
(ANTI)SELF-DUAL GAUGE FIELDS IN DIMENSION d_>4 

T. A. Ivanova and A. D. Popov 

The (anti)self-duality equations for gauge fields in dimension d=4 and the generalization of these equations for d>4 are 
considered. The results on solutions of the (anti)self-duality equations in d_>4 are reviewed. Some new classes of solutions of 
Yang--Mitls equations in d_>4 for arbitrary gauge fields are described. 

1. I N T R O D U C T I O N  

It is well known that the electromagnetic, weak, and strong interactions are described by gauge fields of the group 

U(1) • SU(2)• SU(3). The dynamics of these fields is determined by the Yang--Mills (YM) equations in a space of dimension 

d=4,  and therefore the finding of solutions of YM equations is of particular interest. 
At the present time there are known in d = 4  not too many solutions of the YM equations in explicit form (see, for example, 

[1--3]). The most interesting among them are solutions of instanton, monopole, and vortex type. They can be obtained as 
solutions of the self-duality equations in Euclidean space R 4 for gauge fields that depend on four, three, and two coordinates. 

Yang--Mills equations in a space of dimension d>_4 appear in multidimensional theories of  supergravity, super- 
Yang--Mills, and in the low-energy limit of superstring theory [4]. The use of solutions of the YM equations in d > 4  makes 

it possible to obtain soliton solutions in superstring and supermembrane theories [5,6]. It is also known that the imposition of 
symmetry conditions on the gauge fields of YM theory in d dimensions leads to Yang--Mills--Higgs (YMH) theory in k<  d 

dimensions [7]. Therefore, solutions of the YMH equations in d = 4  can be obtained from solutions of  YM equations in 

dimension d >  4. 
In [8--11] linear equations for the components of the field tensor of gauge fields in the Euclidean space R d, generalizing 

to d >  4 the self-duality equations of four-dimensional YM theory, were introduced. Some solutions of these equations were 
obtained in [9--15]. In this paper, we review the results published in [14--19] on solutions of the (anti)self-duality equations 
in spaces R d with d_> 4. 

2. Y A N G - - M I L L S  E Q U A T I O N S  A N D  S E L F - D U A L I T Y  I N  R a 

2.1. Definitions and Notation. We consider in d-dimensional Euclidean space R d with metric (Sab gauge fields A a of an 

arbitrary semisimple Lie group G, a, b . . . .  = 1, ..., d. The fields A a take values in the Lie algebra g of  the Lie group G. The 

field tensor Fab of the gauge fields has the form 

F,,b = [D,,, Ob] = [d,, + A,,, ab + A,] = c%Ab - ObA,, + [A.,  nb]. (1) 

The YM equations have the form 

D . F . b  = 0 r162 O.F.b + [A.,  F.b] = 0, (2) 

where summation over repeated indices is understood. For an arbitrary tensor Fab of the form (1), the Bianchi identities hold: 

Dt~Fb4 = 0 r D,F~r + DbF,, + D,F,~ = O. (3) 

We use square brackets to denote antisymmetrization with respect to all indices in the brackets, for example, 

2.2. Self-Duality. 
the equations 

Tt,b]= T,~ ,.-Tb,,, M,[bN4d = M,,~N,,~ - M,,N~,z.  

We recall that gauge fields A~ in d=4  are said to be (anti)self-dual if their field tensor Ft~ ~ satisfies 

eu~x, Fxr =- I -2F~,  (4) 
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where #. u . . . . .  1 . . . . .  4, respectively. By virtue of  the Bianchi identities (3), every (anti)self-dual field satisfies the YM 
equations (2). 

In [8], the following generalization of  the (anti)self-duality equations (4) to the ease d >  4 was proposed: 

8 abcd Fcd = ) i F ,  b, ( 5 )  

where k=const ,  and s is the completely antisymmetric tensor with constant numerical coefficients. Examples of  the tensors 
S and the eigenvalues h corresponding to them will be given below. 

We shall call gauge fields A a whose field tensor Fab satisfies Eqs. (5) self-dual and anti-self-dual, respectively. By virtue 
of  the Bianchi identities, it is obvious that solutions of  Eqs. (5) satisfy the YM equations (2). Some solutions of  Eqs. (5) were 
obtained in [9--  15]. 

