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Summary 

The method of interpreting hydraulic tests in a harmonic state described by 
Fras etal. (1981), is applied to a physical laboratory model which simulates a 
fractured rock environment with several sets of cracks of different thicknesses. 
Particular attention is paid to the problem of practical identification of the fracture 
parameters using a theoretical file of spectral signatures. These results enable to 
envisage an in situ survey phase using a harmonic probe that is currently being 
calibrated in the laboratory. 

Introduction 

Of the range of methods used for the reconnaissance of fractured rock 
media, continuous and transient hydraulic appear to be necessary for the 
assessment of hydraulic and geometrical characteristics. Transient tests have 
been developed above all for fractured oil reservoirs ( G r i n g a r t e n ,  1971; 
G r i n g a r t e n  and W i t h e r s p o o n ,  1972; W a n g  et al., 1978), and their ad- 
vantages are that they can include compressibility and/or inertia, thus pro- 
viding richer information than continuous tests. However, these tests come 
up essentially against the possibility of setting up highly dynamic states 
because of the inertia of the excitation systems. A reconnaissance technique 
with an established dynamic state was developed by C r o s n i e r  et al. (1979), 
to improve on the possibilities of continuous tests without the disadvantages 
of classic transient tests. A sinusoiadl flow is created in this method and 
the resulting pressure is measured; interpretation is carried out in frequency 
space (Fras, 1979; P o r t a l ' s ,  1981), offering entirely new possibilities as 
compared to all known tests. 

1. Description of the Method 

1.1 Principle 

The two-phase (matrix + water) fractured horizon fitted with a test de- 
vice and boundary conditions forms a system which receives an input signal, 
flow Q (t), and returns an output signal, the difference in head A H (t) at 
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the shaft. If the system can be considered as linear and invariable around 
the point of operation, input and output are linked by a convolution integral: 

t 

3 H  (t)= y h ( t -T) .Q (r).dz. (1) 
o 

Function h (t) is the impulse response of the system, i. e. the response 
to a flow impulse. The calculation is carried out in Laplace transformed 
space, by multiplying the transformed functions; s being the Laplace variable: 

3 H (s)= H (s). Q (s). (2) 

Function H (s) is referred to as a system transfer function. 
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Fig. 1 a. Case s tudied 

1.2 Method 

Distinction can be made between three phases: 

A. Acquisition o[ the real transfer function of the system, by subjecting 
to a signal with a sinusoidal flow at various frequencies; harmonic 
pumping. 
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B. The constitution of a file of theoretical transfer [unctions established 
from the mathematical modelling on the fractured medium studied: di- 
rect problem. 

C. Identification of the parameters by comparison of the spectral signature 
with the transfer functions file: inverse problem. 

1.3 Description of the Case Studied (Fig. 1 a) 

Fras  et aI. (1981) have described the experimental laboratory results 
concerning a system with one or two cracks of the same thickness. Here, 
the results of laboratory tests on systems with several groups of fractures 
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Fig. l b .  Locating a point in the fissure 

of different thicknesses crossed by a boring are described. The sinusoidal 
flow is applied at a distance Rv from the axis of the boring, while the 
hydraulic head imposed is constant at a distance RI from this axis. 

2. Acquisition of the Spectral Signature 

2.1 Description of the Physical Model 

The experimental apparatus included: 

a) the study model defining the radial flow around a boring, 
b) the boundary conditions, 
c) the pressure and flow measuring apparatus. 

6 Rock Mechanics, Vol. 18/2 
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a) The study model (Fig. 2) consists of a duralumin plate and plexiglass 
plates. These plates define a flow field limited to a circular sector with 
an angle of 33 o in the centre. The thickness of the various fractures thus 
defined can be set by means of wedges placed between the various plates 
and outside the flow zone. An O-ring makes the apparatus watertight 
and is judged to have very little effect on the flow. It is thus assumed 
that the radial flow conditions are fulfilled. 

Fig. 2. Study model 

b) Boundary conditions: Two stabilization chambers limit the flow between 
the plates; the internal chamber is circular, 135 mm in diameter, and 
represents a boring with an axis perpendicular to the fissure plane. The 
sinusoidal flow, generated by a piston, is set up from the chamber. The 
power required is provided by an electrical reduction gearing apparatus 
enabling motor output speeds of 6 to 700 r. p. m.; this corresponds to an 
explored frequency range of 0.1 Hz to 11 Hz. The external chamber, 
enabling the static head to be applied and maintained practically con- 
stant during the tests, is located 810 mm from the axis of the boring. 

c) Measurement apparatus (Fig. 3): The physical quantities are the flow 
and the dynamic pressure set up at the entry to the fracture system. 
These two quantities must be measured for each excitation frequency. 
In general, modulus and phase of the flow and the pressure have to be 
measured to get the model transfer function. However, in a number of 
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cases, as in the present case, the determination of the modulus is suffi- 
cient for the reconnaissance of the system, as will be explained in 
section 4. 

