(ANTI)SELF-DUAL GAUGE FIELDS IN DIMENSION d=4

T. A. Ivanova and A. D. Popov

The (anti)self-duality equations for gauge fields in dimension d=4 and the generalization of these equations for d>4 are
considered. The results on solutions of the (anti)self-duality equations in d=4 are reviewed. Some new classes of solutions of
Yang—Mills equations in d=4 for arbitrary gauge fields are described.

1. INTRODUCTION

It is well known that the electromagnetic, weak, and strong interactions are described by gauge fields of the group
U(1)xSU(2yxSU(3). The dynamics of these fields is determined by the Yang—Mills (YM) equations in a space of dimension
d=4, and therefore the finding of solutions of YM equations is of particular interest.

At the present time there are known in d=4 not too many solutions of the YM equations in explicit form (see, for example,
[1—3]). The most interesting among them are solutions of instanton, monopole, and vortex type. They can be obtained as
solutions of the self-duality equations in Euclidean space R* for gauge fields that depend on four, three, and two coordinates.

Yang—Mills equations in a space of dimension d=4 appear in multidimensional theories of supergravity, super-
Yang—Mills, and in the low-energy limit of superstring theory {4]. The use of solutions of the YM equations in d=4 makes
it possible to obtain soliton solutions in superstring and supermembrane theories [5,6]. It is also known that the imposition of
symmetry conditions on the gauge fields of YM theory in d dimensions leads to Yang—Mills—Higgs (YMH) theory in k<d
dimensions [7]. Therefore, solutions of the YMH equations in d=4 can be obtained from solutions of YM equations in
dimension d> 4.

In [8—11] linear equations for the components of the field tensor of gauge fields in the Euclidean space R?, generalizing
to d> 4 the self-duality equations of four-dimensional YM theory, were introduced. Some solutions of these equations were
obtained in [9—15]. In this paper, we review the results published in [14—19] on solutions of the (anti)self-duality equations
in spaces R? with d>4.

2.  YANG—MILLS EQUATIONS AND SELF-DUALITY IN R

2.1. Definitions and Notation. We consider in d-dimensional Euclidean space R? with metric 0, gauge fields 4, of an
arbitrary semisimple Lie group G, a, b, ...=1, ..., d. The fields 4, take values in the Lie algebra G of the Lie group G. The
field tensor F, of the gauge fields has the form

Fap = [Day Dy] = [0s + Aa, 85 + Ab] = 8ady — By Aq + [Aa, Ai]- 1
The YM equations have the form
DaFay = 045 8, Fup + [Aay Fg) = 0, @
where summation over repeated indices is understood. For an arbitrary tensor F;, of the form (1), the Bianchi identities hold:
DiyFoq =0 4= Dy Fye + DyFea + D Fop = 0. 3)
We use square brackets to denote antisymmetrization with respect to all indices in the brackets, for example,
Tiay= Tas = Thay MapNgy = MapNeg — MacNeg.

2.2, Self-Duality. We recall that gauge fields 4, in d=4 are said to be (anti)self-dual if their field tensor F,, satisfies
the equations

€uvia Fyo = izFuw 4
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where p. », ...=1, ..., 4, respectively. By virtue of the Bianchi identities (3), every (anti)self-dual field satisfies the YM
equations (2).
In {8, the following generalization of the (anti)self-duality equations (4) to the case d>4 was proposed:
gabchcd = AF'a.ln (5)

where A=const, and £ is the completely antisymmetric tensor with constant numerical coefficients. Examples of the tensors
£ and the eigenvalues A corresponding to them will be given below.

We shall call gauge fields A, whose field tensor F, satisfies Eqgs. (5) self-dual and anti-self-dual, respectively. By virtue
of the Bianchi identities, it is obvious that solutions of Eqs. (5) satisfy the YM equations (2). Some solutions of Egs. (5) were
obtained in [9—15].

In contrast to (4), Eqgs. (5) are not SO(d)-invariant for 4> 4, since £, ., cannot behave as a (pseudo)scalar under the action
of the group SO{d). However, £ ., can be invariant with respect to a subgroup H of SO(d), and Egs. (5) are well defined on
spaces having H as group of admissible coordinate transformations (see [8—11]).

Remark 1. Equations of the type (5) but with tensor £,, ., that is not always completely antisymmetric arise from the
condition of vanishing of the curvature F,, on certain complex m-dimensional planes as a consequence of a geometrical
definition of (anti)self-duality (see, for example, [9,13,20—23]) in the generalization of twistor theory to dimension d=2n>4
(see [9,20,21,24,25]).

Of course, if the tensor £, ., is not completely antisymmetric then the solutions of Egs. (5) will not satisfy the YM
equations (2). However, in some cases, on hyper-Kahler spaces, for example, geometrical (anti)self-duality is identical to
algebraic (anti)self-duality (5) [9,13,23]. On the other hand, Egs. (5) cannot always be represented as conditions of integrability
on certain m planes in the sense of the twistor approach [8,9,13,20-—25].

Remark 2. Ina number of studies [26—29] the operator of Hodge * dual conjugation on spaces of even dimension d=2m
has been used to introduce (anti)self-duality equations that are nonlinear in the curvature tensor F,, and differ from (5). The
solutions of such equations do not satisfy Eqgs. (2) but either certain generalized YM equations in R2" [26—28] or YM equations
on symmetric spaces [29].

In this paper, we restrict ourselves to constructing solutions of the algebraic (anti)self-duality equations (5) linear in the
curvature F .

3. INVARIANT TENSORS £,

For spaces R with additional structure we give examples of tensors £, ., invariant with respect to some subgroup H of
the group SO(d).

3.1. Lie Algebras and Self-Duality. We consider a compact Lie algebra , of the simple Lie group H. We assume that
the structure constants f;,. are normalized in such a way that the Killing—Cartan metric is K, =28, a, b, ...=1, ..., dimA.
We set n=1-+dim H and consider the vector space R*=H®R. We choose the metric in this space in the form 04 ={0ap> Opn}»
#y ¥, «..=1, ..., n. We denote the basis in the algebra H by I,, and the basis vector of the one-dimensional space R by I
It is obvious that R"=H®R can be regarded as a Lie algebra with the commutation relations

[Iay Ib] = fabcIc) Ud) In] =0.

uvha-
Rapea = 0, Rapen = f abe- (6)

The group SO(n—1) is embedded in the group SO(n), and H can be embedded in SO(n—1). The group H acts on the subspace
HCR” by the adjoint representation

We introduce in R” the following completely antisymmetric 4-index tensor R

ad, = {(adr)}

and preserves the decomposition R"=H®R. The tensor R, )¢ is invariant with respect to the action of the group H. This
follows from the invariance of the scalar product (,) on H({I,, I,)=25,,) with respect to the adjoint action:

(Adr)3(Ads);(Ads), Raegn = (Ady)5(Ady);(AdA)? fiey
= (Adu(L), [Ady(13), Adr(L.)])
= (Ady(L.), Adu([1s, I]))
= Lo, [Is, L]} = fape = Raen.



