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Summary 

Whenever solid or hollow inclusions are used as instrumented probes in over- 
coring techniques, "residual stresses" remain in the overcored rock sample and in 
the probes. When using such devices for computing the in-situ stress field components 
from measured strains or displacements, it is common practice to assume that the 
overcoring diameter is infinite and that there is a perfect bonding between the rock 
and the probes. The validity of these assumptions depends on the magnitude of the 
residual stresses at the rock-probe contact as compared to the tensile and shear 
strengths of the rock-probe bond material. It also depends on the distribution of 
residual stresses in the overcored sample. 

In comparison to previous work, new expressions are proposed in this paper 
for the residual stresses associated with solid or hollow inclusion type stress probes 
in anisotropic ground. These expressions are presented in dimensionless form and are 
used to show that the distribution and magnitude of residual stresses depend on the 
isotropic-anisotropic rock character, the degree and type of rock anisotropy, the 
orientation of the rock anisotropy with respect to the hole in which the probes are 
located and the relative deformability of the rock with respect to the deformability 
of the material comprising the probes. The conditions that are required for neglect- 
ing the overcored sample diameter are also discussed. This is shown for rocks that 
can be described as isotropic, transversely isotropic and orthotropic materials. 

Introduction 

Several overcoring techniques have been proposed in the rock mechanics 
literature to measure the state of stress in-situ. Some of them use instrumented 
probes that can be described either as solid or as hollow inclusions. Such 
probes include the CSIRO ( W o r o t n i c k i ,  G., W a l t o n ,  R. J., 1976) and the 
LNEC (Rocha,  M, et al., 1974) hollow inclusion cells, and the solid epoxy 
probes proposed by R o c h a  and S i lver io  (1969) and B l a c k w o o d  (1977). 
As the probes and the rock have different deformability properties, an anal- 
ysis is required to relate strains and/or displacements measured within the 
probes to the components of the in-situ stress field. This analysis must ac- 
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count for the elastic properties of the rock and the elastic properties and 
geometry of the inclusion. As far as hollow inclusions are concerned, such 
analysis already exists when the rock is modelled as an isotropic material 
( D u n c a n  Fama,  M. E., Pender ,  M. T., 1980) or as an anisotropic ma- 
terial (Amadei ,  B., 1983). The anisotropic analysis does not put any con- 
straint on the type of anisotropy and on the orientation of the anisotropy 
with respect to the inclusion. 

This paper begins with a solution for the elastic equilibrium of an 
anisotropic homogeneous medium bounded internally by an isotropic hollow 
inclusion of circular cross section and loaded at infinity by a three-dimen- 
sional stress field. The solution proposed by A m a d e i  (1983) has been 
rederived and is presented in this paper in a new dimensionless form in 
terms of parameters describing the relative deformability of the medium 
with respect to the deformability of the inclusion. The problem of stresses 
induced by the inclusion in the medium is also discussed. The dimensionless- 
form character of the solution provides a valuable tool (i) for assessing the 
distribution and magnitude of residual stresses remaining after the overcor- 
ing of an isotropic or anisotropic rock sample containing a solid or a hollow 
inclusion type stress probe, and (ii) for discussing the conditions that are 
required for neglecting the diameter of the overcored sample when inter- 
preting the data obtained from the probe in terms of in-situ stress components. 

Equilibrium of an Anisotropic Medium Bounded Internally by a Hollow 
Isotropic Inclusion 

Geometry, Definition and Solution o[ the Problem 

Consider the equilibrium of an infinite, linearly elastic, anisotropic, 
continuous and homogeneous medium. The medium is bounded internally 
by a cylindrical surface of circular cross section which represents a borehole. 
The hole contains a hollow inclusion with outer and inner radii a and b 
respectively. The inclusion is assumed to be linearly elastic, isotropic, con- 
tinuous and homogeneous and perfectly bonded to the anisotropic medium. 
Furthermore, both the hole and the inclusion are assumed to be infinitely long. 

Consider the geometry of Fig. 1. Let x, y, z be a cartesian coordinate 
system with the z axis defining the longitudinal axis of the hole. The orien- 
tation of the hole and therefore the x, y, z coordinate system is defined with 
respect to a fixed arbitrary global coordinate system X, Y, Z. Similarly, the 
anisotropic medium has planes and/or axes of symmetry with respect to 
directions independent of the x, y, z directions. Thus, let x', y', z' be a sys- 
tem of cartesian coordinates attached to the anisotropy. From a practical 
point of view the x', y', z" coordinate system is attached to apparent planes 
of rectilinear anisotropy or symmetry in the anisotropic medium. In any 
case, x" is taken normal to the planes whereas y" and z' are contained 
within the planes. The orientation of the anisotropy and therefore the orien- 
tation of x', y', z' axes with respect to the X, Y, Z axes is also assumed to 
be defined by two angles ~ and ~ as shown in Fig. 2. 
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A general form of the constitutive relation of the anisotropic medium 
in the x, y, z coordinate  system can be writ ten as follows 