In contrast to (4), Eels. (5) are not SO(d)-invariant for d >  4, since Eat, c a cannot behave as a (pseudo)scalar under the action 
of  the group SO(d). However, s can be invariant with respect to a subgroup H of  SO(d), and Eqs. (5) are well defined on 
spaces having H as group of admissible coordinate transformations (see [8--11]). 

R e m a r k  1. Equations of  the type (5) but with tensor s that is not always completely antisymmetric arise from the 
condRion of vanishing of  the curvature Fab on certain complex m-dimensional planes as a consequence of  a geometrical 
definition of  (anti)self-duality (see, for example, [9,13,20 23])in the generalization of  twistor theory to dimension d = 2 n >  4 
(see [9,20,21,24,25]). 

Of course, if  the tensor s is not completely antisymmetric then the solutions of  Eqs. (5) will not satisfy the YM 

equations (2). However, in some cases, on hyper-Kfihler spaces, for example, geometrical (anti)self-duality is identical to 
algebraic (anti)self-duality (5) [9,13,23]. On the other hand, Eqs. (5) cannot always be represented as conditions of  integrability 
on certain m planes in the sense of  the twistor approach [8,9,13,20--25]. 

Remark  2. In a number of  studies [26 29] the operator of  Hodge * dual conjugation on spaces of  even dimension d=2m 
has been used to introduce (anti)self-duality equations that are nonlinear in the curvature tensor Fab and differ from (5). The 
solutions of  such equations do not satisfy Eqs. (2) but either certain generalized YM equations in R 2n [26 28] or YM equations 
on symmetric spaces [29]. 

tn this paper, we restrict ourselves to constructing solutions of  the algebraic (anti)self-duality equations (5) linear in the 
curvature Fab, 

3o I N V A R I A N T  T E N S O R S  s 

For spaces R d with additional structure we give examples of  tensors '~abcd invariant with respect to some subgroup H of 
the group SO(d). 

3.1, Lie Algebras and  Self-Duality. We consider a compact Lie algebra 7"/, of  the simple Lie group H. We assume that 
the structure constantsfabc are normalized in such a way that the Killing--Cartan metric is Kab=2~ab, a, b, . . . =  1, ..., d i m ~ .  
We set n =  1 +d im 7~, and consider the vector space R n =7"t@R. We choose the metric in this space in the form 6~r= {~ab, ~nn}, 
#, U . . . .  = 1 . . . . .  n. We denote the basis in the algebra 7-( by la, and the basis vector of  the 0ne-dimensional space R by I n. 
It is obvious that Rn=Tg~R can be regarded as a Lie algebra with the commutation relations 

[io, ~]  = f ~ j o ,  [xo, x~] = 0. 

We introduce in R n the following completely antisymmetric 4-index tensor R~,Xo: 

R.bed = O, Rab,~ --- fabe" (6) 

The group SO(n-  1) is embedded in the group SO(n), and H can be embedded in SO(n-  t). The group H acts on the subspace 
7"(C R n by the adjoint representation 

and preserves the decomposition R n = ~ @ R .  The tensor Rt~,X o is invariant with respect to the action of  the group H. This 
follows from the invariance of  the scalar product (,) on~(( la ,  Ib)=26ab ) with respect to the adjoint action: 

d e .0 d e g (Adh),(Ads)b(Adh),R,,a, ~ = (Adh),(Adh)b(Adh),fa,, 

= (Adh(I~) ,  [Aah(I~), Adh(1,)]) 
= (AdA(1,), Adh([I~, L])) 

-- (X,, [Ib, 1el) = f,~, ~ /~,t, en. 
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We give examples of constant (anti)self-dual tensors. 

f;~ = { Y:,, 

It is easy to show that 

We set 

a p = b ,  u = c ;  df~, p_--b, v = n ;  -6~, p----n, v = b } ,  f u~a~=f~ f~ , -2R~a~ .  

3~176 

By a complex structure o n  R 2n we mean a constant t e n s o r  J=(JMN) whose components satisfy the relations [30] 

R ~t a 

Complex Structure. We consider a space R 2n of even dimension with metric s t r u c t u r e  ~MN, M, N, ... = l, ..., 2n. 

JMQ JQN :'~: - -SMN. (7) 

The canonical complex structure J0 has the form 

,0:(o lo) 
By means of the tensor JMN we can introduce in R 2n complex coordinates and identify R an with C n. 