Fig. 3. Measurement apparatus 

Monitoring the speed of rotation of the shaft coming out of the gear- 
ing apparatus makes it possible to calculate flow Q. This flow is, in fact, 
linked to the excitation frequency f and to the volume injected V during a 
half-stroke of the piston. 

Q=2z~. f  .LIV 

where [: excitation frequency; A V: volume injected. 
Monitoring of excitation frequency f is carried out by counting the 

impulses given by a photoelectric cell. 
The dynamic pressure set up in the test chamber was measured by a 

probe with a piezoresistive membrane and with a sensitivity of 15.9 mV/cm 
of water. Processing of the pressure signal was carried out using a double 
phase synchronous detector with a minimum detectable frequency of 0.1 Hz. 

Calculation of the modulus of the spectral signature was then carried 
out by computer. 

2.2 Harmonic Tests 

The various different experimental cases covered are given in Table 1 
below. 
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Table 1 

Number Total number Set (hi, el) Set (n2, e~) 
Figures of Sets of fractures 

n = nl + n2 nl el (ram) n2 e2 (ram) 

Tes t  1 No .  4 1 2 2 2 0 - -  

Tes t  2 No .  5 2 2 1 2 1 1 

Tes t  3 No .  6 2 2 1 4 3. 1 

Tes t  4 No .  7 2 3 1 4 2 1 

Tes t  5 No .  8 2 3 1 4 2 2 

2.3 Results 

Only the moduli  of the experimental  spectral signatures obtained by 
the five tests are plotted in Figs. 4 to 8. These figures are represented in 
log-log axes as follows: 

- -  x-axis: excitation frequency f in Hz. 

- -  y-axis: transfer function moduli  expressed in SI units, using the pres- 
sure P instead of the difference of head d H. 

These results are discussed in paragraph 4. 
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3. Const i tut ion of a File of  Theoret ical  Transfer Functions 

3.1 Schematic Representation o / the  Fractured Medium 

The schematic representation of the experimental device is very close 
to the physical reality of the laboratory model and consists of a group of 
sets of horizontal fractures limited by a cylindrical surface with a radius R f, 
coaxial to the shaft whose radius is R, .  Each set is made up of m fractures 
of the same thickness ei (Fig. 1 a). The fluid is assumed to be incompressible; 
its density is referred to as 0 and its kinetic viscosity as v. Its flow is as- 
sumed to be laminar. 

In the reference state which defines the initial conditions, the head is 
assumed to be uniform in all the fractures, i. e. H0. The input signal, which 
is the flow Q (t), is assumed to run entirely into the cracks. The output 
signal is the difference between the instantaneous head H (Rp, t) in the in- 
jection chamber and the initial head H0. This difference is referred to as 

H (t). 

3.2 Obtaining the Trans/er Functions 

- -  Single/racture 

a) Flow in a/racture - -  equations (Fig. 1 b) 

We recall the basic equations characterizing flow in a fracture devel- 
oped by F r a s e t  al. (1981). 

Let a cartesian coordinate system be denoted Oxy~. This system is chosen 
in such a manner that the fissure walls are represented by two planes of 
equations z = 0  and z=e .  These walls are limited by two O~-axis cylinders, 
the radius of which are respectively R ,  and Rf. On the R;-cylinder, we 
impose the sinusoidal flow rate, a constant charge H0 being the condition 
chosen on the Rf cylinder. 

We assume that the flow is radial and axis-symmetric. According to a 
polar coordinate system (r, 0, z) of origin, O if velocity and pressure are 
denoted V and P, we may deduce that these variables do not depend on 0, 
and tangential and vertical velocity components are zero: 

P =P (r, z, t) 

V--(U (r, z, t), 0, 0). 

Under such conditions, if the fluid is assumed to be newtonian and 
incompressible, according to a local reference system (r, 0, z), the N a v i e r -  
S t o k e s  and continuity equations are to be written: 

~U U.SU 
8t -~ 8r 

1 aP fa~u  1 au u a ~ 8 /  

1 0 P  
o =  - g -  ~ - ~ ,  

a (r. u) 
~r : 0 ,  R ~ < r < R f ,  O < z < e ,  O<t. 
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The second equation gives an hydrostatic distribution of the pressure 
along z-axis. In term of water column, pressure is given by: 

P (r, z, t) 
H (r, t) = z + ~g 

The initial and boundary conditions are as follows: 

U (r, z, t=0) =0, 

H (r, t = 0) = Ho, 

U (r, z = O, t) = O, U (r, z = e, t) = O, 

H (r = RI ,  t) = Ho,  

QI (t) =2:rR~-  i U ( r = R p ,  z , t )  dz .  
o 

QI (t) being the rate of flow into the fracture. 

b) T r a n s [ e r  [ u n c t i o n  

Solving the above system of equations, we obtain the relation (3) which 
expresses directly in Laplace transformed space the variation of the head 
A H (s), in a single fracture and at its entry, in function of the flow QI (s) 
running through it, s being the Laplace variable. 