We give examples of constant (anti)self-dual tensors. We set
f:'v = {fl?;: M =b1 V=0 6:7 B= b} v=mn; —6;:; Kr=n, V=b}) fuvAu = f:uf;a _2Ruula‘
It is easy to show that

Rp,yla f;o- = Zf:w anaﬂf:\aaﬁ = “2fpuAv-

3.2. Complex Structure. We consider a space R?" of even dimension with metric structure 8y, M, N, ...=1, ...
p P MN:

By a complex structure on R?" we mean a constant tensor J =(Jyn) Whose components satisfy the relations [30]

Imolon = —bun.

o 1,
= (2 %),

By means of the tensor J,y we can introduce in R?” complex coordinates and identify R?” with C”.

The canonical complex structure J, has the form

, 2n.

)

The group SO(2n) preserves the metric dyy. A subgroup H in SO(2n) that preserves the complex structure Jpy is the

group U(n):
U(n) = {g€S0(2n): gJ =Jg}.
By means of the real antisymmetric 2-index tensor Jjzy we can specify a completely antisymmetric 4-index tensor:
Tunrq = Juntrq — IupIng + IMqJne,

which is invariant with respect to the group H=U(n)C SO(2n).
We introduce the following tensors:

1
Kpgrs = %JPQJRS:

1 2
Kpqrs = 1 (TPQRS - <1 - ;) JpqJrs — Sprégs + 5?56012) s

1
Lpgrs = Z(TPQRS — JpgJrs + 8prégs — 6psbqr).

Using (7) and (8), we can readily show that
TunrgKpgrs = 2An—1)Kynnrs,

TMNPQKPQHS - “2KMNR.S‘1

TMN PQ LPQRS = 2LMNRS;

— 1
Kunpg + Kunpg + Lunrpg = 5(5MP5NQ —émqdnp).

Since
KmnpqKpors = Kunrs, KunrqoKpors = Kunrs,
LunpgLpgrs = Lunnrs, KunpgKpgrs =0,
KunpgLpgrs =0, KuwnrqLpgrs =0,

®

(%)
(9b)

(9¢)

(10a)
(10b)

(10c)

11

(12)

it follows that the tensors Kjypp, K, MNP, and Lppg are projectors onto three orthogonal subspaces in the algebra so(2n). We

have

so(2n) = u(1) ® su(n) B P,
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where P, is the orthogonal complement of u(r) in so(2r). One can show that Kysyp(, projects onto the subalgebra u(1), Kynpo
onto the subalgebra su(n), and Lysypg onto the subspace P.. Note that for n=2 Kjsypp projects onto one subalgebra su(2) in
s0(4), and KMNPQ+LMNPQ projects onto the other subalgebra su(2) in so(4).

3.3. Quaternion Structure. We consider the space R¥ of dimension 4n with metric 84 @, b, ...=1, ..., 4n. One says
that in the space R%" there is defined a quaternion structure if in R%" there are defined three complex structures J =(J%)) related
by [23]

JEJE = —_§of _ €a/s'vJ_wv = J;’c-fﬁ — —6"‘86,,5 - c“ﬂ"sz, 13)
where €., are the structure constants of the group SU(2), «, B, ...=1, 2, 3. Using J%,;, we can identify R with H".

It is known (see, for example, [23]) that a subgroup in SO(4n) which preserves the quaternion structure is
Sp(1)Sp(n) C SO(4n). Accordingly, for the Lie algebra so(4n) we have

so(4n) = sp(1) @ sp(n) ® K, (14

where K is the orthogonal complement of sp(1) @ sp(n) in the algebra so(4n).
Using the real antisymmetric tensors J¢,, we can introduce the following completely antisymmetric tensor:

1
Quea = 3 U IS+ TN T~ I IR, (15)

which is invariant with respect to Sp(1)Sp(n) =Sp(1) X Sp(n)/Z,.

In accordance with the decomposition (14), we can define the projector N, , onto the subalgebra sp(1), the projector N,
onto the subalgebra sp(n), and the projector M, onto the subspace K. These projectors were introduced in [13]. They satisfy
relations of the type (12). We shall use a definition of the projectors N, N, and M in terms of J%:

l @ [+ 4
Noted = 5—;-7.,1,'7&4, (16a)
— 1
Nabcd = "'Z (3Qabcd - J:b de - 6ac6M + 6adabc) ) (16b)
Mapea = 3 (3Qabcd - (1 + ;) 5 I35+ 364cbpa — 36ad6bc> . (16¢)

By means of (13), we can show that the tensors defined by Eqs. (16) are indeed projectors. We can also show [13] that

M,.s=0for n=1. From (13) and the definitions (16) there follow the relations
2(14+2n
Q“"PGN“‘PG = La—lNabcd) (17a)
Qabquv_cdpq = —2N45cd’ (17b)
2
Qabqucdpq = ':;Mabcd' (17¢)

Therefore; the tensors Nypy, Nypeg, and M, are (anti)self-dual in the sense of the definition (5) with respect to each pair of
indices. At the same time, A;=2(1+2n)/3, \y=—2, \3=2/3.

3.4. The Space R7. Let Ca be the alternative nonassociative algebra of octonions with multiplication law given by the
octonion structure constants f,, . [31]:

€ap = _6¢b + fabcezn

Here, ¢, and eg=1 is a basis in the algebra Ca, @, b, ...=1, ..., 7. The octonion structure constants Jabe are completely
antisymmetric with respect to (abc) and are equal to unity for seven combinations: (123), (246), (435), (367), (651), (572),
(714).

We introduce in the space R’ with metric 0,5 the following completely antisymmetric 4-tensor:

1
hapea = "gifcbcdmnkfmnh
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where €, ;i is the completely antisymmetric tensor in d=7. It is known [11,31] that the tensors f,, . and k., are invariant
with respect to the subgroup G, of the group SO(7) of rotations of the 7-dimensional space R.
The tensors f,;,. and k.4 satisfy the identities [11,31]

1 1 1
Raseahijra = 6ai6;360ek + B4 631060k + 6450570601 + 'ihij{ab‘sc]k + §hjk[455ci + 5"1:;[..554,- = fateFijr (18a)
fabkhcdek = 6e[bfa]cd + 6c[bfa]de + Ed[bfa]ec' (18b)
The Lie algebra so(7) can be decomposed as follows:
80(7) =g, ® B,

where B is the orthogonal complement of g, in so(7). Using k., and f,;., we can introduce the projector g,;.; onto the
subalgebra g, in so(7) and the projector g ;. onto the subspace B in the algebra so(7). These projectors have the form

