(i) - (1 -- 2u)r2(i - 1)]]. (15) 

The elastic behaviour of the ring must  then be verified with the condition: 
rc qo 

a t ( i - 1 )  < tg2(4 + 2 ) a ~ ( i - 1 ) +  2 c t g ( a + ~ ) .  (16) 

If this inequality is not met, a plastic zone extends between the radii r(i - 1) and 
r(i), and the ring needs to be treated pursuant to the procedure presented in 
subheading 5.4 (Fig. 12). 

5.3 Plastic Behaviour 

In this second case (Fig. 14), the stresses O'r(i- 1) and a t ( i - 1 )  are easily 
determined from the radial stress c~(i) by the common relationships available 
for broken zones in axisymmetric problems (Appendix B): 

~ r ( i -  I) = (ar(i) + ccotg~o) -ccotgg~ (17) 

err(i-- 1) = tg 2 � 8 8  (~r(i) + ccotgqo) --ccotg~.  (18) 

Using the strains compatibility equation 

det s  - -  g t  
- - -  ( 1 9 )  

dr r 
the relations between strains and displacement 

dur U r 

e r -  dr et =--r  (20) 
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and the non-associated flow rule (2), the strains and displacement at gridpoint 
(i - 1) can be evaluated from the strains at node (i): 

c t ( i ) - ~ r ( i )  ~. 1) I ( r ( i )  "~(c~+1)_11, ur ( i  - i) = e~( i ) r ( i  - 1) + ~ ~- i r t t  - \ r ( i  - 1)J (21) 

e t ( i -  1) = e t ( i )  4 e t ( i )  - er ( i )  ( r ( i )  ~ (a+l) 1 
o~+ 1 \ ~ J  - , (22) 

a , . [ /  r(i) \(a+l) l 

++"" 

at ( i - l )  ... a~(i) 

a~(i-1) ~ 'A~,(i) 

r(i-1) r(i) RADI~S 

il ' . ' "  " ' + ' " "  . . . . . .  - 

Fig. 14. Stresses and displacements when the ring (r(i - 1), r(i)) has a plastic behaviour 

5 . 4  E l a s t i c - P l a s t i c  B e h a v i o u r  

The analysis becomes a little more complicated due to the extension of the broken 
zone. The calculation is started from the latest known situation (at time (t - 1)); at 
that moment, the ring is characterised by a plastic zone [r( i  - 1), r ie( t  - 1)] and an 
elastic zone [rie(t - 1), r(i)], as schematically represented by the solid lines in Fig. 
15. Assuming that this latter zone keeps an elastic behaviour (dashed lines in Fig. 
15), it is possible to calculate the stresses at r i ~ ( t - 1 )  from the radial stress 
variation A~rr(i ) and the convergence increment A u r ( i )  occuring at node (i), 
using Eq. (11) and (12) where r ( i -  1) is replaced by ri~(t  - 1). 

Now, it stands to reason that the limit of the plastic zone will extend during the 
loosening of the rock mass. To appraise its enlargement, a shear yield function 
(corresponding to the Mohr-Coulomb's  failure criterion) is used: 
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Fig. 15. Stresses and displacements when the ring (r(i- 1), r(i)) has a partly elastic - partly plastic 
behaviour 

Since radius rie(t-  1) is plasticized (f(rie) > 0) and gridpoint (i) remains 
elastic ( f ( r ( i ) )< 0), the point where the yield function meets the condition 
f = 0 can be found by interpolation (see lower part of Fig. 15). Once this new 
location of the plastic zone limit rie(t) has been estimated, the stresses, strains and 
displacements in both elastic [tie(t), r(i)] and plastic [r( i-  1), rie(t)] zones can be 
evaluated (dotted lines) using the relationships developed for the previous elastic 
and plastic behaviours. 

6. Numerical Application 
A 10 metres diameter gallery is driven at a depth of 400 metres (initial in situ stress 
P0 = 10000 kN/m 2) in a perfect elastic-plastic rock mass characterised by: 

Young's modulus E ~ 106 kN/m 2 
Poisson's ratio u = 0.30 
angle of friction ~ = 34 ~ 
cohesion c = 750 kN/m 2 
dilatancy parameter a -- 1.2 
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Fig. 16. Convergence and confinement curves according to the usual rock-support interaction analysis 

The bolting support is installed one metre behind the working face ( ~  at that 
moment, the plastic zone has an extent of 1.2 m). Its specifications are: 

Young's modulus 
diameter 
free length 
bolts spacings 
pre-tension load 
yielding load 
ultimate failure load 

E b = 8 10 7 kN/m 2 
q~b = 0.025 m 
Lb = 6 m  
st = st = 0.75 m 
Tbo = 50 kN 
Tby = 245 kN 
Tbf = 295 kN 

Figure 16 shows the ground reaction curve C~ and the support reaction line CU 
calculated according to the usual rock-support interaction analysis. Since the bolts 
reach their yielding load before the rock mass stabilization, it is obvious to 
determine the situation at equilibrium: Pi = 436 kN/m 2 and uri = 10.3 cm. 

On the other hand, Fig. 17 represents the ground reaction curve C~b for the 
rock mass supported with the ungrouted tensioned bolts, pursuant to the alter- 
native solution presented at point 4. The evolution of  the support pressure pp is 
drawn in the lower (u,.i,pp) diagram. For  this second approach, the equilibrium is 
found for Pi = 0 kN/m2: pp = 386 kN/m 2 and blri = 10.9 cm. 

