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On the Relation between White Shot Noise, Gaussian 
White Noise, and the Dichotomic Markov Process 
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It is shown that the dichotomic Markov process converges to a white shot noise 
(interpreted according to the Stratonovich integration rule) in the joint limit in 
which the average duration of one of the states goes to zero and the value at this 
state goes to infinity. A further limit procedure allows us to obtain Gaussian 
white noise from white shot noise. These results are applied to the problem of 
noise-induced transitions. It is shown that white shot noise can give rise to 
transitions which do not occur for Gaussian white noise. The above results are 
finally generalized in introducing compound dichotomic Markov processes. 

KEY WORDS: Dichotomic Markov process; white shot noise; noise- 
induced transitions. 

1. INTRODUCTION 

Gaussian white noise, shot noise and the dichotomic Markov process have 
all been widely used in the theory and applications of stochastic pro- 
cesses.(1-4) 

Gaussian white noise ((~w) is a purely random Gaussian process. 
Hence all its cumulants of order higher than 2 vanish identically (3) and the 
process is completely defined by 

(~Gw(t)) = 0 (1) 
(~w(t)~cw(t ' ) )  = 2 D S (  t - t ') (2) 

We will refer to the parameter D as the strength of the noise. 
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Shot noise (~s, also called the Campbell's process) is defined as the 
s u m  

(s(t) = ~ , h ( t  - ti) (3) 
i 

where h is a given function and t i are random time points. The probability 
to have such n time points in a time interval of duration t is thus given by 

(Xt) ne -xt 
en( t )  - n! (4) 

where 2t stands for the given average density. In this paper, we will be 
concerned with white shot noise ((ws), i.e., the case in which h is propor- 
tional to a Dirac 6 function. White shot noise can thus be thought of as a 
sequence of 6 peaks at random points in time, with a given average spacing. 
Possibly, the weight w of each pulse is an independent random variable 
defined by a probability density ~(w). In this case white shot noise is the 
time derivative of a compound Poisson process. Note that both white shot 
noise and Gaussian white noise are purely random processes but the former 
is non-Gaussian. White shot noise is thus characterized by the fact that its 
cumulants are (generally speaking) nonvanishing but 8 correlated in time O>: 

( ( ~ w s ( t , ) . . .  ~ws(t,,)> ) - - 8 ( t -  t 2 ) . . . 8 ( t , , _  , - t,,) (5) 

In the case of the dichotomic Markov process, the random variable 
can only take two values A and N. Each of these states has a given average 
duration 7a and ~'A', respectively, but the transition from one state to the 
other again occurs at random time points. The symmetric dichotomic 
Markov process, 2x = - A '  and "CA = %', has the interesting property that it 
reduces to a Gaussian white noise in the limit zX ~ + m and %--> 0 such 
that (1/2)~2% equals a constant D, which turns out to be the strength of 
the resulting Gaussian white noise. 

In this paper, we will show that in another limit, the (asymmetric) 
dichotomic Markov process reduces to white shot noise. Indeed, it is 
expected intuitively that if the average duration of one state goes to zero, 
for instance, ~-a, ~ 0, and the corresponding value A' goes to infinity such 
that the average weight w 0 = Ta, • 2x' remains constant, one recovers the 
picture of 8 peaks at random time points, i.e., white shot noise. Further- 
more, by letting the weights w 0 of the 8 peaks go to zero, and simulta- 
neously their density increase %--->0, such that wZ/'rz~ remains constant, 
one recovers Gaussian white noise (see also Ref. 5). 

The dichotomic Markov process ((D~) is a simple example of a colored 
noise, its time autocorrelation function being an exponentially decreasing 
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function with some finite correlation time ~-c: 

( (~DM(t)~DM(t,)) = D exp -- (6) 
~'c "rc 

In the limit z C ~ 0, one recovers the Gaussian white noise result (2). 
The other simple example of a nonwhite (stationary) stochastic process 

with a time autocorrelation function of the type (6) is the Ornstein- 
Uhlenbeck process, which is the only stationary Markov stochastic process 
being moreover Gaussian. 

Both of these processes have been used to investigate the effect of the 
coloration of the noise, in particular in the context of noise-induced 
transitions. (4'6-8~ It was shown that colored noise can give rise to transitions 
which do not occur for Gaussian white noise. In this paper, we will also 
investigate the effect of the other basic type of white noise, namely, white 
shot noise, using the above-mentioned limit procedure. 