A H (s) - QI  (s)- s .  Log (Rs/Rp) 
2z~g [e+2 Wv~-s (1-cos h (V~7~.e))/sin h (Vs~-.e)] (3) 

- -  rn se ts  o / [ r a c t u r e s  

Attention was paid to the transfer function between the total flow 
Q (s) and the difference in head d H (s). In this case, the total flow Q (s) 
is the sum of the partial flows Q, (s) of each fracture set i: 

Q (s) = ~ Q/(s). 
i=1 

In addition, it is assumed that each flow Q~ (s) is divided equally be- 
tween the m fractures of the set of fractures under consideration. If Qji (s) 
refers to the flow running into a fracture of the i-th family, the following 
equations can be written: 

Q~ (s) = hi. Qji (s) 

Q (s) = ~ ni. Q)'~ (s). (4) 
i=1 
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Equat ion (3) can be applied to each fracture, i. e.: 

A H (s) QI~ (s). s- Log (RI/Rv) 
2~gei [1+2 1 / ~  (1-cosh (Vs~.ed)] 

e~ " s in  h ( l /s~-~.ed 

which can be writ ten formally as follows: 

where:  

A H = Qz*" Log (RffR.) 
2 ~g.e,. L (e,:) (5) 

1+2 V~-]~ (1--cos h (/~.ei)) 
ei sinh (~/s~. ei) 

(e~) = 
$ 

If Eqs. (4) and (5) are combined,  the transfer funct ion between the 
total  f low Q (s) and the variation in head A H (s)- is obtained:  

2Jrg �9 ~ n ~ . e ~ . L ( e ~ ) . d H ( s )  and F(s)= AF,(s) 
Q (s)- Log (Rf/Rp) i=1 Q (s~)- 

The  transfer funct ion F can be represented by its modulus  and its 
a rgument  after replacement  of s by jco, co being the pulsat ion of 2 ~f, with 
f being the frequency, or also by its Nyquist  diagram as shown below: 

a) Modulus of the transfer function 

lAPel K o~ 

'fi'-- ~ [(Xime' 2~A"C'+B'~y-J'2+(Xin'e i (_ l  
A,-B,.C~ ))2] 1/2 

2 fl, (1 + C, 2) 

(6) 

where: K = Log (RI/R~)/(2 :rg) 

fli = - -  2v 
A~ = th fl, + tg fif 

B~ = th fl, - t g  fl~ 

C, = th fl~" tg fl~ 

b) Argument of the transfer/unction 

ni e~ [ 1 Ai  - B,-  Ci 
Arg F = A r c  tan i=l 2fi~ [1u 2) ] (7) 

[ A~'Bi+C~ ] 
?14 e~ 

i=l 2//~ (1 + Cl 2) 

Formulae  (6) and (7) make  it possible to assemble a file of the theo- 
retical transfer functions for m sets of fractures (m, ed. 
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Figures 4 to 8 show the transfer functions of the various fracture sys- 
tems (Table 1) studied experimentally, after replacement of the difference 
in head A H (s) by the pressure P (s) by means of equation P (s)=~g A H (s). 

The values of the parameters R~0, R~, ~ and v are those chosen for 
the physical model: 

R~ = 6.75.10-2 m ~ = 10 a SI 

RI = 8.1 �9 1 0  - 1  m ~ = 1 0  - 6  SI 

c) Nyquist diagram 

At a given pulsation ~, it is possible to obtain in the complex plane, 
a geometrical construction of vector F, relative to a set of fissures, when 
knowing the vectors F1, F2 , . . .  Fr . . . .  Fm relative to each family of fissures. 

As pressure P is assumed to be the same for all the fissures - -  in 
modulus and in phase - -  the total quantity of flow, i. e.: 

Q=QI+Qe+... +Q~+... +Qm 
becomes: 

F ~ F ~ F 
- - _  + - = - + . . .  + ~ - + . . .  + _  

F1 F~ Fl Fm 

The following complex relation is thus obtained relating F to the 

different Fi: 

~ -  = (8)  
F i F~ 

This relation (8) allows a geometrical construction in the complex plane 

1 1 (Fig. 19). of ~- ,  summing up the different vectors F~- 

4. Identification of the Parameters 

Comparison of the experimental spectral signature of a system to 
be surveyed and the file assembled above leads to the identification of the 
parameters. 

The followed are examined in turn: 

- -  the theoretical problem of the unicity of the determining of the pa- 
rameters. 

- -  analysis of the structure of the transfer function : physical and mathe- 
matical parameters. 

- -  the practical procedure for obtaining the parameters. 

- -  application to the case in question. 