1 1 1
Javed = Z0ac8ap + Zhased = = farkSedks (19a)

6 6 6

1 1 1 1
Tabed = §5a[c5¢15 - Ehabcd = g0e0as — 6fabhfa¢k- (19b)
It is readily seen that
- _ — - 1
9ecpqJedpg = Jabeds TabpqTedpq = Tabeds GabpgFedpq = 0, Gabed + Japed = 5(5“5“ — 85405.). 20
From (18)—(20), we obtain

habpquch = 4 abed, (21a)
hﬂbﬂquch = _2-g_abcd' (21b)

Therefore, the tensor g, is self-dual, and the tensor g, is anti-self-dual in the sense of the definition (5).
3.5. Octonion Structure. As a vector space, the algebra of octonions Ca is identical to R®. In the space R3 with metric
d4p (4, B, ...=1, ..., 8) we introduce the following completely antisymmetric 4-index tensor [31]:

Hobcd = }"abcd) Habcs = fabcy

where a, b, ...=1, ..., 7, and k4 and f ;. were introduced in Sec. 3.4. The tensor H gcp is invariant with respect to the
subgroup Spin(7) of the group SO(8) (see [8,10,11,31]) and satisfies the identities

HapepHrsrp = Saubsnpdck + 6pubncdax + Scpubnadex

1

t3

1 1
Hystapbcic + 3 H yxiabcyr + §H kraebeys- 22)

The algebra so(8) can be decomposed as follows:
s0(8) = spin(T) ® R,

where R, is the orthogonal complement of spin(7) in so(8). We define the projector Gpp onto the subalgebra spin(7) in so(8)
and the projector G4p-p onto the subspace R in so(8) (cf. [31]):

1 1
Gapep = §(5Ac:51m —8,p0pc)+ §H ABCD) (23a)

3 : 1
Gupep = '8*(540551) —~84pbpc) — gHABCD- (23b)

By means of (22) and (23) we obtain
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HaprsGricp = 6Gapco, (24a)

H 515G rscp = —2Gancp- (24b)
It is easy to show that
GapirGeprr = Gapep, EABIJECDIJ = EABCD,
— — 1
GaprsGeprs =0, Gapcp +Gapep = §(5AC5BD - 54D53c)-

4. NAHM AND ROUHANI—-WARD EQUATIONS

4.1. Rouhani—Ward Equations. In Sec. 3.1, we introduced the vector space R*=H®R, where H is a simple compact
Lie algebra, and n=1-+dim . On this space, we consider the (anti)self-duality equations

R;wlo F;\o = 2Fpu, ’ (25)

where the completely antisymmetric tensor R, is given by formula (6). Using the explicit form of the tensor R, ), we can
rewrite Eqgs. (23) in the form

JaveFen = Fap, (26)

1
E.fdabFab = Fyy, 27

where ¢, b, ...=1, ..., n—1. We multiply (26) by f;; and use the identity £, f ,,=20.;. We obtain Eqs. (27). Therefore,
the (anti)self-dual equations (25) are equivalent to Egs. (26).

We consider gauge fields A " that depend only on ¢=x, (cosmological solutions). We make 4, vanish by means of a gauge
transformation (gauge fixing). We obtain

dA,
di

Fae=—2=Asy  Fu=[As, A (28)

Substituting (28) in Eqgs. (26), we obtain
fabcAc = —'[Aa) Ab] (29)

Equations (29) were introduced by Rouhani [32] for the case when f;  are the structure constants of the Lie algebra si(N,
R). Inthe general case, these equations were introduced and studied by Ward [33]. We shall call (29) the Rouhani—Ward (RW)
equations.

In (29), f 5, are the structure constants of the Lie algebra M, and A, take values in the Lie algebra G. If H=su(2), then
the RW equations (29) are identical to the well-known Nahm equations [34]. We write them in the form

€apy Ty = =T, Tp}, (30)

where T =T (p), Ta =dT /dp, and €qpy ATE the structure constants of the group SU(2), ¢, 8, ...=1, 2, 3. Equations (30) arose
in the construction of solutions of YM equations in R* [35,16—19]. Equations (30) with ¢ replaced by a complex parameter
£ are also used in the algorithm for constructing N-monopole solutions of YM equations in R* [34,36,37].

The simplest solution of the RW equations (29) has the form

1
A, = —i—]‘,, €1}

where J, are the generators of the algebra  in an arbitrary representation. This solution gives the simplest cosmological
solution of Egs. (25) for gauge fields of the Lie group H. Solutions of the Nahm equations (30) give a large class of solutions
of the RW equations.

4.2. Nahm’s Equations. Equations (30) have a representation of Lax type. Indeed, we introduce the matrices

L) =+ +i(1 - )T, + 2i¢Ts, M(C) =¢(Th — iT3) + iTs.
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Then (30) can be rewritten in the form of a Lax equation with spectral parameter ¢ [36,37,33]:
L(¢) = [L(¢), M(Q)), (32)

where L(}) =dL({)/de. To Eq. (32) we can apply the inverse scattering method (see, for example, [38]), and in terms of theta
functions we can write down the general solution of Eq. (32) for any semisimple Lie algebra G.

A special case of this class of solutions can be obtained if we use an observation made in a number of studies [39,33]
concerning the possibility of reducing Nahm’s equations to the equations of a Toda chain. In the case of a nonperiodic chain,
this reduction makes it possible to obtain a solution of Egs. (30) in elementary functions. As an example, we write down the
explicit form of the ansatz for the functions T, with values in the Lie algebra G =su(N).

We set /0 a; 0 ... ... 0 dy \
aq 0 az 0 . Ve 0
0 Gq 0 ) ’ :
=i : ) ) ’
: . ‘. 0 aN_3 0
0 ree e 0 ay-3 0 25V )
R \GN 0 Cae eas 0 aN-1 0 /
{ 0 a, 0 0 —G'N\
—-ay 0 as 0 e .o 0
0 —a3; 0 .
L= ¢ oo e N (33
: 0 A2 0
0 e . . 0 —aN-3" 0 ayN-1
\GN 0 0 —aN-1 0
bh 0 ... 0

T3=i

(==

o
Y

S

N
y Zb.’=01
e 0 J=1
0 by

0o ...
where ay=a)(¢), b;=b/p) are real functions that depend on ¢. It is easy to show that for the ansatz (33) the equations
Tl =—[T,, ;] and T- 2=—[T3, T] are identical. We introduce the matrices

L=-T,+ils, M =-iT},

which take values in the algebra si(NV, R). Then the Nahm equations (30) can be rewritten in the form of the Lax equation

L=[L M], (34)
which is now without a spectral parameter. Rewritten in terms of a; and b;, Eqs. (34) are identical to the equations of the
ordinary periodic Toda chain (see, for example, [39,40]).