It is known that in the case of multiplicative white noise, a stochastic 
equation does not have a meaning in itself. One should provide an 
integration rule. This is well known for the case of Gaussian white noise (3'9) 
but the same interpretation problem arises for white shot noise. (5) We will 
show that in the above-discussed limit, white shot noise has to be inter- 
preted according to the Stratonovich integration rule. 

In the above-mentioned limit, the dichotomic Markov process reduces 
to a white shot noise with exponentially distributed weights of the 6 peaks. 
This is due to the fact that the duration of one state in a discrete Markov 
process is also exponentially distributed. In order to obtain a more general 
class of white shot noise processes, we introduce the compound dichotomic 
Markov process. This process differs from the usual dichotomic Markov 
process by the fact that the value 2~' assumed in one of the states is a 
random variable with probability density p(A'). These compound processes 
allow us to generate white shot noise processes whose weight distribution 
~(w) is essentially the convolution of a decaying exponential with P. 
However it turns out to be impossible to generate white shot noise with 
fixed weights of the 6 peaks. This is due to the intrinsic stochasticity in the 
duration of one state of a discrete Markov process. 

In Section 2, we prove the convergence of the dichotomic Markov 
process to white shot noise and of white shot noise to Gaussian white noise. 
These results are applied to the problem of noise-induced transitions in 
Section 3. In Section 4 it is proven that the Stratonovich integration rule 
applies. Particular examples are treated in Section 5. Finally, compound 
dichotomic Markov processes are introduced in Section 6 and their conver- 
gence to a large class of white shot noise processes is proven. 
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2. GAUSSlAN WHITE NOISE AND WHITE SHOT NOISE AS THE 
LIMITS OF THE DICHOTOMIC MARKOV PROCESS 

We consider the dichotomic Markov process ~JDM assuming the values 
A and A'. We denote by ka and k x the transition probabilities per unit time 
between these two states, their average duration being ~'a = 1/kzx and 
,% = 1/ka,, respectively. In the following we will always consider stochastic 
processes with vanishing average value. This implies for the dichotomic 
Markov process 

Ar + A'%v = 0 (7) 

~DM is thus characterized by three independent parameters. 
In order to investiate the convergence to a white shot noise process, we 

consider the time integral x of ~DM: 

a , x ( t )  = ~,~(t)  (8) 

Since ~r~M is not a white process, x will not be a Markov process. (1~ 
However, the couple (X,~DM) is a Markov process. The probabilities 
P(x ,  A, t) and P(x ,  A', t) to have x and ~DM = A or ~DM = A' at time t obey 
the following Master equations (4'6) : 

a A P ( x , A , t )  - k a e ( x , A , t  ) + k a , e ( x , N , t )  (9) OtP(x ,A , t  ) = - 

a , e ( x , a ' , t )  = - ~-~-~A'P(x,~X',t) - k ~ , e ( x , A ' , t )  + k A e ( x , & t )  (10) 

For the reduced probability P(x ,  t) = P(x ,  A, t) + P(x ,  A', t), one obtains, 
taking as initial condition P(x ,  A', t = 0) = 0 or P(x ,  t = O) = P(x ,  A, t = 0), 

•  (11) 

This is a closed equation for the probability density P(x ,  t), irrespective of 
the value of iBM. Note that as a consequence of the elimination of the 
latter, Eq. (11) is no longer of a Markovian form. 

Let us now consider the following limit: 

A ' ~  + oo, k~ ,~  + oo (12) 

with constant ratio A'/k~,  = A'%, = w o. 
In this limit, the dominant contribution to the integrand in (11) comes 

from times ~- ~ t, hence (11) reduces to the following Markovian form: 

a A e ( x , t )  a w~ k a e ( x , t )  (13) OtP(x, t) = Ox ax Wo(a/ax ) + 1 
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Let us now show that this limiting process x is equal to the integral y of a 
white shot noise ~ws: 

a,y(t) = ~ws(t) (14) 

The stochastic equation (14) is equivalent with the following Master equa- 
tion for the probability density P(y ,  t) (see, for instance, Ref. 11): 