(e)+yz = (a) ((~)+yz (1) 
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Fig. 1. Elastic equilibrium of an infinite anisotropic medium bounded internally by an 

isotropic hollow inclusion. Geometry of the problem 
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Fig. 2. Orientation of the coordinate system x', y', z' with respect to the global one X, Y, Z. 
Definition of angles fl and ~0 
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where (S)xy~ and (cr)xy~ are respectively (6 x 1) column matrix representations 
of the strain and stress tensors in the x, y, z coordinate system and (A) is a 
(6 x 6) compliance matrix whose components a~j (i, j =  1 to 6) can be calcu- 
lated from those of the compliance matrix in the x', y', z' coordinate system. 
In general, matrix (A) has 21 distinct components. This number is further 
reduced if the anisotropic medium possesses any symmetry in the x, y, z 
coordinate system. This symmetry also exists in the inherent structure of the 
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Fig. 3. Influence of orientation of anisotropy on the deformability properties in the x ,  y ,  z 
coordinate system. (a) Inclined transverse isotropy parallel to z axis, (b) inclined transverse 

isotropy non parallel to z axis 

material. The number of distinct components a,y is equal to 13 if there is a 
plane of elastic symmetry perpendicular to one of the three x, y, z axes; 
9 if the medium is orthotropic, i.e., presents three planes of symmetry, 
each one being perpendicular to a coordinate axis, 5 if the medium is trans- 
versely isotropic, i. e., isotropic within a plane perpendicular to one of the 
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three coordinate axes, 2 if the medium is isotropic. It is noteworthy that, 
except for the isotropic case, these numbers apply only when the coordinate 
system x, y, z is attached to the material symmetry directions associated 
with the x', y', z' axes. In any other coordinate system, the components of 
matrix (A) will depend on the compliances or elastic constants defined in 
the x', y', z' coordinate system and on the orientation of x, y, z with respect 
to x', y', z'. As an illustrative example, consider Fig. 3 1. In Fig. 3 a the me- 
dium is transversely isotropic in the plane y'z'  of the x 'y 'z '  coordinate sys- 
tem and its deformability can be described by the following five elastic 
properties 2 

El; E2=Ea; ~21 =~31; ~a2; G12 = Gla (2) 

where El, E2, Ea are Y o u n g s  moduli in the x', y', z' directions respectively; 
G12, Gx3 are shear moduli in the x'y', x'z" planes respectively and v~j deter- 
mines the ratio of strain in the j direction to the strain in the i direction 
due to a stress acting in the i direction. The ratios v~j and ~'s'~ are such 
that vij/E~= ~SEj. In the x, y, z coordinate system, the same medium has 
one plane of symmetry normal to the z axis and its deformability is now 
described by !3 elastic constants or compliances that depend on the five 
elastic properties defined in Eq. (2) and on the value of the angle ~ de- 
fining the inclination of the planes of transverse isotropy with respect to 
horizontal. These 13 coefficients reduce to 5 when V2 is equal to 0 or 90 de- 
grees. Similarly, in Fig. 3 b, the medium is again transversely isotropic in the 
x', y', z' coordinate system but its deformability in the x, y, z coordinate 
system is now described by 21 elastic constants or compliances since the 
planes of transverse isotropy are inclined with respect to the global coordi- 
nate system and the hole. These 21 terms depend on the five properties de- 
fined in Eq. (2) and on the values of the angles/3 and V defining the orien- 
tation of the planes of transverse isotropy with respect to the x, y, z axes. 
The same remarks would also apply if the medium was orthotropic in the 
x', y', z' coordinate system with the following nine elastic constants 

El, E2, E3, G12, G13, G2~, ~21, ~31, ~'32. (3) 

The anisotropic medium of Fig. 1 is loaded at infinity by a three-dimen- 
sional stress field whose matrix representation (r is 

((70) t ~-~ ((Tx,O O'y,O ffz,O Tyz,O Txz, O Vxy,O). (4) 

In the pres.ent analysis, body forces are absent and allowance is made for a 
constant axial strain ezo to occur in both the anisotropic medium and the 
inclusion such that 

ezo = a31  Cx ,o  + a32  Cry,o + a33 (rz,o + a 8 4  Tyz,O -~ a35  Txz,o + a36 Txy,O (5) 

1 In this example, the x, y, z axes are taken parallel to the global axes X, 
Y, Z for sake of clarity. 

2 The shear modulus G2a is not independent and can be expressed in terms 
of v82 and E2. 

8 Rock Mechanics, Vol. 18/2 
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where a31 (i=1 to 6) are the components of the third line of matrix (A) 
in Eq. (1). 

The problem of the elastic equilibrium of an anisotropic linearly elastic 
medium bounded internally by an isotropic inclusion can be decomposed 
into two problems referred to as problems A and B as shown in Fig. 4. 
This decomposition is useful (i) for deriving a closed-form solution between 
the components of matrix ((r0) and the components of strain, stress and 
displacement at each point in any cross section of the inclusion located far 
enough from its ends, and, (ii) for studying how far within the anisotropic 
medium the stress field is disturbed by the presence of the hollow inclusion. 