If in (33) we set ay=0, then (34) will be the equations of the (finite) nonperiodic Toda chain associated with the Lie
algebra si(n, R). The equations of the periodic and nonperiodic Toda chains associated with an arbitrary semisimple Lie algebra
(see [39,40]) can also be embedded in the Nahm equations.

4.3. Solutions of Nahm’s Equations for G=SU(2) and G=SU(3). For the algebra G =su(2), the ansatz (33) reduces
Nahm’s equations to the equations of the periodic Toda chain with solution that can be expressed in terms of the Jacobi elliptic
functions cs, ds, ns [35,16]:

a1 + 6, = Acs(Ap + B | m), a,—a; = Ads(Ap+ B |m), b =—b; = Ans(Ag+ B |m), (35)
where A and B are arbitrary real numbers, 0<m<1. For m=1, this solution has the form

A
P i — = by = —b; = Acth(A B). 36
ay h(Ap + B)’ a; =0, 1 2 cth(Ap + B) (36)
If in (36) we set B/A=C=const and allow A to tend to zero, then we obtain the solution

=1
T p+C’

We consider the ansatz (33) for G=su(3) with a;=0 (nonperiodic Toda chain). The solution of Eqgs. (34) has the form

a3 = 0. (37)

ay=b =-bh
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[40,17,19]

. o2 wi/2
a;y = A; exp{A ¢ + By) ) a4,y = Az exp(Azp +‘32)Ts
_4A1 424, | Ajexp(24,9+2B) [, 1 2B }
by = 3 -+ 3 1 yE exp(2A3¢ +2B;) ¥,
by = — 241 ;’M’ - e"p(z’;ﬁ“"* 28,) {1 - All-i:Az exp(24; ¢ +231)} . (38)

2

A
¥ =1-exp(24;9 +2B;) + m,exp@Al«p + 2B;) exp(2Aa9 + 2B;),

2

& =1-—exp(24;0+2B;) + _;4_2__2 exp(2A, ¢ + 2B;) exp(2A30 + 2B,), by = —b; — b3,
(A1 + 4;)

where 4, 4,, By, B, are arbitrary constants.

5. ANTI-SELF-DUAL SOLUTIONS OF THE YM EQUATIONS IN R*"

5.1. Ansatz. We consider the space R*" with metric J,,;, and antiself-dual equations of the form (17b) for the gauge fields
A, of the semisimple Lie group G:

Qab;chd = '_'2Fcb) (39)

where (.4 is given by formula (15), a, b, ...=1, ..., 4n. For n=1, Q p.s;=¢€ypcq> and (39) are identical to the standard
antiself-duality equations (4).

Equations (39) in R were considered in [9,13,15]. It was shown in [9,13] that the well-known Corrigan—PFairlie—t
Hooft—Wilczek (CFTW) ansatz (see [1—3]) for the gauge fields of the group SU(2) can be generalized to dimension d=4n.
We-generalize this ansatz to gauge fields of an arbitrary semisimple Lie group G and describe the corresponding new classes
of solutions of YM equations in the space R*, n=1, 2, ... [15].

For the gauge fields 4, we choose the ansatz

Ay = —J2Tu(p)0:p, (40)

where the constant antisymmetric tensors J%,, satisfy (13), ¢ is an arbitrary function of the coordinates x*€ R** and o, B8, y=1,
2, 3. The functions T, depend on ¢ and take values in the Lie algebra G. of the gauge group G, i.e., Ta=7’fx(<p)l [ where I
are the generators of the algebra G.

We substitute (40} in the definition of F, obtaining

Fu =02 {T.00.0 + T0uplep} ~ I {Tudebep + TuBupdep } + J0T3 [T, 51000, , (41)
where T, =dT /de. Using (13) and (15), we calculate Q. .F.4:

2 4 .
QascalFea = —§F¢b + EchJ;Eﬁ.,a {T,,,acaego + Taaczpa.go}
2 4 2.4 2 . .1
- g']bccdﬂ'![TﬂiTT}acsoaﬂtp + §Jac€aﬁry[Tﬂ»T‘1]ac¢absa‘ + §Jab {TGDSO + (Ta + Efaﬁ'y[%:Ty))ac‘aac‘P} ) (42)

where [J=0,0,. It is now easy to show that

2(;: 1
Qaéchccf -+ 2Fub = § (Ta + Efaﬂq [Tﬂ1T1]> {J:bac‘/’acs_o + 2']:684:‘1081139 - 2Jg:ac¢a¢¢}

4 . 2
+ 3 {faﬁvTv + [Ta»Tﬁ]) J:,;Jf,ac?aaﬁﬂ + §Ta (2.]:,:&8,,90 —2J50.0,0 + 26§1chJ;'c663¢90 + Ji;,Dtp) . 43)

We assume that



€apy Ty = — [T, Tp), (44)

2J3.0:0p — 2J5.0:0ap + 265, J2.J] 8.0, + J30p = 0. (45)

Equations (44) are equivalent to the equations
. 1 ]
Ta= —§eap,,[Tp,T7].

Therefore, if Eqs. (44) and (45) are satisfied, the right-hand side of (43) vanishes, and, therefore, the ansatz (40) will give an
anti-self-dual gauge field 4.

Proposition 1 [15]. With every solution T (p) of the Nahm equations (44), where the function ¢ satisfies Egs. (45), one
can associate a solution (40) of the YM equations for the gauge fields A, of an arbitrary semisimple Lie group G in spaces R4n
with n=1,2, ....

The proof follows from Egs. (41)—(43).

In accordance with Proposition 1, with every solution of the equations of the Toda chain and Eqgs. (45) for ¢ it is possible
to associate a solution of the form (40) of the YM equations in the space R*". In particular, such solutions result from the
substitution of (35)—(37) in (40) for the gauge fields of the group SU(2) and the substitution of (38) in (40) for the gauge fields
of the group SU(3). We emphasize that the Nahm equations (44) can be reduced not only to the equations of the Toda chain.
They can also be reduced to the equations of the Kowalevski top [41] and to other integrable equations.

5.2. Equations for Scalar Field. To find solutions of Eqs. (45), we replace the indices a, b, ... by double indices (ui),
(v, ..., where p, v, ...=1, ..., 4, i, j, ...=1, ..., n. In adopting such notation, we follow [42]. The tensors J"(‘ui)(,,j) (=J%)
can be chosen in the form

Tuirws) = Bii M (46)
where n‘;y are the well-known 't Hooft tensors. By definition (see, for example, [1—3])
7’;7 = 6;'1’ Moy = “T’:» =6,
where «, 8, y=1, 2, 3. It is readily seen that the tensors J%ui)(vj) satisfy (13) by virtue of the following identities for n‘;‘” [3]:
oAt = —8% b — Pl ea b inl, = 8uumS, — Suom, — Buml, + 6aomi,- 47
We substitute (46) in Egs. (45) and use the identities (47). We obtain

203,(03:0050 — 0x;0,i9) — 203502 Oip — 0x:B,i50)

+ 813, (0200 0 — 053 00i) + 15, (2050559 + 6;0p) = 0, (48)

where 9);=4d/ dxM. We recall that, unless stated otherwise, summation over repeated indices is understood always.
It is readily seen that Eqs. (48) are equivalent to

B,i0u3 0 = OuBuisp, (49)

Br0xip = 0, (49b)
where u and » can take all values from 1 to 4, and { and j can take all values from 1 to n. Note that from (49b) it follows that
D(P = E?=1 3)j8,\j¢ =0.