O AP(y,t)+ )t[f+2e(y- w,t)eo(w)dw- P(y,t)] (15) 0 , P ( y , t )  = - a-7 

Here A stands for the constant value assumed by the white shot noise 
between the 6 peaks, r = 1/X for the average time between two successive 
peaks, and O(w) is the probability density that such a peak has a weight w 
(hence that the integral y changes abruptly by an amount equal to w). It is 
straightforward to see that Eqs. (13) and (15) are identical if we set 

A = A (16) 

x = k ~ -  1 0 7  ) 
T A 

and 

e x p ( -  W / Wo) 
~(w) - O(w) if w0 > 0 (lSa) 

w 0  

exp( - W/Wo) 
~(w) = - 0 ( -  w) if w0 < 0 (lSb) 

w 0 

0 stands for the Heavyside function. 
We have thus shown the convergence in law of x to the integral of 

white shot noise with an exponentially decaying distribution of the weights 
of the peaks. The exponential law is clearly a consequence from the fact 
that the duration of one state in a discrete Markovian process (in this case 
the state ~DM = A') is also distributed exponentially. 

It is interesting to recast the above limit in terms of other variables. We 
mentioned in the introduction that ~DM has a time autocorrelation function 
of the form (6). The correlation time % is given by 

1 _  1 + 1 (19a) 
"r c , r~  "r~, 

and the noise strength reads 

D = -AA'% (19b) 

Taking into account the condition (7) of vanishing average value, it remains 
to define a third independent parameter which we will call the "non- 
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Gaussianity" parameter 7: 

IA - A'I - ]A - A'I% (19c) 

The above-discussed limit is then equivalent to %-> 0 with fixed D and 7. 
This expresses that the limiting process, white shot noise, is a white process 
(% = 0) but it is still non-Gaussian (y v ~ 0). Note that the limit y --> 0 can 
only be achieved in a nontrivial way by letting % go to zero: the limit to a 
Gaussian process is only possible simultaneously with the limit to a white 
process. Hence it is impossible to obtain the Ornstein-Uhlenbeck process 
as a limit of the dichotomic Markov process. 

Let us now prove that the limit to a Gaussian white noise can be taken 
also from a white shot noise by letting y-->0. White shot noise with 
exponentially distributed weights of the peaks in characterized by the 
parameters A = A, which is the value assumed between two 8 peaks, 
% = 1 / ~  = l / k ~ , ,  which is the average time between two such peaks, and 
w0, the average weight of each peak. The condition of vanishing average 
value implies 

(fws) = A~-~ + w o = 0 (20) 

Hence ~ws is defined by the following two independent parameters: a noise 
strength intensity D [compare with (19b)], 

w0 
D = - Aw 0 - (2 1 a) 

"r A 

and a "non-Gaussianity" parameter [see also (19c)], 

,{ = w 0 (21b) 

The limit -f--> 0 with constant D is equivalent to letting the weights of 
the 8 peaks go to zero, w 0--> 0, and simultaneously increasing their density 

= k~ = 1/~'a--> OO, such that w02~ = D remains constant. In this limit the 
Master equation (13) reduces to the following Fokker-Planck form: 

0 2 
a ,e (x ,  t) = D - -  e ( x ,  t) (22) 

0 x  2 

Hence the integral of ~ws reduces to Brownian motion, which is the integral 
of Gaussian white noise. 

The above results have been schematically represented in Table I. We 
have included in this table the Ornstein-Uhlenbeck process defined by the 
following stochastic differential equation: 

~ou ~ow 
Ot~ou = - - -  + - -  (23) 
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Table I. Gaussian White Noise, the Ornstein-Uhlenbeck Process, White 
Shot Noise, and the Dichotomic Markov Process. Classified by Following 

Important Properties and Related by Limit Theorems 

White process Colored process 

( ~ ( t ) ~ ( t ' ) )  = 2 D d ( t  - t ' )  (~ ( t )~ ( t ' ) )  = D exp[- It - t'l 
"go Tc 

Gaussian white n o i s e  Ornstein-Uhlenbeck 
~6w process ~ou 

~ov ~aw Gaussian Ot~ou = - - -  + - -  

process % 

parameters D 
%7 0 

parameters D ,  r c 

White shot noise ~ws Dichotomic Markov 
process ~DM 

Non- ~ c ~  
Gaussian 
process (~ws) = 0 (~DM) = 0 

A% + w 0 = 0 A% + A'r~,= 0 
parameters A, 2,, w 0 , D, 2 parameters 4,  A', % ,  % , ,  D ,  re ,  y 

This process is determined by two independent parameters, the noise 
strength D and the correlation time %. In the limit %-~ 0, it reduces to 
Gaussian white noise. 