Reconnaissance of Fractured Media with Several Systems of Fractures 89 

4.1 Theoretical Unicity 

The transfer function appears as a function of frequency f, dependant 
on 2 m parameters (nl, ei, i = 1 to m). 

It was shown elsewhere (Porta lhs ,  1981) that for the physical model 
studied in this article there is biunivocal correspondence between the set of 
values (nl, el, n2, e2) and a transfer function. 

In other words, a single transfer function corresponds to a fractured 
system made up of two fractures characterized by the values of two couples 
(m, ei) and, reciprocally, a single set of values of these parameters corresponds 
to a given transfer function. Such a correspondence has also been proved in 
the case of 3 families of fractures. 

4.2 Groups of Identifiable Parameters 

Analysis of the structure of the transfer function reveals certain group- 
ings of parameters which are identifiable by adjustment of the real spectral 
signature to the spectral file. 

The first step is to obtain as much information as possible from the 
behaviour of the transfer function at low frequencies and then at high 
frequencies. 

This behaviour is analysed below" by limited expansion and asymptotic 
expansion of F respectively. 

4.2.1 Low Frequencies 

- -  Modulus  of F 

The behaviour of F-at low frequencies can be analysed using the fol- 
lowing expression: 

{El = 6v Log (Ry/Rv) 1 + 0  (co) 
z [ I ~ 2 211/2 g [(Xi nieia)~+ l~y.(iXn~e,~ ).co J 

with the following limit for co tending towards O: 

t~- J = 6 v Log (RI/R~o) i 
or g X n~-e~ 8 

i 

- -  Argument  of 

The behaviour of Arg F-at low frequencies can be analysed using: 

(9) 

Z n~.ei 5 ] 
- -  1 i 

Arg F = Arctan -10~" s m-e~ ~ "co . 
i 

(~o) 
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4.2.2 High Frequencies 

At high frequencies the following expressions give the modulus and 
the argument of the transfer function: 

N M o d u l u s  of  F 

- -  A r g u m e n t  o[ 

- Log (RI/R~) ~ (11) 
iF[ = 2=g X m.e, 

i 

_ [ /~ n~" ei ] 
A r g F = A r c t a n [ ' - / Z N  " V ~ - ~  " (12) 

4.2.3 Parameters 

a) M a t h e m a t i c a l  parameters  

The four expressions (9), (10), (11) and (12) representing the expression 
of the modulus and the argument of the transfer function at low and high 
frequencies enable the identification of 4 groups of parameters. These pa- 
rameters are written as follows: 

p l  = 22 m,  pa = X m "  e~ 3, 
(13) 

p2= X m " e~, p4= X m " ei 5. 

b) Physical  parameters  

The transition from the mathematical parameters (13) to the identifica- 
tion of the physical parameters (m, ed is carried out by inversing the formulae 
(13) after assigning a value to each of the parameters pl, p~, pa and p4. 

c) Inverse p rob lem 

If the determination of (pl, pe, pa, p@ is possible and unique, the in- 
verse problem is said to present uniqueness as far as the mathematical pa- 
rameters are concerned. 

If this first step of uniqueness is verified and in order to get a complete 
uniqueness in the determination of the physical parameters, the inversion of 
formulae (13) must give one but only one solution for the set (nl, ed. 

4.3 E x a m p l e  o~ Ident i f icat ion o~ the M a t h e m a t i c a l  and  Physical  Parameters  

- -  A s s u m p t i o n  1: This example will be given assuming that only two sets 
of fractures (m, el) and (n2, e~) are present. 
This is the case envisaged for the physical model given in section 2. 
Moreover, three different experimental possibilities will be considered: 

- -  O p t i o n  1: the experimental transfer function is assumed to be entirely 
known on a wide range of frequencies, by its modulus and also its 
phase, this last measurement involving a rather sophisticated device. 
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- -  Option 2: the experimental transfer function is assumed to be known 
on a wide range of frequencies, only by its modulus, the experimental 
measuring device being too simple to give the phase. 

- -  Option 3: the experimental transfer function is assumed to be known 
only by its modulus, but only in a medium range of frequencies. 

4.3.1 Option 1: Identification Using the Modulus and the Phase 

A) Identification of the mathematical parameters (pl, p2, pa, p4) 

a) Modulus of 

Low frequencies: when co~0, the theoretical approximation of I~'l 
given by formula (9) shows that the modulus of the signature tends towards 
the horizontal. 

When determining the real spectral signature, the range of low fre- 
quencies has to be wide enough to investigate this "horizontal" portion of 
the curve, to obtain the value of: 

pa=nl ela + n2 e2 8. (14a) 

High frequencies: when c0---~oo, the theoretical approximation of IF[, 
given by formula (11) shows that the modulus of the spectral signature, 
in log-log axis, has a slope equal to 1. 