Problem A 

. _ - ~ / ~ ~ ~  Problem B 

\ \  

Fig. 4. Decomposition of the general problem into two problems A and B 

In order to simulate the perfect bonding between the anisotropic medium 
and the inclusion, consider surface forces per unit area whose components 
in the x, y, z directions are equal to Xn' ,  Yn',  Z~" for problem A and equal 
to X~, Yn, Z~ for problem B such that 

X~" + X~ = O, Yn + Yn'  = O, Zn  + Zn'  = O. (6) 

Thus, problem A corresponds to the equilibrium of a linearly elastic, iso- 
tropic annulus loaded on its external contour by surface forces per unit 
area with components X~',  Yn',  Zn' .  Similarly, problem B is equivalent to 
the equilibrium of an infinite anisotropic body bounded internally by a hole 
of circular cross section loaded along its contour by surface forces per unit 
area with components Xn, Yn, Z~ and loaded at infinity by a three-dimen- 
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sional stress field. It is noteworthy that perfect bonding also implies that 
(i) at any point along the contact between the inclusion and the anisotropic 
medium, the radial, tangential and longitudinal displacement components, 
the radial stress at, and the shear stress components v~z, Tro must be equal 
and, (ii) e~0 must be the same in both materials. 

Solutions to problems A and B expressed in terms of stress, strain and 
displacement components have been proposed by A m a d e i  (1982) by assum- 
ing F o u r i e r  series type expression for X~, Y~, Zn, and Xn', Y~/, Z~', i. e., 

N 
X~ = X (a~, cos m O+b~x sin m 0) 

m = l  

N 

Y~ = Z' (a~u cos m 0 + bray sin m 0) 
m = l  

N 

Z ~ =  X (amz cos m O+bmz sin m 0) (7) 
m = 1 

where N is an arbitrary number and 0 is an angle that assumes all values 
from zero to 2 ~ for a complete circuit along the contour between the aniso- 
tropic medium and the inclusion. Using the perfect bonding condition along 
this contour, the 6N coefficients a~x, b~. ,  a~v, bray, a~z, b~z (m-- l ,  N) 
and the difference between the rigid body rotation of the anisotropic me- 
dium and that of the inclusion, w - w ' ,  can be expressed as linear functions 
of the components of matrix (~0) through the following equation 3 

(Ax) (x )=  (c~)(~0) (8) 

where (X) is a (6N + 1, 1) column matrix such that 

(X) t = ( w -  w' ax, bl~ aly blu alz bxz . . .  a2vx b2v, a~vu b2vy a2v~ b2vz) (9) 

and (A,), (Cx) are respectively (6N+1, 6 N + 1 )  and (6N+1,6) matrices 
whose components depend on the elastic properties of the anisotropic me- 
dium, the orientation of the hole with respect to the direction of anisotropy, 
the Young ' s  modulus, E, and P o i s s o n ' s  ratio, ~, of the inclusion as well 
as the geometry of the latter defined in terms of the ratio a/b. 

Assume that the medium around the inclusion of Fig. 1 is orthotropic 
in the x', y', z" coordinate system with the nine elastic properties defined 
in Eq. (3). The orientation of one of the three planes of symmetry of the 
medium with respect to the y, x, z coordinate system is also assumed to be 
known and fixed. For that fixed geometry, the components aij of matrix 
(A) in Eq. (1) can be expressed as follows 

~ F ( E~ E~ E~ E~ E~ E1 E1 E l )  
a~) = E1 ET' ET' G~-3' -G~-~2 ' G~-~' E~ v21, E~- ~'al, -~2 ~a (10) 

where F is a linear function of some or all the terms in parentheses. Sub- 

a See Eq. (5.27) in Amadei (1983). 

8* 
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stituting Eq. (10) into the expression for the components of matrices (A~) 
and (C~) and assuming given values for the geometry and P o i s s o n ' s  ratio 
of the inclusion, the components ai~, b~, aly, b~y, a~z, biz (i=1 to N) that 
are the solution to Eq. (8) can be expressed as linear functions of the com- 
ponents of matrix (a0). A general form for these components is the following 

E 
Component=~[[lax,o+f2(ry,o+faaz,o+f4ryz,o+fsrxz,o+f6rzy,o] (11) 

where fl, f2 , . . . ,  f6 are non-linear functions that depend on the following 
nine dimensionless parameters 

E E1 E1 E1 E1 E1 
-~-~' ~ '  ~ '  G~-3'-G~' ~ '  ~'21, rZl, ~'23. (12) 

These quantities describe the relative deformability of the orthotropic me- 
dium with respect to the deformability of the inclusion. As far as w - w '  
is concerned, Eqs. (11) and (12) still apply but the ratio E/E1 in Eq. (11) 
only must be replaced by 1/El. Substituting Eq. (11) into Eqs. (6) and (7) 
leads to expressions for the surface force components per unit area X j ,  Y,/, 
Z~', that have the general form of Eq. (11) as well as a dependency on the 
angle 0. These components can then be used as boundary conditions for 
problem A in Fig. 4. Using the analytical method proposed by A m a d e i  
(1982), a solution to that problem for the stress components in the r, 0, z 
coordinate system at any point in the inclusion can be expressed in a di- 
mensionless form as follows 

or in matrix form 

/ ] a o 
az E 

r0~ = E7 (Qr (ao) (13) 

E 
(a)roz = ~-t (Q~) (a0) (14) 

(Qr is a (6 x 6) matrix whose components depend on the nine parameters 
of Eq. (12), the P o i s s o n ' s  ratio and geometry of the inclusion, the orien- 
tation of the orthotropic planes of symmetry with respect to the inclusion 
and the coordinates (r/a, O) of the point of interest. The strains at that 
point are obtained by multiplying both sides of Eq. (14) by the isotropic 
type compliance matrix for the inclusion. This leads to the following 
equation 