3. N O I S E - I N D U C E D  T R A N S I T I O N S  

The above results can be of importance in the context of transitions 
under influence of external noise. Indeed, it is known that the macroscopic 
state of a system can undergo a qualitative change if one of the control 
parameters exhibits strong fluctuations. (4) It has been established that 
colored noise processes such as the dichotomic Markov process can give 
rise to transitions which disappear in the limit of Gaussian white noise. Let 
us now investigate the above-discussed limit in which the dichotomic 
Markov process reduced to the other fundamental white noise process, 
namely, white shot noise. 

We consider the following external noise problem: 

O t x  = f ( x )  + g(X)~D~a (24) 

Proceeding in the same way as in Ref. 6, one obtains the following 
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stationary probability density est(X) [taking into account (7)]: 

g(x) 
Pst(X) = N 

[ f(x) + 5g(x)][ f(x) + A'g(x)] 

( x (kA + kA,)f(x') } 
•  - f 0  [f(x')+zXg(x')][f(x')+A'g(x')] dx' (25) 

where N is a normalization constant. Note that the zeros of f + ~g and 
f + Ng which correspond to the (supposedly unique) steady states of the 
evolution equation (24) for (DM = A and ~DM ----- A', respectively, constitute 
the boundaries of the interval outside which Pst(X) = 0. The extrema of the 
probability density (25) are determined by the following equation: 

AA' 
f(XM) + ka + k x g(xM) g'(XM) + A + A' - -  k~ + k~, f'(XM) g(XM) 

1 [ ]---0 (26) + k~ + k~, 2f(xM)f'(XM)- fZ(XM)g'(XM) 
g(xM) 

The first term of (26) when set equal to zero is the equation for the 
deterministic steady state. In the limit of Gaussian white noise A = -A ' ,  
ka=kA, ,  and A ~ + o %  k A ~ + o e  such that A2/2kA=D the first two 
terms of (26) survive and one obtains the well-known result 

f(XM) -- Dg(xM) g'(XM) = 0 (27) 

In the limit of white shot noise A' ~ + m and k x ---> + oa with constant ratio 
A'/kx = w0 = Y, the first three terms of (26) equal to zero determine the 
extrema: 

f(XM) -- Dg(XM)g'(XM) + 7f'(Xv)g(XM) = 0 (28) 

where we introduced the noise intensity D and "non-Gaussianity" parame- 
ter 7 defined in (21). Of course, the result (28) reduces to (27) in the limit 
that 7---)0. It is clear from a comparison of Eqs. (26) and (28) that 
transitions induced by white shot noise will also occur under the influence 
of (colored) dichotomic Markov noise, but the converse is not necessarily 
true. The term between brackets on the left-hand side of (26) is a correction 
term due to the existence of a finite correlation time [see formula (19)] in 
the dichotomic Markov process. In the same way, we conclude from a 
comparison of (27) and (28) that white shot noise can give rise to transi- 
tions which do not occur for Gaussian white noise. The last term on the 
left-hand side of (28) is a correction term due to the "non-Gaussianity" of 
white shot noise. 
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. 

a s  

MULTIPLICATIVE WHITE NOISE IN STRATONOVICH 
INTERPRETATION 

A stochastic differential equation with multiplicative white noise such 

Otx = f(x) + g(x)~ws (29) 

is not defined in an unambiguous way. One has to provide an integration 
rule. The two most commonly used integration rules are the so-called 
Stratonovich and Ito integration rules. (9A2) In the previous section we 
considered the well-defined stochastic differential equation (24) with a 
muttiplicative dichotomic Markov noise. The question arises according to 
which integration rule one has to interpret this equation if one takes the 
limit of ~DM going to ~ws as described in Section 2. According to H/inggi (5) 
(see also Ref. 14), Eq. (29) with ~ws a white shot noise with fixed weight w 
of the peaks is, in the Stratonovich interpretation, equivalent with the 
following Master equation: 

~-~- P(x,t) at 

= ( -  ~-~[f (x)-~wg(x)]+ ~ ( e x p [ - W ~ x  g ( x ) ] -  1 ) )P(x , , )  