When determining the real spectral signature, the range of high fre- 
quencies has to be large enough to investigate the portion of the curve 
tending to this 450 inclination. Any particular point A [(DA, IF[A] on this por- 
tion of curve leads, by formula (11), to the determination of: 

p2 =nl"  el +n2 e2. (14b) 

b) Argument of 

Low frequencies: when co---~0, the theoretical approximation of Arg if, 
given by formula (10), suggests plotting tan [ArgF] versus c0, in log-log 
axis. In such a representation, the spectral signature has, when o)---*0, a 
slope, equal to 1. 

When the real signature in the representation stated above, approaches 
a line inclined at 45 ~ any point [coB, tan (Arg ~B] on this portion of the 
curve can be taken in order to compute, by formula (10), the value of the 
ratio p4/pa. As the value of pa is known by (14a), the value of p4 is thus 
obtained: 

p4=nl elS + n2 e2 a. (14c) 

High frequencies: when o---~o% the theoretical approximation of Arg F, 
given by formula (12), suggests, as above, plotting tan (Arg F) versus o~, in 
log-log axis. In such a representation, the spectral signature has, when 

--~o% a slope equal to 1/2. 
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When the real signature, at high frequencies, approaches this slope, any 
point C [o~c, tan (Arg F)c] leads, by formula (12), to the value of the ratio 
p~/pl. Knowing the value of p~ by (14b), the value of pl  is thus obtained: 

pl =nl +n2. (14d) 

In conclusion, in the present case, the inverse problem presents uni- 
queness, as far as the mathematical parameters are concerned. 

Moreover, in this case, the determination of (pl, p2, p3, p4) requires 
only the knowledge of the spectral signature at low and high frequencies, 
the medium range of frequencies not being theoretically necessary. 

~n 9 

.001 .01 .1 1 10 100 
frequency (l{z) 

Fig. 9 a. Asymptotic behaviour of modulus 

Low frequencies: (1) Slope = 0 
High frequencies: (2) Slope = 1 

(Example of test 4) 

The summary of these results appears in Figs. 9, under the conditions 
of test 4 (Fig. 9a for modulus and Fig. 9b for tan (arg.)). 

B) Identification of physical parameters (nl, el, n2, e2) 

As stated in paragraph 4.2.3, if inversion of formulae (14a to d) leads 
to one and only one solution (m, el, n~, e2), the determination of the phy- 
sical parameters will be unique. 
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Property: It can be shown that this inversion, in the general case of 
two families of fractures, leads to a unique analytical solution giving (m, e~, 
n2, e2) (Crosn ie r ,  1983). 
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Fig. 9b.  Asymptot ic  behaviour  of tan (argument) 

Low frequencies:  (1) Slope = 1 
High frequencies:  (2) Slope = 1/2 

(Example of test 4) 

1 0 0  

Simpli[ying assumption 2: To avoid the complexity of a general de- 
monstration of the preceding property - -  complexity of no interest here - -  
the following identification of the physical parameters will be presented 
using the simplifying assumption, according to which el is much larger 
than e~, the number of fractures nl and n2 being of the same order of 
magnitude. 

Inversion of/ormuIae (14a to d): According to the simplifying assump- 
tion 2, relations (14a) and (14c) become: 

p3 % n l  �9 813 

p4 ~ nl �9 el 5 

from which are immediately taken the values of el and nl: 

V -w (p3) ~n (]5) 
e l=  7 7  and nl=(p4)an. 
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These values plus relations (14d) and (14b) given by: 

p l = n l  + n2 

p 2 = n l  e l + n 2  e2 

lead to the values of e2 and n2: 

(16) 

p2 - (ps)2/p4 
e2 - p l -  (pa)S/V(p4) 8/2 

(p8)5/2 
n2 =p l  (p@8/2" 

(17) 

C) Illustration 

Forgetting for a while the values of the parameters (m, ei) fixed on the 
physical model, a complete inverse problem analysis should be possible using 
only the recorded curves of modulus and phase in order to obtain (n/, el) 
from these curves. 

This was not done in these preliminary tests for two reasons: 

- -  The range of frequencies was not wide enough, towards low frequencies. 

- -  The phase curve was not recorded. 

In consequence only an illustration of the theoretical results compared 
to the experimental results is given here with the help of the parameter 
values (hi, e0, which are assumed to be known. 

Theoretical and experimental results are discussed for test 4, reported 
in Fig. 7, for which the simplifying assumption 2 is well satisfied as shown 
below. 

For nl = 1 el = 4 mm 

and n= =2 e2 = 1 mm. 

Exact and approximate values of pa amd p4 are the following: 

Exact values pa = 6.6.10 -8 p4 = 1.026-10 -12 

Approximate values /38 = 6.4,10-s /34 = 1.024.10-12. 

In such a case the following observations can be made (Fig. 7): 

a) Modulus IF] 

At low [requencies the modulus curve behaves as if only the larger 
fissures were present (1 fissure of 4 mm). 