The group SO(2n) preserves the metric ~MN. A subgroup H in SO(2n) that preserves the complex s t r u c t u r e  JMN is the 
group U(n): 

u( , , )  = { g e s o ( 2 . ) :  0 s  = sg  }. 

By means of the real antisymmetric 2-index tensor JMN we can specify a completely antisymmetric 4-index tensor: 

TMNpQ =--- JMN JPQ -- JMP JNQ + JMQ JNP, (8) 

which is invariant with respect to the group H =  U(n)C SO(2n). 
We introduce the following tensors: 

1 
Keons = ~n JpQ Jns, (9a) 

- -  1 

K pons =- -'~ (Tpons - ( 1 -  2 ) JpoJns - 6Pn6os + 6Ps6on) , 

1 
Lpqns - ~(TpQns - JPQdns + *vn6qs - 6ps~qn). 

Using (7) and (8), we can readily show that 

TMNPQ KpQRs = 2(n - 1)Kunns, 

TMNP QK PQns = --2KMnns,  

TMN~QLpQRs = 2LMNnS, 

- -  1 
KMNPQ + KMNPQ + LMNPO = ~($MP~NO -- ~MQ~Np). 

KMNpQKPoR S = KMNR$ , 

LMNpQLpQns = LMIqRS, 

KMNpQLpQRa = 0, 

- -  - -  n 

KMNpQKpQRs = KMNnS 

KMNpQKpQns = O, 

K u u P o L P o a S  = O, 

(9b) 

(9c) 

(10a) 

(10b) 

(lOc) 

(11) 

(12) 

Since 

it follows that the tensors KMNPQ, KMNPQ, and LpQRS are projectors onto three orthogonal subspaces in the algebra so(2n). We 
have 

,o(2n) = u(1) (9 su(n) @ P, 
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where 7 ) is the orthogonal complement of u(n) in so(2n). One can show that KMN_P Q projects onto the subalgebra u(1), Ir~MNPQ 
onto the subalgebra su(n), and LMNPQ onto the subspace P .  Note that for n=2  KMNPQ projects onto one subalgebra su(2) in 
so(4), and KMNPQ-bLMNPQ projects onto the other subalgebra su(2) in so(4). 

3'3. Quaternion Structure. We consider the space R 4n of dimension 4n with metric gab, a, b . . . .  = 1 . . . . .  4n. One says 
that in the space R 4n there is defined a quaternion structure if in R 4n there are defined three complex structures J~ = (J~ab) related 
by [231 

a ,8 --~ j a j ~  = _$~p _ e~,~.yj.r ~ J~J~b --~b ea#'tJ~ab, (13) 

where e~r are the structure constants of the group SU(2), o~,/~ . . . .  = 1, 2, 3. Using J~b, we can identify R 4n with H n. 
It is known (see, for example, [23]) that a subgroup in SO(4n) which preserves the quaternion structure is 

Sp(1)Sp(n)CSO(4n). Accordingly, for the Lie algebra so(4n) we have 

so(4n) = s p ( 1 )  @ sp(n) ~ IC, (14 )  

where /C is the orthogonal complement of sp(1)~sp(n) in the algebra so(4n). 
Using the real antisymmetric tensors J~b, we can introduce the following completely antisymmetric tensor: 

1 . 
Qabed ~ ~ (Jab Jc7 -I- Ja5 Jb'~ - Ja% JbT), (15) 

which is invariant with respect to Sp(l)Sp(n)=-Sp(1)• 2. 
In accordance with the decomposition (14), we can define the projector Nabcd onto the subalgebra sp(l), the projector l~abcd 

onto the subalgebra sp(n), and the projector Mabcd onto the subspace /C. These projectors were introduced in [ 13]. They satisfy 
relations of the type (12). We shall use a definition of the projectors N, N, and M in terms of jc~/,: 

N~b~ =- ~l"~ J~bJ~, (16a) 

- -  1 
(16b) 

- 1 (  ( 2 )  ) 
Mabed "~ 3Q~bca - 1 + Jaab Jead + 36ae~bd -- 3~ad~br �9 (16c) 

By means of (13), we can show that the tensors defined by Eqs. (16) are indeed projectors. We can also show [13] that 
Mabcd~O for n= 1. From (13) and the definitions (16) there follow the relations 

Q.~qN.apq 2(I + 2n) 
= , ~ N,b,~, (17a) 

Q 6~ q N  r ~ --  _ 2 ~  abca , (17b) 

2 
Q,~qM,@q = -~ M,b~. (17c) 

Therefore, the tensors Nabcd, Alabcd , and Mabcd are (anti)self-dual in the sense of the definition (5) with respect to each pair of 
indices. At the same time, X I =2(1 +2n)/3, X2= - 2 ,  X 3 =2/3. 