5.3. Solutions of Equations for Scalar Field.
Example 1. The simplest solution of Eqs. (49) [and (45)] is the function

Y = PaZa = Puilyi, (50)

where p, is a constant vector (momentum) in R%". Therefore, in accordance with Proposition 1 we can associate with each
solution of the Nahm equations (44) a solution of plane-wave type [with ¢ of the form (50)] of the YM equations in R,
Example 2. We set
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X, = zupi, (51)

where p;=const. Suppose the function ¢ depends only on X, i.e., o=¢(X}, X5, X3, X}). It is easy to show that in this case
Eqs. (49a) are satisfied identically, while Eqs. (49b) reduce to the Laplace equation with respect to the “collective” coordinates
X,

i)

P _ 52
3 (52)

Therefore, taking any solution of Eqs. (52), we obtain a solution of Eqs. (49) [and (45)]. For example, we can choose

(53)

K
=1 -+ I y
¢ ' E (Xu - Cl{)(XIl - C;{)

where K is any naturai number, and B; and C; are arbitrary constants.
Example 3. Suppose the functions ¢; depend only on the coordinates x,; with number i, i.e., ¢i(xy;, Xo;, %35, X43). We
set

p= (54)
=1

and substitute (54) in Eqs. (49). It is readily seen that these equations reduce to Laplace equations with respect to the
coordinates x,; for the functions ¢;:

(61501i + 02i02; + 03:03: + 04i04i)p; = 0,

where there is no summation over the index i. Therefore, taking n functions ¢; that each satisfies the Laplace equation with
respect to “its” coordinates Xy We obtain the solution (54) of Egs. (49) [and (45)].

We emphasize that the gauge fields corresponding to (54) are not a direct sum of n solutions in four-dimensional
subspaces, since T, () depend nontrivially on ¢ and cannot be decomposed into a direct sum of matrices.

Exampie 4. We introduce K isotropic (complex) constant four-dimensional vectors pL: pI”pL =0, where I=1, ..., K, K
is any natural number, and there is no summation over I. It is easy to show that

K
=" er(zup}), (55)

I=1

where @y are arbitrary functions of X{ Exﬂ,pz, is a complex solution of Eqs. (49). Therefore

K
v= (p:(X)) +2:(X])), (56)

where the bar denotes complex conjugation, will be a real solution of Egs. (49) [and (45)].

5.4. Discussion. Equations (49) arise in the construction of metrics on hyper-Kihlerian manifolds of dimension 4n
[43,42]. At the same time, there exists a correspondence between the space of solutions of Eqs. (49) and the cohomology group
HY(Z,0(=2))of a certain auxiliary space Z with coefficients in the sheaf O(—2), whose sections are homogeneous functions
of homogeneity degree —2 [9,42,43]. Therefore, the general solution of Egs. (49) can be expressed as a contour integral with
respect to the auxiliary variable {€ CP! of an arbitrary holomorphic function of homogeneity degree —2. In particular, for
the space R® the explicit form of the general solution ¢ in terms of a contour integral was given by Ward [9]. In [43], a similar
solution was given for a function ¢ that does not depend on xf‘, i=1, ..., n. However, in applications it is more convenient
to use the explicit form of solutions of the type (50), (53)—(56) or a superposition of them. Note that Z= CP! xR s the
twistor space for R¥ or a certain subspace in CP! xR,

As we have already noted, the general solution of the Nahm equations (44) can also be expressed in terms of theta
functions. Therefore, in principle it is possible to give the general solution of Eqs. (44), (45) obtained from the ansatz (40).
The behavior at infinity and the topological properties of these solutions must be the subject of a separate investigation.

Note that Egs. (39), the ansatz (40), and Eqgs. (44), (45) admit formal passage to the limit n—>o0. As a result, we obtain
gauge fields and anti-self-duality equations on the infinite-dimensional (countable) space R*®. At the same time, (50) and
{53)—(56) alsc give solutions of Eq. (45) in the limit n>co. Anti-self-dual gauge fields on infinite-dimensional manifolds are
used in the approach of geometric quantization of string theory [44].

One can also carry out a different limiting process — with respect to the dimension of the gauge group. Then for the
ansatz (33) Eqgs. (34) become the equations of an infinite Toda chain, whose solutions are known. For infinite-dimensional Lie
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algebras G [of the type su(o0)] one can also obtain [45] a general solution of the Nahm equations (44).

6. (ANTDSELF-DUAL EQUATIONS IN R*

6.1. Ansatz and Solutions. We now consider the case of gauge fields in the space R* with metric 8,, in a little more
detail. In accordance with (46), the ansatz (40) in d=4 takes the form [18,19}

Ay = - Ta(p)Orp. (57

It is easy to show that in R* (39) are identical to the standard antiself-duality equations (4). Equations (39) were reduced in
Sec. 5 to the system of equations (44)—(45). In their turn, Eqs. (45) are equivalent to Egs. (49), and for n=1 Egs. (49) reduce
to the Laplace equation for the function ¢:

Op =0, (58)

where [] Eaﬂau, The matrices T, () must still satisfy the Nahm equations (44).

If we choose the simplest solution of the Nahm equations, T, =(1/¢)I,, where I, are the generators of the group SU(2),
the ansatz (57) becomes the CFTW ansatz. If P=XX,, then for T () of the algebra su(2) (57) becomes the Minkowski ansatz
[35], and for T (¢) belonging to an arbitrary semisimple Lie algebra G (57) becomes the ansatz of [16,17].

Proposition 2 [16—19]. Ler T () satisfy the Nahm equations.

A If P=x%,, then the gauge field (S7) will be self-dual.

B. If the function ¢ satisfies the Laplace equation (58), then the gauge field (5T) will be antiself-dual.

Proof of A. From (41), (46), and (47) we obtain

o . 1
F#V = TMua {Taaxau‘l’ + (Ta - Efﬂpv[Tp,Tq])aA(pa,,(p}

, -1
- 77:7}\ {Taakdﬁa + (Ta - '2’50497 [Tﬂ’ T'r]) aASaan‘P} + W:ufaﬂvTﬂTvaAS"aA‘Py 59

where TaEdTa/d(p. In (59) we substitute ¢ =x,x,. It is readily seen that if T satisfy the equations
€apr Ty = [T Tp),
which are obtained from the Nahm equations (44) by the substitution 7,,->—1T, then the tensor F, P will be self-dual:
Fup = 45, (Ta + zaZ2€0g,TpTy). (60)

Proof of B. This follows from formulas (41)—(45) and (46)—(49).