At high [requencies, the modulus curve behaves as for only one fissure 
of thickness Z n/e~, that is the cumulative thickness of the whole system 
(1 fissure of 6 ram). Some limitations in high frequencies are examined in 
paragraph 5.2. 
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b) Phase of Arg IFI 

At low frequencies, the phase curve behaves as if only the larger fis- 
sures were present (1 fissure of 4 ram). 

At high frequencies, the phase curve behaves as for only one fissure, 
its thickness being equal to the barycentric value: 2 mei/Z m (1 fissure of 
2.0 ram). 

Such observations can be made on other tests, with a more or less 
good agreement depending on the validity of simplifying assumption 2. 

However is must be stressed again that this assumption has been used 
here only for ease of discussion. 

4.3.2 Option 2 - -  Identification Using the Modulus Alone 

A) Identification of the mathematical parameter (p3 and p2) by modulus 
of F only 

As described above, only two mathematical parameters, p3 and p2, can 

be obtained with knowledge of modulus [FI at low and high frequencies: 

p3 = nl el ~ + n2 e2 ~, (14b) 

pz=n l  el +n2 e2. (14c) 

B) Identification of the physical parameters 

Of course in the general case of 2 s'ets of fissure it is no longer possible 
to obtain (hi, el, n2, e2) from p3 and p~. However under the simplifying 
assumption 2, as stated above, a determination of (m, el, n2, e2) is never- 
theless possible as shown below. 

Low frequencies: Using assumption 2, we obtain: 

p3 =~ nl el 3. (14 b') 

This value of p3 defines a group of curves with the same nl el 3 at low 
frequencies, when the effect of (n2, e2) is neglected. These curves for h i = l ;  
m = 2  . . . .  , and the corresponding values of el, can be drawn using Eq. (6), 
as shown in Fig. 10a. Around co=0, the comparison of the shape of the real 
spectral signature with this file of curves, leads to the value of nl. 

Thus the parameter (nl, e~) with assumption 2, are still obtained, using 

not only t h e  asymptotic value of [FI, when 0 )40 ,  but also the shape of 
the spectral signature in the vicinity of co =0. 

High frequencies: The asymptotic behaviour, as indicated above, leads 
to the value of: 

p 2  = n l  e l  q- n 2  e2 .  

As (hi, el) is known as shown above, the group n~ e2 is thus obtained. 
Knowing now nl, el and the product n2 e2 it is possible to draw at 

high frequencies, using (6), a group of curves for values n2=1, n2=2, etc. 

7 Rock Mechanics, Vol. 18/2 
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and the corresponding values of e.), for the known value of the product 
n,) e2, as shown in Fig. 10b. 

The shape of the true spectral signature is compared to the set of 
curves defined by nl, ei and nz e~ - -  leading to the value n2 and therefore e~. 

Conclusion: Thus knowing (hi, el) from the shape of the real spectral 
signature in the vicinity of o~=0, and knowing (n~, e~) from the shape of 
the real spectral signature in the vicinity of (o---~oo, the values (nl, el, n~, e~) 
are obtained analyzing only the modulus of Fo 

C) Illustration 

In Fig. 10a and b an illustration of the whole process of determination 
of (n~, el, n~, e~) is given using the modulus iF (~o)1 alone. 
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Fig. 10 a .  Identification using modulus at low frequencies 
Low frequencies: Z '  r/ie~ a = 6 6 . 1 0  . 9  SI 

e l  n2 mm 

4.0~ ] 

4 . 0  2 

3 . 2  / 

2.8  / 

2.5  I 

2 . 3  / 

As an application the case of the system used in the laboratory for test 4 
could still be used. However the recording of the experimental spectral 
signature being made only in the medium range of frequencies, this example 
gives only an illustration of the determination of (nl, el, n~, e~), a case satis- 
fying assumption 2 but ignoring the phase curve. From Fig. 10a, the value 
n l = l  is obtained leading to el=~4.04mm. From Fig. 10b, the value of 
n~--2 is obtained leading to e2~1 mm but with some difficulties, the dif- 
ferent curves being close to each other. 

e2 
~rml 

/ 

1.0 

I 

I 

I 

I 
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4.3.3 Option 3 - -  Identification Using the Modulus Alone in a Medium 
Range of Frequencies 

In some cases, the knowledge of the modulus of the spectral signature 
can be limited only to medium frequencies. This fact can be due to the in- 
ability of the measuring device, to obtain results at very low frequencies. 
At high frequencies, the excitation device can impose some limitation due 
to appearance of turbulence phenomena, as explained in section 5. 