3.4, The Space R 7. Let Ca be the alternative nonassociative algebra of octonions with multiplication law given by the 
octonion structure constants fabc [31]: 

eaeb = --~ab + faucet. 

Here, e a and e 8 ~-1 is a basis in the algebra Ca, a, b . . . .  = 1 . . . . .  7. The octonion structure constants fabc are completely 
antisymmetric with respect to (abe) and are equal to unity for seven combinations: (123), (246), (435), (367), (651), (572), 
(714). 

We introduce in the space R 7 with metric gab the following completely antisymmetrie 4-tensor: 

1 
habed = --~..e~edr,,nkf, nnk, 
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where eabcdmn k is the completely antisymmetric tensor in d = 7 .  
with respect to the subgroup G 2 of  the group SO(7) of  rotations of  the 7-dimensional space R 7. 

The tensors fabc and habcd satisfy the identities [ 11,31 ] 

1 1 1 

It is known [11,31] that the tensorsfabc and habcd are invariant 

(18a) 

The Lie algebra so(7) can be decomposed as follows: 

so(7) = g~ ~ B, 

where B is the orthogonal complement of  g2 in so(7). Using habcd and fabc, we can introduce the projector gabcd onto the 
subalgebra g2 in so(7) and the projector gabcd onto the subspace B in the algebra so(7). These projectors have the form 

(19b) 

It is readily seen that 

ga~ = gab~d, 

From (18)--(20), we obtain 

1 
g~v~qg~dm = gab~a, g ~ g ~ p g  = O, g~b,~ + "g~d = y(6~,6b~ -- 6~a6b,). (20) 

havp~gpqe~ = 4gabca, (21a) 

havp~gpq~ = --2~b~d. (21b) 

Therefore, the tensor gabcd is self-dual, and the tensor gabce is anti-self-dual in the sense of  the definition (5). 
3.5. Octonion Structure.  As a vector space, the algebra of  octonions Ca is identical to R 8. In the space R 8 with metric 

6AB (A, B . . . .  = 1 . . . . .  8) we introduce the following completely antisymmetric 4-index tensor [31]: 

where a, b, ... = 1, .. . ,  7, and habcd andfabc were introduced in Sec. 3.4. The tensor HABCD is invariant with respect to the 
subgroup Spin(7) of  the group SO(8) (see [8,10,11,31]) and satisfies the identities 

H ABCD HIJKD --- 6A[I6a-]B6GK 4" 6B[I6a-]G6AK + 6C[I6a-]A6BK 

1 1 1 
+ -~HIJ[AB6C] K "4- yHJK[AB6Cll "4- yHKr[AB6C]J. (22) 

The algebra so(8) can be decomposed as follows: 

so(8) = spln(7) ~ 7~, 

where ~, is the orthogonal complement of spin(7) in so(8). We define the projector GABCD onto the subalgebra spin(7) in so(8) 

and the projector GABCD onto the subspace R in so(8) (cf. [31]): 

1 
GaBCD =-- 1 (~aC 6BD -- 6AD 6Bc) + y Hanco,  (23a) 

1 
"~aBCD -~ ~($AC6BD --6AD ~BC) - ~HABcD. (23b) 

By means of  (22) and (23) we obtain 
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It is easy to show that 

HABIJGIJCD = 6GABCD, 

H ABI jGIJcD = --2CJ ABCD. 

GABIjGcD.rJ = GABCD, GABIjGCDIJ  = GABCD, 

. . . .  15 GABIJGCDI.r ---- O, GABCD "]- GABCD = ~( AC6BD -- ~ADrBC). 