1 
(~)roz = ~ (Qe) (,~o) (15) 

Similarly, the radial, tangential, and longitudinal displacements at the point 
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of interest can be expressed 

In the last two equations, 
and (3 x 6) matrices whose 
the components of (Qr 

as follows 

w / 
1 

= ~ (Qu) (~0) (16) 

mamces (Q~) and (Q~) are respectively (6 x6) 
components depend on the same parameters as 

If the medium around the inclusion is now transversely isotropic with 
the five elastic properties defined in Eq. (2), then Eqs. (10) to (16) still 
apply but the nine terms in Eq. (12) must be replaced by the following 

E E1 E1 
E1 ' ET' -G~-~ ' ~21, vza (17) 

If the medium is now isotropic with two elastic properties E l = E 2  and 
v21=~'2a, then the five dimensionless quantities of Eq. (17) further reduce 
to two, e. g., 

E 
E-i-' ~21. (18) 

Induced Stress Field in the Anisotropic Medium and Limiting Cases 

As shown in Fig. 4, the stress field in the anisotropic medium induced 
by the presence of the hollow inclusion is associated with the application 
of the surface force components per unit area Xn, Yn, Z,~ along the contour 
r=a in problem B. According to Eq. (6), the expressions for Xn, Yn, Zn 
are identical in magnitude but opposite in sign to those associated with 
X~', Y~', Z~'. If the medium is either orthotropic, transversely isotropic or 
isotropic as in the previous section, then using the analytical method pro- 
posed by A m a d e i  (1982), and the dimensionless expression for the com- 
ponents of matrix (X) in Eq. (8), problem B can be solved for the stress 
components induced by Xn, Yn, Z .  at any point in the anisotropic medium. 
These components have the general form of Eq. (14) i. e., 

E 
(~)ro~ = ~ (Q~*) (~0). (19) 

The components of matrix (Qj') are of course different to those of matrix 
(Q~) but they depend on the same parameters. 

The elastic equilibrium of an infinite anisotropic medium with a solid 
inclusion and the one of an infinite anisotropic medium with a hole con- 
taining no inclusion can be seen as two limiting cases of the general results 
discussed above. The former condition takes place when b vanishes whereas 
the latter one takes place when a=b and when Xn, Yn, Zn vanish along 
the contour r =a. 
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Overcoring Techniques with Inclusion Type Instrumented Devices 

Overcoring techniques have been used extensively in rock mechanics 
to measure the in-situ state of stress. These techniques can be classified as 
relief techniques, i.e., procedures that wholly or partially isolate a rock 
specimen from the stress field in the surrounding rock. Strain and/or dis- 
placement measurements on the specimen thus isolated are recorded in the 
vicinity of the point at which the state of stress has to be determined. 
Fig. 5 shows the three steps commonly involved when measuring stresses 
in-situ by overcoring. First, a large diameter hole is drilled to the required 
depth in the volume of rock in which stresses have to be determined. Then 
a small pilot hole is drilled at the end of the previous hole. An instrumented 
device is inserted in that hole. The device must be able to measure strains, 
displacements or both if required. Finally, the large diameter hole is 
resumed and resulting changes of strain and/or displacement within the 
instrumented device are recorded. Only overcoring techniques using devices 
that are positioned on the walls of the pilot hole are considered in this paper. 

large diameter hole 

instrumented device H/A\u / 

/ - - ~ ~ ' ~  pilot hole 

Fig. 5. Steps commonly involved in overcoring techniques with instrumented devices 
positioned on the pilot hole walls 

Computation of in-situ stresses from overcoring measurements requires 
that an analytical solution exists between the strain and/or displacement 
measurements and the components of the in-situ stress field. Theoretically, 
that solution should account for rock properties such as homogeneity/ 
heterogeneity, isotropy/anisotropy, continuous/discontinuous character and 
a possible non-linear rock behaviour. It should also account for the finite 
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character of the overcored sample since the process of overcoring can be 
seen as cancelling the components of initial stress acting across a cylindrical 
surface in the rock. 

As far as rock properties are concerned, no solution exists to date that 
accounts for combined "non ideal" rock characteristics such as heterogene- 
ity, anisotropy, discontinuous character and non-linear behaviour. Instead, 
assumptions of homogeneity, continuity, isotropy and linear elasticity are 
commonly used in practice. Solutions that account for rock anisotropy in- 
stead of isotropy have been proposed in the literature with different degrees 
of assumption and sophistication (Amadei,  B., 1982; Berry, D. S., Fair -  
hurs t ,  C., 1966; Becker,  R. M., H o o k e r ,  V. E., 1967; Berry, D. S., 1968; 
Becker,  R .M. ,  1968; Berry, D.S., 1970; Niwa ,  Y., H i r a s h i m a ,  K., 
1971; H i r a s h i m a ,  K., Koga, A., 1977). Accounting for rock anisotropy 
when measuring stresses in-situ is particularly important when dealing with 
metamorphic rocks such as schist, slate, phyllite, gneiss or sedimentary 
rocks such as sandstone, shale or limestone. For such rocks, assuming iso- 
tropy may induce large errors in the in-situ stress determination (Amadei,  
B., 1982; Amadei ,  B., 1983; Amade i ,  B., and Wal ton ,  R. J., 1985/86). 