The stresses a~, at and displacements u r at equilibrium are represented in Fig. 18 
for both methods: the usual one (dotted lines) and the new one (solid lines). 
Although there are few differences in the figure, the numerical results allow to 
establish that: 

- the tension in the rockbolts calculated by the usual method (245 kN _= 
yielding load) is higher than our evaluation (217kN). More particularly, it 
must be pointed out that the stiffness of the anchor bolt system is highly 
overestimated (75%!) by the usual approach; 

- the convergences are larger in the new method. 
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Fig. 17. Ground  reaction curve for the rock mass  supported with the ungrouted tensioned bolts; and 

evolution of the support  pressure 

These differences can easily be explained by the assumptions of the calculation 
methods: 

- the usual theory assumes that the bolt anchoring point doesn't converge 
(Ure = Ure,ppO), and consequently, the shank elongation becomes equal to the 
increment of convergence at the gallery surface: A L b  = uri - uri,ppO. On the 
other hand, the present approach takes into account the convergence of the 
anchoring point and the relative displacement of the bolts ends: 
A L b  = (uri - Uri ,ppO)-(Ure - Ure,ppO), 

- the usual method takes into consideration the action of the rockbolts on the 
excavations inner sides, but neglects the reaction force transferred to the rock 
mass in the anchoring zone. On the other hand, the new approach presents a 
comprehensive study. 

These considerations emphasize that the stiffness of the bolting support 
evaluated by the new method is smaller than the one calculated by the usual theory. 

7. Conclusion 

The present paper has described a numerical analysis to calculate ungrouted 
tensioned rockbolts supporting excavations under axisymmetric conditions. The 
main improvements in the usual theory have been explained, and the differences 
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Fig. 18. Stresses and displacements at equilibrium 

between both methods have been pointed out in a numerical application. In 
particular, it has been observed that a systematic bolting studied by the new 
approach is characterised by a much smaller stiffness than the one calculated by the 
usual method. 

Finally, let's point out the very fast computation of the developed method. 
Indeed, half a minute is enough to obtain the ground reaction curve of a rock mass 
supported with a bolting support, and to calculate the distributions of the stresses, 
strains and displacements around the excavation. Consequently, such a method 
allows to perform quick parametrical studies; and so is helpful to understand the 
influence of the bolting characteristics (free length, delay of installation, pretension 
load, stiffness of the rockbolts) on the radial deformations and support stresses at 
equilibrium. 
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8. Appendix A 

Lam+ (1852) has determined the stresses, strains and displacements into hollow 
cylinders (inner and outer radii ri and re, Young's modulus E, Poisson's ratio u) 
induced by an internal pressure Pi and an external pressure Pe: 

[ 1 , re ri 1 
a r -  (r2e - ri2) per2e - p i r  2 - ( P e - P i ) - - ~ f - J ,  (A-l) 

c r t -  (r 2 ri 2) e r2 - P i  rff + (Pe- -P i )  rzr2] (A-2) 
r 2 ]~ 

(1 + - _] 
U r = F(~e ~ ~ r ~r2e--piri 2 + (Pe- -P i )  (1 -- 2u)r2J ' (A-3) 

(1 + u)(1 - 2u) re ri ] 
et = E(r2  e _ r2 ) per2e --Pi  r2 + (Pc --Pi)  (1 ----~u)r2J ' (A-4) 

[p 2 (1 +u)(1  -2 l / )  r eU  .] 
er = E(r2e _ r2 ) e r2 - P i  r2 - (Pe - P i )  (l  - 2//)r2]" (A-5) 

9. Appendix B 

For the assumptions presented in the paper (excavation of radius ri, initial in situ 
stress P0, perfect elastic-plastic rock mass characterised by: Young's modulus E, 
Poisson's ratio u, angle of friction ~, cohesion c, dilatancy parameter a), the 
"convergence-confinement" method gives an analytical solution. 

The rock mass behaviour remains elastic as long as the internal pressure Pi 
acting on the gallery inner sides is higher than a limit: 

Plim 2(p0 + c cotg ~) = (A+ 1) - ccotg~o (B-l) 

with 
7r A =  tg2 (~ + ~) .  

The stresses and displacement in this elastic medium are of the following forms: 

or,. = Po - (Po - Pi) r~, (B-2) 

(B-3) crt = Po + (Po - Pi) -~ , 

(1 + u) r} 
u~ -- U (Po - Pi) r "  (B-4) 
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When the internat pressure Pi becomes smatler than the limit pressure Plim, a 
broken zone appears and extends around the excavation, The limit of this plastic 
zone is given by: 

[ 2 ( p 0 + c c o t g ~ ) . 1  (x~r-~) (B-5) 
rpe = ri (A -? 1)(pi q- C cotg~) 

The stresses and displacement take the following forms: 

e las t ic  z o n e  (tee < r < oc): 

~Yr = PO 

2 

(A~  1)(P0 + ccotg~)  7 ,  (B-6) 

( a - l )  
= p0 * (p0 + c cotg  , (B-V) 

(1 + u) (A - 1) rpZe 
u~= E ~z+T;-' 7 - 1 ) ( P ~ 1 7 6  (B-8) 

p las t i c  z o n e  (ri <_ r <_ rp~): 

crr = (p, + ccotg~)  - c c o t g %  (B-9) 

a, = )~(p~ + c cotg ~) - c  cotg % (B- 10) 

( l + u ) ( A - l )  [ 2 ( ( - ~ - ) ( ~ + " - 1 ) ]  (B-I1) u r = ~ ~ ( A  1)(P~176176 1 + ~  
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