(30) 
For distributed weights, characterized by a probability density q~(w), this 
result is easily generalized. One obtains 

atP(x, t) = - ~ I f (x)  - ?,(w)g(x)] 

+X(fexp[-w~0g(x)]ep(w)dw-,))e(x,t) (31) 
In the case of weights distributed following the exponential law (18) the 
integral appearing on the right-hand side of (31) can be performed and the 
equation simplifies considerably: 

= {-  wo.<x>j 

1 }~'(x,t) (32 / )~Wo g(x) 
w W o O / a x ) g ( x )  + 1 

For f =  0 and g = 1 one of course recovers Eq. (13). In fact the derivation 
done in Section 2 for this particular case can be repeated for general 
functions f and g. The Master equation for P(x, t) obtained.: in the white 
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shot noise limit turns out to be Eq. (32). We conclude that the multiplica- 
tive white shot noise obtained as the limit of the multiplicative dichotomic 
Markov process has to be interpreted in the Stratonovich sense. Note that 
in the Gaussian white noise limit w 0 ~ 0, X--> oo such that w02)t --- D remains 
constant, (32) reduces to 

OtP(x,t)= [ - ~ f (x)+ D ~ g(x) ~-~ g(x)] ' ( / , t )  (33) 

which is equivalent with the stochastic differential equation [(cw being 
defined by (1) and (2)]: 

Otx = f(x) + g ( x ) ~ w  (34) 

interpreted in the Stratonovich sense [see also Ref. 13]. Let us finally note 
that it seems impossible to obtain the stationary solution of (31) or even 
(30) in the general case. However, for exponentially distributed weights of 
the peaks, the stationary probability density is easily obtained from Eq. 
(32): 

1 exp{ _ f x  f(x') dx' ] Pst(x) 
f(x) - XWog(X ) [ f(x') - wog(X' ) ]Wog(x' ) l 

(35) 
It is easy to verify that (35) is the limiting form of the stationary probability 
density (25) for A ' ~  m, ka,---> m with fixed ratio A'/kA, = W o [and X = ka,, 
A = -)tWo, see (20)]. 

5. S O M E  E X A M P L E S  

In this section we discuss two examples of noise-induced transitions. 
Let us first consider a model introduced by Hongler(8): 

- -  ( 3 6 )  Otx = - t a n h x  + coshx 

This model has the advantage that it can be linearized by a nonlinear 
transformation setting: 

y --- sinh x (37) 

One obtains 

The macroscopic equation 

OtY = -Y  + ~ (38) 

~t~ = - tanh ~ (39) 
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possesses the unique stable stationary solutions: 

~M = 0 (deterministic) (40) 

For ~ equal to a Gaussian white noise, one obtains the extrema x M [from 
Eq. (27)]: 

XM=O 
(Gaussian white noise) (41) 

cosh2XM = D 

where D is the strength of the Gaussian white noise. A bimodal probability 
density thus arises for D > 1. In the case of white shot noise defined by 
(18a), one obtains from (28) 

sinh3XM + (1 -- D )sinh x M + 7 = 0 (white shot noise) (42a) 

This cubic equation possesses three real solutions for 

( ~ ; "  ( w 0 ; "  
D- -? tw 21> 1 + 3  1 + 3  y (42b) 

One can conclude by comparison with (41) that the deviation from a 
Gaussian law has the consequence that a transition will occur for higher 
values of the noise intensity. 

The explicit expression for the stationary probability density can be 
obtained by performing the integration in (35). One obtains 

coshx e x p ( -  l s i n h x ) O ( x -  xB) (43) 
P ' t ( x ) ~  (sinhx + D/3,)  ' - D / ?  3' 