Accounting for the size of the overcoring diameter in the analysis of 
in-situ stress measurements complicates the analytical solution. Therefore, 
it is common practice to neglect the finite character of the overcoring diam- 
eter in the solution by assuming that the process of overcoring is equivalent 
to applying a three-dimensional stress field at infinity. The components of 
that stress field are equal in magnitude but opposite in sign to that of the 
in-situ stress field. The validity of this assumption depends firstly, on the 
type of instrumented device used in the overcoring technique. If the device 
in contact with the pilot hole rock walls does not interfere with the defor- 
mation of the rock during overcoring, then the overcored sample will be 
completely free of strains and stresses after completion of overcoring. This 
is true regardless of its size and shape and therefore the overcoring diam- 
eter can be set equal to infinity. Devices that permit the strain relief with- 
out interference include the U. S. Bureau of Mines gage (Merril l ,  R. H., 
1967) and the CSIR triaxial strain cell (Leeman,  E. R., Hayes ,  D. J., 1966). 
If the instrumented device does interfere with the rock deformation and can 
be described as a hollow or solid inclusion probe perfectly bonded to the 
pilot hole walls, then overcoring does not produce a total relief since the 
presence of an inclusion results in the retention of residual stresses and 
strains within the inclusion and in the overcored sample in a region near 
the contact between the rock and the inclusion. Provided overcoring takes 
place beyond that region, the errors involved in neglecting the finite over- 
core diameter become insignificant and the overcoring diameter can be set 
equal to infinity. If this is not the case, the size of the overcoring diameter 
must be taken into account since it will influence the distribution of stresses 
and strains within the inclusion. Devices that induce residual stresses include 
the CSIRO (Woro tn ick i ,  G., Wal ton ,  R. J., 1976) or LNEC (Rocha,  M., 
et al., 1974) hollow inclusion cells and solid epoxy probes such as the ones 
proposed by R o c h a  and Si lver io  (1969) and B l a c k w o o d  (1977). 



118 B. Amadei: 

Whenever the overcoring diameter can be set equal to infinity, and the 
in-situ stress field components in an x, y, z coordinate system attached to 
the overcoring hole is represented by the components of matrix (~0) in 
Eq. (4), then the process of overcoring can be seen as applying a three- 
dimensional stress field equal to -(~0) at infinity. Eqs. (15) and (16) can 
be used to relate respectively changes in strain or displacement measured 
during overcoring of a solid or hollow inclusion device, or directly on the 
walls of a pilot hole, with the components of the in-situ stress field. In 
these equations, ((~0) must be replaced by - ((70). Applications of these closed- 
form solutions for the analysis of data obtained with the CSIRO cell in iso- 
tropic or anisotropic rocks can be found in A m a d e i  and W a l t o n  (in 
preparation). 

Another problem associated with residual stresses induced by inclusion 
devices is the bonding between the rock and the inclusion. Interpretation of 
overcoring measurements in terms of in-situ stresses implies perfect bonding 
between the rock and the instrument. Since in-situ stress fields in rock are 
mostly compressive, compressive stresses will also be released during over- 
coring and the residual radial stress at the contact rock inclusion will be 
mostly tensile. If this stress is large enough and reaches the tensile strength 
of the bond between the rock and the inclusion, breaking and separation 
will take place and the in-situ stress measurement will be invalid. The same 
problem will arise if the residual shear stresses reach the shear strength of 
the bond material. 

In view of the problems described above, a knowledge, or even just an 
appreciation, of the magnitude and distribution of residual stresses is re- 
quired when interpreting in-situ stress measurement data obtained with in- 
clusion instruments. This can be done by assuming first that the overcoring 
diameter is equal to infinity and by using Eqs. (15) or (16) to calculate from 
the overcoring measurements the components of the in-situ stress field de- 
fined by matrix (~0). Then Eq. (19) is used with ((r0) replaced by -(~0) to 
obtain the distribution of residual stresses in the rock modelled as an in- 
finite medium. This distribution is then checked with respect to the follow- 
ing two simultaneous constraints: 

(i) along the overcored sample outer surface, the radial component err 
and the shear components, ~r0, rrz, of residual stresses must vanish (or be 
negligible), 

(ii) the radial and shear residual stresses at the contact between the 
rock and the instrumented device must not reach the tensile or shear 
strengths of the bond material. 

If both constraints are satisfied, using an infinite overcoring diameter 
to interpret the overcoring measurements is correct. Otherwise, the finite 
character of the overcoring diameter must be taken into account. 

Two sets of parameters will influence the residual stress distributions 
when using inclusion type instrumented devices: (1) the type and geometry 
of the inclusion, and, (2) the deformability of the rock. The type refers to 
either solid or hollow inclusions whereas the geometry is defined for hollow 
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inclusions only and refers to the ratio between their outer and inner radii. 
The deformability of the rock refers to the anisotropic rock character, the 
degree and type of rock anisotropy, the orientation of the anisotropy with 
respect to the hole in which the inclusion is located and the relative de- 
formability of the rock with respect to the deformability of the inclusion. 
This is defined by the ratio E/E1 and by the other dimensionless parameters 

Mpa 
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Fig. 6. Variation of the radial stress component err at the contact inclusion, isotropic 
medium (0<0<180 ~ when (a) E/EI=0.5 and (b) E/EI=O.05 

of Eqs. (12), (17), (18), entering into the expressions of the components of 
matrix (Qd:') in Eq. (19). It is noteworthy that there are several ways to 
understand the variation of the ratio E/E1. For instance, an increase of this 
ratio will take place if the rock becomes softer in the x' direction attached 
to the rock anisotropy, and/or the inclusion becomes stiffer. It should be 
kept in mind that the limiting case E = 0  and a=b will induce no residual 
stresses in the rock since the inclusion vanishes. 