10 8 

v 

10 7 

p~Ic~ 106 

10 5 

104 

.001 .01 .I I 10 100 

Frequency (Hz) 

Fig. 105. Identification using modulus at high frequencies 
High frequencies: Z3 mei = 6-10 .3 SI 

nl 

|  

@i  

m~l n2 

4.C 1 

4 . (  2 

4 . f  3 

4.C 4 

4.C 5 

4.C 6 

2 , 0  

1,0 

0 ,7  

0 . 5  

0 .4  

0 .3  

- -  M e t h o d :  In such a case, the method consists in taking into account the 
whole shape of the spectral signature, the informations given by the asymp- 
totic behaviour of this signature being no longer available in low or high 
frequency domains. 

- -  I l l u s t r a t i o n  

A) 1 s t  s t e p  

The experimental curve, drawn as above in log-log axis, is compared 
to a file of spectral signatures established for one family of fissures of 
thickness e and for different numbers of fissures. 

For example Fig. 11 shows the spectral signature given by Eq. (6) for 
a thickness e = 10-3m and for n varying between 1 and 10. 

7* 
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Figs. 11 to 17 give different files established for families of thickness 
e = 1 0 - 3  m to e = 8 . 1 0 - 3  m. 

As an illustration the experimental  signature obtained in test No.  4 
[ n l = ] ;  e l = 4 m m ;  n 2 = 2 ;  e2=1  ram] is compared  to these different files. 

- -  Ist operation: matching towards low frequencies: The  shape of the real 
curve fits, at low frequencies, the theoretical curve of file Fig. 14, giving 
n l = l  and e ~ = 4 m m ,  assuming that  the thinner fissures do not influence 
results at low frequencies. 

- -  2nd operation: matching, towards high frequencies: The  shape of the 
real curve fits, at higher frequencies, the curve for one family of thick- 
ness Z' n ie , .  

For example  the real curve should fit curve n = 1 of Fig. 16, correspond-  
ing to one fissure of thickness 6 ram. (This is not  exactly the case, due to 
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turbulence effects, as explained in section 5, the volume of the piston being 
too large here). 

Thus n l e l + n 2 e ~ = 6 m m ,  and (n1=1; e l = 4 m m )  give the value of 
n2ee =2.10 -3 SI. 

B) 2nd step 

Knowing the previous information it is now possible to plot a file of 
theoretical signatures, using Eq. (6), for a given set (nl el, n2, e2,) taking 
as a parameter n~. 

The matching of this file and the experimental curve leads to the value 
of n~ and consequently to the value of e~. 
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Fig. 17. File of transfer functions (n= 1 to 10; e =  8.10 -3) 

Fig. 18. Matching between experimental and theoretical curve 

Thus for the example of test No. 4, Fig. 18 gives the final matching of 
the experimental curve and the theoretical curve for (n1=1; e l = 4 m m ;  
n2=2, e2=1 ram). 

4.3.4 Comparison Between Option 1, Option 2 and Option 3 

The identification of parameters by option 1 using the modulus and the 
phase of the transfer function, on a large frequency bandwidth, gives of 
course the best results. 
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The use of the shape of the curves in low and high frequencies in 
option 2 - -  or the use of the shape of the total spectral signature in op- 
tion 3 - -  should in fact appear as a confirmation of the value of the param- 
eters, as given by option 1 and also a confirmation of the value of the type 
of model used. 

5. Discussion of the Method in the Case of Inertia-Viscosity Models 

Passing from theory to practice, three main questions arise: 

a) What is the influence of the theoretical model chosen for elaborating 
the inverse problem? 

b) For a given model, what is the sensitivity of the parameter identification ? 
c) What are the limitations imposed by the linear assumption, necessary 

for all treatment by F o u r i e r  transform? 

Points b and c are discussed below. A class of inertia-viscosity models 
is assumed, this class fitting the experimental device adopted for the present 
qualification of the harmonic method in the case of several fracture families. 

5.1 Resolution Capacity of the Method 

- -  Direct problem: Perfect superimposition of the curve of the theoretical 
modulus and the experimental points is observed in the five tests; this is the 
case for the medium range of frequencies up to 6 Hz (Figs. 4 to 8). 

- -  Inverse problem: An idea of the sensitivity of the inverse problem can 
be approached by examining Figs. 10a and 10b. 

It appears that reducing the number nl or n2 of the fractures to be 
examined leads to better separation of the file curves and thus enables better 
matching with the real spectral signature. 

Practically speaking, this means that the zone to be investigated in a 
well should be as limited as possible. 

Of course this sensitivity should be much affected if the frequency band- 
width were narrow. To get a wide bandwidth depends on the recording 
instrumentation but depends also, at high frequencies, on the excitation sys- 
tem, as explained below. 

5.2 Linear Behaviour Limitations at High Frequencies 

Examination of the experimental results obtained for the 5 tests carried 
out shows that t h e  lack of correspondence between the theoretical and 
experimental curves is located higher than a critical frequency fc, located at 
around 5 Hz. 