Note that the stationary probability density is identically zero for values 
smaller than the boundary value x B = arcs inh( -D/3 ' ) ,  which is the value 
toward which x converges in between the 6 peaks. This is a consequence of 
the asymmetry of fws, the pulses with positive weight w multiplied by 
1 /coshx  being always positive (for - /<  0, i.e. for a distribution law (18b), 
x B is an upper boundary for the stationary probability density). For values 
D < 3'2, the probability density diverges for x ~ x~, whereas it is zero at 
x = x~ for D > ~2. The various possible forms of the probability density 
have been represented in Fig. 1. Note that as 7 ~ 0, the boundary value x B 
goes to - ~ and one recovers the transition from a unimodal to a bimodal 
behavior at the value D = 1. For 3' ~ 0, an important difference arises: at 
the crossing of the transition line (43), a second maximum of the probabil- 
ity density appears. In this sense, the "transition" induced by white shot 
noise is analogous to a first-order phase transition, whereas Oaussian white 
noise gives rise to a "second-order transition." Finally, in the case that ~ is 
the Ornstein-Uhlenbeck fou [see (23)] one knows that the process y, 
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solution of the linear equation (38), is also a Gaussian process. It suffices to 
calculate its first and second moments in order to determine the latter 
completely. In particular, according to the transformation rule (37), one 
obtains the following stationary probability density Pst(X) for the x vari- 
able: 

est(X) = 2~r[D//1 + %)] exp{-27r[ ; )~h12;  ,rc)] }coshx (44) 

The extrema of this probability density are given by 

x M = 0  
D (Ornstein-Uhlenbeck process) (45) 

c~ 1 + %  

This is completely analogous to the result (41) obtained for Gaussian white 
noise. In the example (36) the coloration of the Gaussian noise thus merely 
induces a shift in the transition point to a higher intensity D = 1 + %. 

Let us now consider the following model of additive noise: 

Oty = - y  + ~ (46) 

Fig. 1. 

1 2 u 

Different forms of the stationary probability density for Hongler's model with 
multiplicative white shot noise. 
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The macroscopic equation has the unique stationary solution j7 M = 0. 
Adding a Gaussian white noise ( =  ~Gw does not alter this qualitative 
result: the stationary probability density is a Gaussian centered at YM = 0. 
In the case of additive white shot noise ~ = ~ws [with exponentially distrib- 
uted weight (18a) and average waiting time ~- = 1/)t between the peaks], the 
situation is more complex. The stationary probability density, obtained 
from (35), is the well known F-distribution 

Pst(Y)~.-,(y - yl~)-l+(D/V2)exp( - ~ )O(y - YB) (47) 

with Y8 = - D / 7 .  Note that the result (43) is of course recovered by 
applying the nonlinear transformation law (37). It is clear that the line 
D = ./2 is a transition line between two different types of unimodal proba- 
bility densities. For  D < y2 Pst has a (normalizable) divergence at y =YB, 
while for D > ./2 Pst(YB) -- 0. According to (28), the probability density 
then has a maximum at YM = - . / >  YB. 

The above transition is a consequence of the asymmetry of the noise 
process. Nevertheless, a transition will also occur if the system is driven by 
a symmetric white shot noise with both positive and negative pulses for a 
sufficiently strong intensity D. This transition is toward a bihumped form 
of the probability density. 

We can thus conclude that the "non-Gaussianity" of a white noise 
process can shift existing transitions and be responsible for new transitions. 

6. THE COMPOUND DICHOTOMIC MARKOV PROCESS AND ITS 
WHITE SHOT NOISE LIMIT 

The process which we will introduce now is still a (stationary) Markov 
process that can be in two states. The value assumed by the process in one 
state, which we will call the + state, is again equal to some constant A+, 
but we assume that the value A_ assumed in the other state, the - state, is 
distributed according to a probability density o ( A  ) (which is possibly a 
generalized function). 3 To make the distinction between the two states 
unequivocal, we also assume that O has no 6-Dirac contribution centered at 
the value A+. We denote by P+ (t) and P_  (2i_, t) the probability densities 
to be in the + state ~(t) = A+ or in the - state with ~(t) = A .  Let k+ and 
k_ be the transition probabilities per unit time between the two states. The 

3 Of course, one could make the further generalization that A+ is also an independent random 
variable with given probability density 0+, but we will not need this generalization in the 
context of a white shot noise limit. 
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Master equation then takes the following form: 

r  - - - 0 r  (48) 
0,e_ ( a ,  0 = - k e_ (a, t) + k+ 00(a_ )e+ (0 

Note that the above process reduces to the usual dichotomic Markov 
process if one considers the probabilities P+ (t) and 

e (t) = r e _  ( a_ ,  t) d a  

or for the particular case that P-  ( A )  = 3(2x - N ) .  Let us now investigate 
to what kind of white shot noise the above process converges in the limit 
that the - state corresponds to 3 pulses in time. We thus consider the limit 
k_ ~ + m  such that the weights w = &_/k are distributed following a 
given weight function, i.e., the following limit exists: 