All the solutions of the Laplace equation in R* are known, and for Eq. (59) we can write down the general solution.
Therefore, to find solutions of the form (57), it is sufficient to find solutions of Nahm’s equations. We discuss these equations
and their solutions in Sec. 4. In particular, for the gauge group SU(2) one can take the solutions (35)—(37), and for the gauge
group SU(3) the solution (38).

6.2. Monopoles and Vortices. The reduction of the (anti)self-duality equations (4) to three dimensions (for d,4,=0)
leads to Bogomol’nyi’s equations (see [1—3,34,36,37]). Therefore, every solution of Eqs. (44) and (58) with d4¢ =0 describes
a monopole configuration. The ansatz (57) for such monopole solutions takes the form

Aa = €apr To(0)0yp, Ay = Ta(p)0agp,

where «, 3, y=1, 2, 3, g=¢(x%).

It is also known [46] that the reduction of the self-duality equations to two dimensions (with B3Au=<')4A “=0) leads to the
equations of the two-dimensional G%/G ¢ model, where G* is the complexification of the Lie group G. Therefore, every solution
of Egs. (44) and (58) with d3¢=0,¢=0 gives a solution of the d=2 equations of the G%G o model. The ansatz (57) in this
case has the form

Ay = ~T3(p)epgOgp, AQ = €pqTp(9)0gp, Ay = Ty(p)0q0,

where p, g=1, 2, o=¢9).
Similarly, with every solution of the equation 6qaq<p=0 and the equations obtained from Nahm’s equations by the
substitution 77Ty, T,~iT,, T;~>T3 we can associate a solution of the equations of the principal chiral model in R2 [47].
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6.3. Plane-Wave Solutions. We have considered (anti)self-dual gauge fields in Euclidean space R%0. (Anti)self-dual
solutions in the Minkowski space R3:! (see, for example, [48,49]) are also interesting. It is known that self-dual gauge fields
of a Lie group G in the space B3 are complex. However, as was already shown by Wu and Yang [50] (see also [48,49]),
complex gauge fields of the Lie group G can be regarded as real gauge fields of the complexified Lie group G°®.

The ansatz (57) is readily continued to Minkowski space R31. For this, it is sufficient to set x*=—ix®. Then Nahm’s
equations (44) remain unchanged, while in Eq. (58) the Laplacian in Euclidean space is replaced by the Laplacian in Minkowski
space:

(87 +08; +91 - 8%) ¢ = 0. (61
As solution of Eq. (61) we take a function of the form
M
p=Ao+ ) _ Arexp(pjz' +pjz* + pjz* + pjz°), (62)
I=1

where M is any natural number, 4, and A; are non-negative constants, and p’ =(p{ s p{—,_, pg, p{,) are constant isotropic vectors,
ie.,

P+ @) + () - () =0, I=1,...,M.

As solutions of Nahm’s equations (44), we choose solutions of the equations of the finite nonperiodic Toda chain, the
reduction to which is described by ansatzes of the type (33). In particular, for the gauge group SU(N) we obtain a reduction
to the equations of the ordinary Toda chain associated with the algebra si(N, R). Solutions of these equations are known
explicitly for all N [40]. Solutions for N=2 and N=3 are given in (36) and (38). The solutions that are obtained have the same
form as the solutions of De Vega [49], who considered G=SU(2) [G°=SL(2, C)], and generalize them to an arbitrary gauge
Lie group G.

Proposition 3. With every solution of the Nahm equations (44), where ¢ has the form (62), it is possible to associate a
rulti-plare-wave solution (57) of the YM equations for the gauge fields of an arbitrary semisimple Lie group G° in Minkowski
space R3:1,

6.4. Linearly Rising Potential. As solution of Eq. (61) we take a function of the form

¢ =z} + 2] + 27 + 323, (63)

Considering the group SU(N), as solutions of the Nahm equations (44) we take, for example, the solution of the nonperiodic
Toda chain, the reduction to which is given by the ansatz (33). For ¢ of the form (63), the free parameters of the solution of
Egs. (34) can be chosen in such a way that T () will be nonsingular [19]. At the same time, following {40], we can show that
for ¢=o0 Ti{p) tends to a constant matrix. Therefore, F uy does not decrease and in the limit x>0 we obtain
Fw—*Fw(oo)zconst;éO [19].

7. ANTI-SELF-DUAL SOLUTIONS OF THE YM EQUATIONS IN R47+2

7.1. Anti-self-duality Equations. We consider the space R* with metric 8,y and complex structure J,zy. We introduce
anti-self-duality equations of the form (10b) for the gauge fields Ay, of the semisimple Lie group G:

TulrqFpg = —2Fyn, (64)

where TMNPQ is given by formula (8), M, N, ...=1, ..., 2k. For k=2, TMNPQ=6MNPQ’ and (64) are identical to the standard
anti-self-duality equations (4).

§f k=2, then d=2k=4n. Examples of anti-self-dual fields in R¥" were given in Sec. 5. Therefore, we consider here the
case k==2n+1, which corresponds to d=2k=4n+2, n=1, 2, .... Solutions of Eqs. (64) in d=4n will be obtained as a special
case of solutions in d=4n+2. .

The space R*"*2 can be represented as the direct product R**XR? of the space R*" and the space R2. We shall assume
thata, b, ¢, ...=1, ..., 4n; p, q, r=1,2; &, B, v, 6=1, 2, 3. As was shown in Sec. 3.3, in the space R it is always possible
to find three constant antisymmetric tensors J%,. Each of these tensors can be chosen as a complex structure J,;, on R*" that
satisfies in accordance with the definition (7) the relations Jad b= —04,- We denote the complex structure on R2 by Jp s
Jorl g™ —8yq. We choose the complex structure Jy,y on R¥*+2=R*xR? in the form
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Jun ={Jup=J% M=a,N=b Jag=0,M=a, N=g; Joqy M=p, N=q}. (65)

It is readily seen that the tensor (65) satisfies (7).
Substituting (65) in the definition (8), we find that the only nonvanishing components of the tensor Tynpg are

Tused = JasJea + JaaTre = JacTbar  Taspg = —Tupbe = Tyabg = —Tpaqs = Jas Jpg- (66)
In accordance with (66), Eqs. (64) can be rewritten in the form
ToseaFea + 2F g + JasJpg Fpg =0, 20 + JpqdasFay =0, JayFip + JpgFag. = 0. 67)
7.2. Ansatz. We shall seek solutions of Egs. (67) in the form
A= =3 Ta(p)0ep, A= xTy(p). (68)

Here, the ¢-dependent functions Ta={Tq, T3}={T;, T,, T3} take values in the Lie algebra G of the Lie group G, ¢ is an
arbitrary function of the coordinates x4& R%", J<%. are the constant tensors (13), and x =const. The ansatz (68) generalizes the
ansatz (40) for d=4n and goes over into it for x =0.