This critical frequency fr corresponds, as shown below, to a change 
from laminar flow to turbulent flow, obtained when the R e y n o l d s  Num- 

ber R e -  V . 2 e  exceeds a critical value of 2300, V being the velocity in the 

fissure of thickness e. 
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The expression of Re indicates that  the critical R e y n o l d s  Number  
will appear first in the thicker fissures. For example in test No. 4, turbu- 
lence will appear in the one fissure of thickness el =4  ram, while flow will 
remain laminar in the two fissures of thickness e~ = 1 mm. 

In this case of test No. 4, the following assumptions can be made to 
approach the value of [c: 

a) Assumption .1: The velocities V1 in fissures el, and velocities V2 in the 
thinner fissures, are in phase (see foot-notel). Thus: 

I Q (/)1 = I Q, (/)1 + I Q2 (/)l. 

b) Assumption 2: Laminar flow in radial fissures, at low frequencies, is 
assumed to be proportional to n e a. Thus: 

IQ1 (t)1 ]Q~ (t)l ]Q1 (r (f)l 
n l  e l  3 n2 e2 3 n l  e l  3 § n2 e2 3 

(18) 

The value o[ [Q1 ([)1 is given using the velocity V~ and the inlet sec- 
tion s of the nl fractures of thickness e, by: 

I Q~ ([)[ =[Vil"  n l . s .  

The value o[ [Q1 (f)l + IQ~ (f)[ which is the total quantity of flow can 
be estimated knowing the instantaneous velocity of the piston Vpis ton  and 
its cross-section Spiston. 

[Q1 (/)l + IQ2 ([)1 = Vpiston'Spiston 

=1,571.10 -s [ cos ~t .  

Thus the two last members of (18) lead to: 

~,8s7.10 4 "e~2"/. (S.I.) 
V1 - ni ei a + n2 e~ a 

For Re=2300; ~=10 -6 SI, we obtain: 

n l  e i  a + n2 e~ a 
fe =4.025" el a 

The field of frequency in which the theoretical linear model remains valid 
can therefore be approached for the 5 tests carried out 

- -  Test 1: (two 2 mm fractures) 

/crit .  = 8 . 0  H z  

- -  Test 2: (one 2 mm fracture and one 1 mm fracture) 

fcrit. = 4.5 Hz 

i To estimate the dephasing between V1 and V~, the complex relation (8) 
1 _ 1 + I can be used. 

L F2 
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- -  Test 3: (one 4 mm fracture and one 1 mm fracture) 

fcrit. = 4.0 Hz 

Test 4: (one 4 mm fracture and two 1 mm fractures) 

/crit. = 5 . 0  H z  

- -  Test 5: (one 4 mm fracture and two 2 mm fractures) 

/crit. = 4.1 Hz 

But it is important to specify that this critical frequency fc does depend 
on the total quantity of flow injected in the fissure, i.e. on the volume 
injected by the piston. Reducing this volume maizes it possible to adopt a 
limiting value re, as high as required for the identification of the parameters. 

DIAGRAM of NYQUIST 

,++ 

/ \,,++ . /  

I/R 

(6,04Hz) 

I/F 

modulus of I/F (6,04H=) 

3,65. I0 "7 S.I. 

argument of I/F(6,04H=} 

- 8 2  o 

I I  (6jO4Hz} 

Fig. 19. D iagram of  Nyquis t  

In the case of test No. 4, for a frequency of 6 Hz, a relative error of 

3% is obtained assuming that flows Q1 and Q2 were perfectly in phase 
(Fig. 29) 

Relative error= IQllq IQ21-IQz+Q2[ <3%. 
IQm+Q2] 
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6. Conclusions 

The purpose of this study was to extend harmonic techniques to the 
reconnaissance of fractured media with several sets of fractures, the case of 
one set of fractures having been examined by Fras  et al. (1981). 

The transfer function, valid for m families of fractures, with ni frac- 
tures and opening e~, is given in the case of inertia-viscosity models (direct 
problem). 

The parameter identification is treated in the case of 2 families, leading 
to a unique determination of the mathematical parameters and the physical 
parameters (unicity of the inverse problem). This identification is described 
with knowledge of modulus and phase or modulus alone. 

The case of more than two families of fractures has also been ap- 
proached. In this case, the direct problem does not present any difficulty 
whatever the number of families may be. As far as the inverse problem is 
concerned, the case of three families has been examined by P o r t a l 6 s  (1981) 
and the uniqueness has been proved using the two asymptotical conditions, 
[ -*0 and [--*o% and one point of the transfer function. The inverse problem 
could be theoretically generalized to any number of families, but in practice 
a limitation would probably be imposed by the accuracy of experimental data. 

The comparison between theory and laboratory tests shows an excellent 
fit in the medium range of frequencies, giving a good verification of the 
direct problem modelling. 

As far as the inverse problem is concerned attention should be paid in 
practice to measuring apparatus in order to obtain a frequency bandwidth 
as wide as required by the identification inverse problem, and in order to 
avoid problems connected with the appearance of turbulence phenomena 
at high frequencies. 
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