In order to illustrate the previous remarks, two numerical examples 
are now presented with the geometry of Fig. 1. As a first example, consider 
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an infinite isotropic medium with Young ' s  modulus E1 and P o i s s o n ' s  
ratio equal to 0.25 that is loaded at ins by a stress field with compo- 
nents az ,0=7MPa;  ay,0=2.5MPa;  a~,0=5.8 MPa; zu~ ,0=- l .8  MPa; 
vx~,0 =1.0 MPa; r~u,o=2.6 MPa 4. The inclusion has a P o i s s o n ' s  ratio equal 
to 0.3, a Young ' s  modulus E and a geometry defined by the ratio a/b. 
Two  values of the ratio E/E1 are considered (0.5, 0.05) and four values of 
a/b are considered (1.2, 2, 3, oo). The case a/b = ~ corresponds to a solid 
inclusion. Figs. 6a and 6b show respectively the variation of the radial 
stress component ar at the contact between the inclusion and the isotropic 
medium for the two values of E/E1 and the four values of a/b considered 
above, a~ varies between l~igh and low vaIues especially when E/E~ =0.5 
and can be as large as some of the stress components applied at infinity. 
The magnitude of ~ is strongly reduced as the ratio a/b decreases and/or 
when E/El=0.05. Fig. 7a shows the variation of the radial stress induced 

a r 
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0 E / E 1 - - 0 . 5  

A E / E l =  0 . 0 5  

- -  a / b  = Qo 

_ _ _  a / b = 2  

1 L i ~ i 

0 1 2 3 4 5 r/a 

Fig. 7 

by the inclusion in the isotropic medium along the x axis (0 =0 ~ of Fig. 1 
for a/b=2 and infinity and for the two values of E/E1 considered above. 
(~r decays rapidly but is still non-negligible at a distance of five times the 

4 Stress field borrowed from Duncan Fama and Pender (1980). 
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radius of the hole, a, unless a/b is less than 2 and /or  E/E1 is equal to 0.05. 
Similar conclusions apply for the induced shear stress components  rrz, 7;r 0 as 
shown in Figs. 7b  and 7c. Let the medium and the inclusion considered 

re., 
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I 
E) E/E1=0.5 

E/E 1 =0.05 

a/b =oo 
_ _ _  a/b = 2 

~ , ~  2 3 4 5 . 
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0.6. ,1~ A E/El  =0.05 

I \  \ - -  - a/b = ~o 

0.4_ ! \ ~  a/b 2 

0 1 2 3 4 5 
C 

Fig. 7. Variation of stresses induced by an inclusion within an isotropic medium along the 
x axis of Fig. 1. (a) Radial stress ccr, (b) shear stress fro and, (c) shear stress rrz 

above be respectively a rock and an instrumented probe that  is to be over- 
cored, and let the components  of (~0) be those of the in-situ stress field. 
Constraints (i) and (ii), associated with the assumption of neglecting the 
size of the overcoring diameter, are most  likely to be satisfied if for  a solid 
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probe the ratio between the Young ' s  modulus of the rock to that of the 
probe material, E/E1, does not exceed 0.05 or if for a hollow probe the 
same ratio is equal to 0.05 but the probe is thin walled (a/b less than 2). 
This conclusion was reached by assuming an overcoring diameter varying 
between three and five times the pilot hole diameter and a rock inclusion 
bond tensile strength ranging between 3 and 5 MPa. Similar conclusions 
about the adequacy of solid and hollow inclusions as overcoring instru- 
mented devices have been proposed by D u n c a n  F a m a  (1979) and D u n c a n  
F a m a  and P e n d e r  (1980) for rocks modelled as isotropic material sand 
by A m a d e i  (1983) for rocks modelled as anisotropic materials. 

As a second example, consider now a rock that can be modelled as an 
infinite transversely isotropic medium with a hollow inclusion that has the 
geometry and properties of a CSIRO cell. The planes of transverse isotropy 
correspond, for instance, to schistosity, foliation or bedding planes or to 
any apparent direction of rock symmetry. The orientation of these planes 
with respect to the inclusion is assumed to be known and to be defined by 
the angles fl and W of Fig. 3b. Both angles vary between 0 and 90 degrees. 
The inclusion has fixed geometry and properties such that E=3500 MPa, 
~,=0.4 and the ratio a/b is equal to 1.1875 (thin walled inclusion). The 
deformability of the rock 
The domains of variation 
defined as follows: 

a) E/E1 varies between 

is defined by the five elastic properties of Eq. (2). 
for the five parameters of Eq. (17) are arbitrarily 

0.1 and 1. The first value corresponds to El-- 
35,000 MPa (defined as high modulus rock) and the second one to 
E1 =3500 MPa (defined as very low modulus rock). 

b) ~32 and ~21 are equal to 0.25 and 0.27 respectively. 
c) The domain of variation of El~E2 depends on the values of ~21 and ~32. 