Substituting (68) in the definition of Fy,y, we obtain

Fu = I8 {Tothdop + Tudrpdp} = I {TaBbuip + TuBupdep ) + JETL Ty, Ty)0p0ep,

(69
Fog = "{T Bap — [Ty Ty] Jacac‘P} Fye = #'[T;, T},
where T, =dT, /dp, 3,=8/3x°.
We substitute (69) in (67). After fairly lengthy calculations, we obtain
. : . 1
TaveaFes + 2F s + JapJpg Fpg = 2J35{T3Dga + (T3 + [T1, T2))B.08.0 + ”2[Tx,Tn]} +2 (Tq + 'ifns[T-i,TJ])
x {chac«paw ~ I3 0cpdatp + €L, I 2T 65506,30} + 2T, {J:,c? Bop ~ J5.0c0atp + €1, T2 TE.D 6,50},
(70)

2By + JygJusFas = 205 {Ts0p + (T3 + T3, Ti) el + (T3, Tl }

Jas Fop + Jpq Fag = 3 (Tq + §fqaﬁ [TmTﬂ]) {6pq'l:c6r:‘l’ + Jpqaﬂ‘f’} )

where (J=4,d, and we have used the fact that [Tp, Tq]=JPq[T1, T,l, e3pq:—:.lpq. We recall that Jib= P g4 r=1,2; a, 83,
v, 6=1, 2, 3.
It is obvious from (70) that the anti-self-duality equations (67) are satisfied if the following equations hold:

_ : . ? .
Tx+[T2,Ta]=Tz+[Ta,T1]=Ts+(1+W) [, 2] =0, an
J2.8.00p — J}.0:8,p + €1, J 2. JE B:Bep = 0. (72)

Note that we consider real functions ¢ #const. For such functions, d,¢d.¢ #0, and, therefore, we can divide by 3,20, ¢.
Equations (71) generalize the Nahm equations (44). Equations (72) are equivalent to Eqs. (49), which were considered in Sec.
5, and therefore from (72) the equation (] =0 follows. The equivalence of (72) and (49) becomes obvious after the substitution
of (46) and the use of the identities (47).

Proposition 4. With every solution of Egs. (71) and (72) it is possible to associate an anti-self-dual solution (68) of the
Yang—Mills equations for the gauge fields Ay of the arbitrary semisimple Lie group G in the space R 2 with n=1, 2, ....

The proof follows from formulas (69)—(72).

Remark. All the fields in the ansatz (68) depend only on x*€ R*", and for such fields the YM equations in R***2 can
be regarded as YMH equations in R% [4,7,51], the role of the Higgs fields being played by A (g=1, 2). The YMH
Lagrangian in R*" can be obtained by trivial dimensional reduction of the YM Lagrangian m R"+2 [751]. The
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Euler—Lagrange equations for this Lagrangian will be the YMH equations in R, and the solutions of Eqgs. (67) give solutions
of these YMH equations.

7.3. Exampies of Solutions. Using the explicit form (46) for J%,, we can readily show, repeating the calculations of
Sec. 5.2, that Eqs. (72) are equivalent to Egs. (49). In Secs. 5.3 and 5.4 we described in fair detail the solutions of Eqs. (49).
It remains to give solutions of Egs. (71).

Example 1. Note that for x =0 (71) are identical to Nahm’s equations, the solutions of which we discussed in Secs. 4.2
and 4.3. For »=0, the solution given by the ansatz (68) is identical to the solution (40)—(41).

Example 2. We choose the simplest solution (50) of Eqgs. (72). Then 3,040 =p*=const and (71) reduces to Nahm’s
equations (44) after the redefinition

3y ~1/2 1 2\ ~1/2
n~<ﬁf) T, n~(:f) T, T

Example 3. We assume that the group G is complex. Let T;=iT,. Then T3=0=T;=const, and (71) reduce to the
equation

Ty = [, iTs). (73)
Let g€ G be a solution of the equation g=igT;, where g=dg/dp. Then the solution of Eq. (73) has the form
Ty = 9" ' Tag, Ty = —ig™ ' Thy, Ty = —~ig~'§ = const.
Example 4. Let G =si(2N, R) or si(2n, C). We choose T, in the block form

2’,:(3 ‘g/, Tzr(.g g), n:(g g) T =0, (74)

where each block measures NXN. Then T3 =0=C and D are constant matrices. For the ansatz (74), Eqgs. (71) reduce to
A=BD-CB, B=CA-AD. (75)
As a simplification, we shall assume that C and D are diagonal matrices, i.e., C=diag(cy, ¢y, ..., cy), D=diag(d,, d;,

«-; dy). Then for A={a;}, B={b;} Egs. (75) in components take the form
ay = (e = di)big, by = (e — dy)ais,
where there is no summation over i, j=1, ..., N. The solution of these equations has the form
ai; = Qi sin{e; — d;)p + Ryjcos(ci — dj)p,  by; = Rysin(e; — dj)p — Qyj cos(ei — dj)yp, (76)

where Q;; and Rt-j are arbitrary constants and there is no summation over { and j.

Therefore, taking any solution of Eqgs. (72) and the solution (76) of Eqs. (71), we obtain the solution (68) of the YM
equations in R*"*+2 for G=SL(2N, R) or G=SL(2N, C).

Example 5. We substitute in (71) the ansatz (33) with ay=0 for G=su(N). Then Egs. (71) reduce to

da; _ . a;, (. o 2 2
d(p - (bl+1 - bt)an E; - 2(1 + m) (ai-l - at’)' (77)

For x =0, these equations are identical to the equations of the Toda chain (see Sec. 4.2). In the simplest case G=SU(2), Egs.
{77 for ¢=1/X#Xu {cf. (53)] are close in form to the equations that arise in the description of vortex solutions of the YM
equations in R,

8. ANTI-SELF-DUAL SOLUTIONS OF THE YM EQUATIONS IN R7

In the space R’ with metric 0,5 we consider the gauge fields A, of the semisimple Lie group G. We assume that
3_
Aa = §gabcdszcd(u)! (78)
where the antisymmetric tensor W ;= — W, depends on u= 2+xaxa (o=const) and takes values in the Lie algebra G of the