O(w)= lim k_o_(wk ) (49) 
k_--+ + ~ 

Proceeding in the s:tme way as in Section 2, one obtains for the integral x 
of the compound dichotomic Markov process the following non-Markovian 
equation [compare with Eq. (11)] 

~,~(x,o = - ~ a+ ~(x,o - ~ f *f d~_ (a_ -A+ ) 

('-')nfda,...dao •163 l+ ~ (- l;  n! 
n = l  

• ,&)...K(A_,,G)]k+o_(An)e(x,t ) (50) 

where we have assumed P_ (x, k ,  t = 0) = 0 and we have introduced the 
kernel K(kl, A2): 

K(A1, A2)=3(A,--A2)IA,~x+k]+ k+ o(A2) (51) 

Let us now consider the above-mentioned limit. In this limit, the kernel (51) 
reduces to the following local form (w I = A1/k_ ): 

k(A,,A2) = [w, ~x + l]•(Wl -- W2) (52) 

and one obtains from (50) the following Markovian equation [compare with 
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Eq. (13)]: 

(53) 
In order to compare this result with the Master equation for the integral y 
of a white shot noise process with weight distribution 0(w), we rewrite Eq. 
(15) as follows: 

= -  3 )q,(w)- l )P(y, t )  atP(y,t) ~ aP(y,t)  + ~( f ) : d w e x p ( - w - ~ y  

(54) 

The equations (53) and (54) coincide if A+ = A, k+ = )t, and 

w V+~ d e x p ( -  w 3_~ )0(w ) f_+f dw wff/ x) + 1 p(w) w (55) 

or, identifying the coefficients of the partial derivatives O'/~x" 

w n f ewo(w)w.= f dw,(w) 7 (56) 

In the particular case of the usual dichotomic Markov process, A+ = A and 
p_ ( A ) =  6 ( A  - 5 ' ) ;  hence p(w) = 6(w-  Wo). One recovers as limit pro- 
cess a white shot noise with exponentially distributed weights [see Eq. (18)]. 
The general solution of (56) reads 

q~(w) = f~+oo e x p ( -  W/Wo) [ O(w)O(wo) _ 0 ( -  w)O(- Wo)]p(wo)dw o (57) 
w o 

as can be easily verified explicitly. 4 
This relation gives us the weight distribution function 0(w) of the white 

shot noise process which is the limit of the compound dichotomic Markov 
process characterized by the function O(w). It is important to note that (57) 
cannot be inverted: it is not always possible to obtain a white shot noise 
with an a priori given function q~ as a limit of a compound dichotomic 
Markov process. In particular, it is not possible to obtain a white shot noise 
with fixed weight wf of the peaks, i.e., q~(w) = 6(w - wf). This is due to the 
intrinsic stochastic element present in the sojourn time of one state in a 
discrete Markov process. 

4 The uniqueness of the solution (57) follows from the requirements of normalization of e~. 
Indeed any solution other than (57) can only differ by a term proportional to 6(w), hence it 
will no longer be normalized. 
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To prove the above statement, let us suppose that there exists a 
function p(w) such that 

and 

f_ dw o(w)w" - w2 n! (58) 

f +f dwo(w) 

Then, for every M > 0, one has 

f+oo 2n 
lim (Mw) p(w)dw 

n--> -b oo - - o o  

= l, o(w) > o (59) 

= lim ( Mwf)2" 
, ~  + oo ~ ~ = 0 (60) 

This implies that O(w) (being positive everywhere) must be zero for values 
of w such that (Mw) 2 > 1 or Iwl > 1/M. Since M is arbitrary, o(w) can 
only take a nonzero value in w = 0, but 8(w) is not a solution of (58). 

7. CONCLUSION 

In this paper, we have considered four important examples of station- 
ary Markov processes and we have shown how they are interrelated. We 
have illustrated these results on the problem of noise-induced transitions. 
Problems which have been solved with a dichotomic Markov noise can 
immediately be reduced to probems involving white shot noise. Unfortu- 
nately, not every kind of white shot noise process is covered by this limit 
procedure. In particular, white shot noise with fixed value of the weights of 
the 8 peaks cannot be obtained. 
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