According to P i c k e r i n g  
fled for the strain energy 

(1970), the following condition must be satis- 
to be positive. 

z~ (1 -~,32) - 2  ,,212 > 0. (20) E1 

For the values of v82 and v21 considered above, this is satisfied if El~E2 
is less than 5.14. The following three values of El~E2 are considered: 
2, 1 and 0.5. 

d) El~G12 is equal to 2.19, 4.38 and 8.75. 

The stress field applied at infinity and defined by matrix ((*0) has the same 
components as in the previous example. 

An example of distribution of the radial stress component rrr and the 
shear stress components ~:ro, rrz at the contact between the rock and the 
inclusion is shown in Fig. 8 for fixed conditions of rock anisotropy. As far 
as the maximum value of Cr along that contact is concerned, Fig. 9 shows 
its variation with the ratio El~E2 and the angle fi when E/EI=0.1. The 
angle W, the ratio El/G12 and the other parameters are all fixed. Cr in- 
creases with the angle/3 when El~E2 is equal to 2 and decreases as fl in- 



Applicability of the Theory of Hollow Inclusions 123 

creases for E1/E~ equal to 1 and 0.5. Also shown in this figure is the in- 
crease of (rr with El~E2 for any fixed value of the angle ft. This variation 
can also be seen as an increase of err with the ratio E/E2 since E/E2= 
(E/E1) (El~E2) and the ratio E/E1 is fixed. The same behaviour was observed 
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Fig. 8. Variation of the radial stress O'r and shear stresses Vro, "Cr~ at the contact inclusion 
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Fig. 9. Variation of the maximum value of the radial stress err at the contact rock inclusion 
with the angle fl for different values of El~E2 and for El~G12=8.75; E/Ez=0.1; v21=0,27; 

va~ =0.25; Ip=30 ~ 
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for the other values of E/E1 and E1/Glz considered in this analysis but 
much higher values for the magnitude of ar were obtained for larger values 
of E/E1. The increase of the maximum contact radial stress (rr with El~E2 
was also observed when the angle ~ varies but the angle fl, the ratios E/Ex 
and El~G12 are fixed. This is shown in Fig. 10 when fl is equal to 90 de- 
grees. If the orientation angles fl, V and the ratios El~E2, E/E1 are now 
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Fig. 10. Variation of the maximum value of the radial stress err at the contact rock inclusion 
with the angle ~ for different values of El~E2 and for El~G12=8.75; E/EI=0.1; ~21=0.27; 
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fixed, then err was found to increase with the ratio El~G12 or equivalently 
with E/G12 since the ratio E/G12 = (E/E1) (El~G12). This is shown in Fig. 11. 

As far as the maximum value of the shear stress fro at the rock-in- 
clusion contact is concerned, it was found that its variations with the orien- 
tation angles fl, ~0 and the ratios E/E1, El~E2 and E1/G~2 follow the same 
patterns as for the maximum value of err described above. In this numerical 
example, it was also found that the shear stress component rrz along the 
rock-inclusion contact is small and that its variations with the parameters 
considered above was negligible in comparison to the variations for ~r and rr0. 

Figs. 9 to 11 show that for a transversely isotropic rock for which 
the planes of transverse isotropy have a fixed orientation with respect to 
the inclusion, the magnitude of both the maximum radial and shear stress 
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Fig. 12. Variation of the maximum values of the radial and shear stresses at the contact 
rock inclusion with the ratio E/E1 when El~E2=2; E1/Gl~=8.75; 921=0.27; v82=0.25; 

fl = O o- ~=300 

components at the contact between the rock and the inclusion depend on 
the values of E/E1, E/E2 and E/G12 instead of E/E1 only for an iso- 
tropic rock. Fig. 12 shows the variation of these stress components when 
E/E1, E/Ez and E/G12 increase simultaneously. This was done by keeping 
El~E2 and El~G12 constant and by increasing E/E1. This figure indicates a 
drastic increase of the maximum values of the contact stresses with the 
ratio E/E1. 
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The distributions of the radial stress (rr and the shear stress components 
Zr0, Zr~ induced by the inclusion in the anisotropic rock were found to de- 
pend on the five parameters of Eq. (12) and on the angles fl and ~. Fig. 13 (a) 
shows an example of distribution of r along the y axis of Fig. 1 (0 =90 ~ 
when E/E1 varies between 0.1 and 1. The other four parameters and the 
orientation angles are all fixed, err is found to decay very rapidly near the 
contact between the rock and the inclusion but is still non-negligible at a 
distance of five times the radius of the hole in which the inclusion is located 
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unless E/E1 is less than 0.3. Assuming that (i) the inclusion considered 
before is used as an overcoring instrumented probe, (ii) ((r0) defines the 
in situ stress field, and (iii) the overcoring diameter ranges between three 
and five times the pilot hole diameter, then, the finite character of the over- 
cored diameter could be neglected when measuring in-situ stresses if E/E1 
was less than 0.1. In other words, for a transversely isotropic rock with 
elastic properties such that El~E2=2 and El~G12=8.75, the ratios E/E2 
and E/G12 will have to be respectively less than 0.2 and 0.875 for assuming 
the overcoring diameter to be at infinity. Similar conclusions apply for ~:rz 
and ~:re whose distributions are shown in Figs. 13 (b) and 13 (c) respectively. 