(24a) 

(24b) 

4, N A H M  AND R O U H A N I - - W A R D  E Q U A T I O N S  

4.1. Rouhani--Ward Equations. In See. 3.1, we introduced the vector space R n = ~ ) R ,  where 7/ is a simple compact 
Lie algebra, and n=  1 +dim 7/. On this space, we consider the (anti)self-duality equations 

//~,~xo Fao = 2F~,~, (25) 

where the completely antisymmetric tensor R~v~. o is given by formula (6). Using the explicit form of the tensor R~v~. o, we can 
rewrite Eqs. (25) in the form 

fabeFen = Fab, (26) 

l fdgbFab ~. Fdn : (27) 

where a, b . . . .  = 1, ..., n -  1. We multiply (26) by fabd and use the identity fabofabd = 26cd. We obtain Eqs. (27). Therefore, 
the (anti)self-dual equations (25) are equivalent to Eqs. (26). 

We consider gauge fields A~ that depend only on t - x  n (cosmological solutions). We make A n vanish by means of a gauge 
transformation (gauge fixing). We obtain 

dAe 
Fn.e .---- - ~  ---- Ae, Fab = [A., A~]. (28) 

Substituting (28) in Eqs. (26), we obtain 

fab,Zc ---- - ' [A. ,  Ab]. (29) 

Equations (29) were introduced by Rouhani [32] for the case whenfabc are the structure constants of the Lie algebra sl(N, 
R).  In the general case, these equations were introduced and studied by Ward [33]. We shall call (29) the Rouhani--Ward (RW) 
equations. 

In (29),fabc are the structure constants of the Lie algebra 7s and A a take values in the Lie algebra ~. If 7-/=su(2), then 
the RW equations (29) are identical to the well-known Nahm equations [34]. We write them in the form 

e,,a.r 7'.r = - ITs, T~], (30) 

where T~ = To~(~), ~ , - d T f f d ~ ,  and e~B), are the structure constants of the group 8U(2), ~,/3, ... = 1, 2, 3. Equations (30) arose 
in the construction of solutions of YM equations in R 4 [35,16--19]. Equations (30) with ~ replaced by a complex parameter 

are also used in the algorithm for constructing N-monopole solutions of YM equations in R 4 [34,36,37]. 
The simplest solution of the RW equations (29) has the form 

1 (31) A,, = ~-J,, 

where Ja are the generators of the algebra 7/ in an arbitrary representation. This solution gives the simplest cosmological 
solution of Eqs. (25) for gauge fields of the Lie group/4. Solutions of the Nahm equations (30) give a large class of solutions 
of the RW equations. 

4.2. Nahm's Equations~ Equations (30) have a representation of Lax type. Indeed, we introduce the matrices 

L(r = (1 + (2)T~ + i(1 - (2)T2 + 2i~T3, M( ( )  = ((T, - iT2) + iTs. 
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Then (30) can be rewritten in the form of a Lax equation with spectral parameter ~" [36,37,33]: 

L(r = [ L(r M(r (32) 

where/--(O -dL(~)/dr To F_x I. (32) we can apply the inverse scattering method (see, for example, [38]), and in terms of  theta 
functions we can write down the general solution of  Eq. (32) for any semisimple Lie algebra g. 

A special case o f  this class of  solutions can be obtained if we use an observation made in a number o f  studies [39,33] 
concerning the possibility o f  reducing Nahm's equations to the equations of  a Toda chain. In the case o f  a nonperiodic chain, 
this reduction makes it possible to obtain a solution of  Eqs. (30) in elementary functions. As an example, we write down the 

explicit form of  the ansatz for the functions Tc, with values in the Lie algebra g =su(N). 
We set 

T l = i  

T2 = 

0 
al 

0 

0 
aN 

0 
- -al  

0 

0 
aN 

T3 = i 

a 1 0 . . . . . .  

0 as 0 . . .  

a 2 0 � 9  " ' .  

�9 . , . 

�9 . 
" �9  *. 0 

...... 0 aN_ ~ 

0 ...... 0 

a I 0 ... . �9 

0 a~ 0 . . .  