Lie group G, and the explicit form of the tensor g, is given in (19b).
We substitute (78) in the definition of the tensor F,,. We obtain
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. _ . 9 _ _
Fop = —3GascaWea + 32aZiTskcaWea — 3Ts%eTarcaWea + Zz‘mzﬂgamcdybnek[WCJY Weels (79)

where chEdch/du. We substitute (79) in the anti-self-duality equations [cf. (21b)]
habchcd = "2Fab, (80)

where the tensor kg, ., is introduced in Sec. 3.4. Using the identities (18)—(21), we can show that after fairly lengthy
manipulations Eqs. (80) for the ansatz (78) reduce to the equations

Sabcdmn Wmn = _[Wab) ch]- (81)

Here,

1
Sabedmn = 5(5“55[". bnja = ObeBambnia + 680 spmbnie — SadbipmOn)e)

are the structure constants of the group SO(7). Equations (81) are a special case of the RW equations (29).
If W_, () satisfy Egs. (81), then the tensor F,, has the form

3 : . . .
Fu= —Zja,,cd {4Wc,1 +2(u— p" YWy — 2z, 2 Wae + 3zkz[cg¢]kmnWm,,} . (82)

The anti-self-duality of the tensor F;, is now obvious [see (21b}].

Proposition 5 [14]. For the ansatz (78), the anti-self-duality equations (80) of the d=T YM model with arbitrary
semisimple gauge group G reduce to the RW equations (81). Conversely, with every solution of the RW equations (81) we can
associate a solution (718) of the d=T anti-self-duality equations (80).

If we take the solution (31) of the RW equations and replace ¢ by u=p? +x,x,, then we obtain the simplest anti-self-dual
solution of the YM equations in R7.

9. ANTI-SELF-DUAL SOLUTIONS OF THE YM EQUATIONS IN R8

In the space R8 with metric 8,7y we consider the gauge fields A, of the semisimple group G. For A4, we make the ansatz

4_.
Ay = EGMNCD zyWep(u), (83)

where the antisymmetric tensor Wp=— Wy, which depends on u=p2+x)p), (0=const), takes values in the Lie algebra G

of the Lie group G, and the constant tensor Gyyycp is given by formula (23b).
We substitute (83) in the definition of the tensor Fyzy. We obtain

8~ 8 = : 16 — —
Fyn = —EGMNCDWCD + é'z[MGN]BCDzBWCD' + ?EcszucquNpAg[qu, Wag), (84)

where Wep=dW p/du. We substitute (84) in the antiself-duality equations [cf. (24b)]

Hepun Fun = —2Fcp. (85)
After fairly lengthy calculations using the identities (22)—(24), we obtain the equations
SapcounWaun = —[Wap, Wep), (86)

where

1
SapcoMN = 5(54053[M5N1D = 08cOapmbip + 8mpbamEnic — 6ap by biic)

are the structure constants of the group SO(8).
I W, p(u) satisfy Eqs. (86), then the tensor Fyy has the form

2 . - .
Fun = ""Q‘GMNIJ (12WIJ +6(u — p" )W + stGCDB[JzI]WCD) . @7
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The anti-self-duality of Fyy is obvious on the basis of (87) and (24b).

As in Sec. 8, we obtain the following proposition.

Proposition 6 [14]. For the ansatz (83) the anti-self-duality equations (85) of the d=8 YM model with arbitrary semisimple
gauge group G reduce to the RW equations (86). Conversely, with every solution of the RW equations (86) we can associate
the solurion (83) of the anti-self-duality equations (85).

If in the solution (31) of the RW equations we replace ¢ by u=p2+xMxM and substitute in (78), then we obtain the simplest
anti-self-dual solution of the YM equations in R®, which was found in [10,11].

10. SOLUTIONS OF YM EQUATIONS IN THE SPACES R??

In the space RP? with metric 6, (2, b, ....=1, ..., pq) we consider the gauge fields 4, of the semisimple Lie group G.
We replace the indices a, b, ... by double indices (uf), (), ..., Where y, », ...=1, ..., p; L, J, ...=1, ..., g. We take the metric
tensor 6,7 (=0,p) in the form
Buini) = OB -
We introduce the variables
Xy = Zuipi, (88)

where p;=const, and, as usual, summation is understood over repeated indices. For the gauge fields Ay (F4p) in RP9 we
make the ansatz

Ay = Au(X)pi, (89

~where A, depends only on the “composite” coordinates (88).
Substituting the ansatz (89) in the definition of the tensor F(ui)(Vj) (=F,p), we obtain

Flunws) = pipi(Bu Ay — 8, Ay + [Ay, Av]) = pipi Fuv, (90)
where, by definition, d, =9/3X . We substitute (89) and (90) in the YM equations in RP4. We obtain
y [ W

Oui Fluiywsy + [y Fluiywiy] = Pipip*(0u Fuv + [An, Flu]) = 0. on

We assume that the p; are real constants, and therefore p;p; #0, and, as a consequence, the ansatz (89) reduces the YM equations
in the space R?? to YM equations in the space R? parametrized by the coordinates X,

OuFu +[A,, F,]=0. - (92)

Proposition 7. For the ansatz (89), the YM equations in RP? reduce to YM equations in RP. Conversely, with every
solution of the YM equations in the space RP one can associate a solution (89) of the YM equations in the space RP4, where p,
g=2,3, ....

The proof follows from formulas (88)-—(91).

Example 1. Let p=4, g=2, 3, .... Then for the ansatz (89) the YM equations in R*4 reduce to YM equations in R%.
Therefore, with every anti-self-dual solution of the YM equations in R? it is possible to associate an anti-self-dual solution of
the YM equations in R*. Special cases of such an association were considered in [9,15] and in Sec. 5 of this paper (Example
2). Moreover, with every non-self-dual solution of the YM equations in R* (for example, a meron solution) one can also
associate a solution of the YM equations in R*?. Special cases of this were considered in [52].

Example 2. Let p=8, g=2, 3, .... Inthis case, the ansatz (89) makes it possible to associate with every (anti)self-dual
solution of the YM equations in R® a solution of the YM equations in R84, We give the explicit form of one such solution:

41— Xup:
2 —— I
Ay = 3GMNCD 7 1 X5 %5) P

where Xp=xp,p;, p;=const, xp; are coordinates in R%, and Iop are the generators of the Lie algebra so(8).
11. CONCLUSIONS

In this paper, we have shown that Nahm's equations and the Rouhani—Ward equations, which generalize them, arise in
the study of Yang—Mills equations in spaces of dimension d>4. By means of the ansatzes considered in this paper one can
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associate with solutions of the Nahm and Rouhani—Ward equations different types of solution of the Yang—Mills equations in
d=4.

For Nahm’s equations, general solutions of elliptic and trigonometric types are known and can be expressed, respectively,

in terms of theta functions and hyperbolic functions. It is desirable to find solutions of such type for the Rouhani—Ward
equations too.
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