Conclusions 

Analytical solutions have been proposed in the rock mechanics litera- 
ture for the interpretation of overcoring measurements in terms of in-situ 
stresses in isotropic and anisotropic grounds. Whenever solid or hollow 
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inclusions are used as instrumented probes, residual stresses and strains will 
remain in the overcored rock sample and in the probes. When using such 
devices for computing the in-situ stress field components, it is common 
practice to assume that the overcoring diameter is infinite and that there is 
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Fig. 13. Distr ibution of stresses induced by an inclusion in an anisotropic medium along 
the y axis of Fig. 1 for different values of E/E1. (a) Radial stress err, (b) shear stress rr~, 

(c) shear stress fro 
E1/G1~=8.T5; El~E2=2; v21=0.27; va2=0.25; f i=0~ W=300 

a perfect bonding between the rock and the probes. However, the validity 
of these assumptions depends on the magnitude and distribution of the 
residual stresses. This can be assessed by using the closed form solutions 
presented herein. These solutions should be used with the following proce- 
dure: (i) the overcoring diameter is set equal to infinity and the in-situ stress 
field is determined from the overcoring strain and/or displacement measure- 

9 Rock Mechanics, Vol. 18/2 
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ments, (ii) the residual stresses are calculated at any point in the rock and 
along the contact rock probe. The residual stresses must satisfy two con- 
straints: the radial and shear stress components of residual stresses at, ~ro, 
rr~ must vanish (or be negligible) along the overcoring diameter and the 
residual stresses at the rock-probe contact must not reach the tensile and 
the shear strengths of the rock probe bond material. If any one of these two 
constraints is not satisfied, then the finite character of the overcoring diam- 
eter must be taken into account when analyzing the overcoring measure- 
ments and the solution proposed by A m a d e i  (1983) cannot be used. 

The closed form solution proposed herein for the residual stress com- 
ponents show that they are linearly dependent on the components of the 
in-situ stress field and that their magnitude and distribution are also depen- 
dent on the isotropic-anisotropic character of the rock as well as on the 
relative deformability of the rock with respect to the deformability of the 
material comprising the instrumented inclusion. In the numerical examples 
proposed in this paper, this was expressed by the ratio E/E1 for an isotropic 
rock and by the ratios E/E1, E/E~ and E/G12 for a rock modelled as a 
transversely isotropic material. For a rock with given isotropic or anisotropic 
elastic properties, solid inclusion type overcoring instrumented devices will 
have to be very soft with respect to the rock in order to keep the residual 
stresses in the overcored sample small in magnitude and distributed over a 
region near the contact between the rock and the instrumented device. If 
the device is a hollow inclusion, it will have to be both soft and thin walled 
for these conditions to be satisfied. This seems to apply regardless of the 
isotropic, anisotropic character of the rock. For given elastic properties and 
geometry of the overcoring instrumented device, isotropic rocks for which 
the ratio E/E1 is large or transversely isotropic rocks for which E/E1, E/E2, 
E/G12 are large will be associated with higher residual stresses that are dis- 
tributed over a larger domain in the overcored sample than for rocks for 
which the above ratios are small. A combination of soft rock, high modulus 
inclusion type instrumented device with inadequate geometry and high in-situ 
stress field may lead to unacceptable residual stresses in the overcored sample 
and in the device. For such a case, the overcoring diameter could not be 
neglected and separation could take place at the contact between the rock 
and the device. 

The magnitude and distribution of residual stresses in the inclusion 
type instrumented devices and in the rock will also depend on the orien- 
tation of the pilot hole with respect to the directions of the principal in-situ 
stress field components. This was observed by D u n c a n  F a m a  and P e n d e r  
(1980) for isotropic rocks but has not been considered in the present anal- 
ysis either for isotropic or for anisotropic rocks. 

It is noteworthy that in order to use the analytical solutions presented 
in this paper, the deformability properties of the rock must be determined. 
This is particularly important when dealing with anisotropic rocks for 
which the directional character of these properties must also be assessed. 
Laboratory tests may be conducted on specimens located remotely from the 
site of the overcoring stress measurements. This may lead to errors in the 
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determination of the rock deformability due to possible variations of the 
rock properties from one point to another in the rock mass. These variations 
can be eliminated by testing directly the overcored sample containing the 
instrumented device in a biaxial pressure chamber. The rock response in the 
biaxial test can then be analyzed in terms of isotropic or anisotropic elastic 
properties as proposed by A m a d e i  and W a l t o n  (in preparation) for the 
CSIRO cell. 

Finally, when drawing the previous conclusions, it is assumed that the 
overcoring process described in Fig. 5 does not create any stress disturbance 
effects. These are, for instance, stress concentrations near the end of the 
pilot hole, the large diameter hole or the overcoring grooves. A three- 
dimensional analysis conducted by B l a c k w o o d  (1982) has shown that for 
isotropic rocks and solid inclusion stress instruments, these effects are negli- 
gible if some provisions are made regarding the geometry and position of 
the instruments in the pilot hole. Such an analysis is also needed for aniso- 
tropic rocks since both the degree of anisotropy and the orientation of an- 
isotropy with respect to the pilot hole may now control the magnitude of 
overcoring stress disturbance effects. 
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