- - a  2 0 � 9 1 4 9  " � 9  

�9 "o " .  0 

. . . . . . .  0 - a N - z -  
0 . . . . . . .  0 
bl 0 . . .  0 

J 0 b~ 0 : 
) 

: ",'. "'o 0 
0 . . .  0 bN 

~ N / 
~ . .  0 

�9 . : ) 

aN_~ 0 
0 aN-x 

a N - a  0 

0 - a N  
. � 9  0 

" o .  

a~r-2 0 
0 aN-1 

--aN- 1 0 

N 

~ b s  = 0 ,  
J - - t  

(33) 

where al=aj(~), bj=bj(~) are real functions that depend on r It is easy to show that for the ansatz (33) the equations 

it" 1 = - [ T  2, T3] and/ '2  = -[T3,  TI] are identical�9 We introduce the matrices 

L = -T~+iT3, M =  - i ~ ,  

which take values in the algebra sl(N, R). Then the Nahm equations (30) can be rewritten in the form of  the Lax equation 

L = [L, M],  (34) 

which is now without a spectral parameter�9 Rewritten in terms of  aj and b j, Eqs. (34) are identical to the equations of  the 

ordinary periodic Toda chain (see, for example, [39,40]). 

If  in (33) we set aN=O , then (34) will be the equations of  the (finite) nonperiodic Toda chain associated with the Lie 

algebra sl(n, R). The equations o f  the periodic and nonperiodic Toda chains associated with an arbitrary semisimple Lie algebra 

(see [39,40]) can also be embedded in the Nahm equations. 

4.3. Solutions of  Nahm' s  Equations for G=SU(2) and G=SU(3). For the algebra '~ =su(2), the ansatz (33) reduces 

Nahm's equations to the equations of  the periodic Toda chain with solution that can be expressed in terms of  the Jacobi elliptic 
functions cs, ds, ns [35,16]: 

aa + as = A cs(A~0 + B [m), at - a2 = A ds(A~o + B Im),  bx = -b2 = A ns(A~o + B Im),  (35) 

where A and B are arbitrary real numbers, 0 < m _  1. For m =  1, this solution has the form 

A 
at - sh(A~o + B ) '  a, = 0, b, = -b2 = A cth(A~o + B). (36) 

If  in (36) we set B/A=C=const and allow A to tend to zero, then we obtain the solution 

1 
a ,  = bl = - b ~  = ~ a~ = 0.  (37 )  

r  

We consider the ansatz (33) for ~ =su(3) with a 3 = 0  (nonperiodic Toda chain). The solution of  Eqs. (34) has the form 
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[40,17,19~ 

�9 O t / ~  

a~ = At exp(At~-f- Bt)--~-,  
if/t/l 

at = A~ e x p ( A ~  +.B~)-----~-, 

= 4Al +2A= A~exp(2At~o+2Bi) ~1 b~ 
3 + 

A1 exp(2A:~' + 2B~)~','l 
A~ + A~ ) 

b~= 2AI + 4A'3 A, exp(2A,~p+2B,)o {1 AIA:I+ A:I exp(2Avp + 2BI)} ' (38) 

A 2 
k~ = 1 - exp(2Ai~o + 2B~) + (At -t-.~'~ " ~)~ .exp(2A~ ~ + 2Bt)exp(2Aa~o + 2B~), 

A] exp(2Avp + 2B~) exp(2A~ta + 2B~), b~ -- - b  1 - ha, r = 1 - exp(2A,~ + 2B,) + (A~ + A~)' 

where A1, A2, B1, B 2 are arbitrary constants. 

5. ANTI-SELF'DUAL SOLUTIONS OF THE YM EQUATIONS IN R 4n 

5.1. Ansatz. We consider the space R 4n With metric t~ab and antiself-dual equations of the form (17b) for the gauge fields 
A a of the semisimple Lie group G: 

Q,~'~F,~ = - 2 F ~ ,  (39) 

where Qabcd is given by formula (15), a, b . . . .  =1 . . . . .  4n. For n=l ,  Qabcd=eabcd , and (39) are identical to the standard 
antiseif-duality equations (4). 

Equations (39) in R 4n were considered in [9,13,15]. It was shown in [9,13] that the well-known Corrigan--Fairlie--'t 
Hooff--WilCzek (C W) ansatz (see [1--3]) for the gauge fields of the group SU(2) can be generalized to dimension d=4n. 
We generalize this ansatz to gauge fields of an arbitrary semisimple Lie group G and describe the corresponding new classes 
of solutions of YM equations in the space R 4n, n= 1, 2, ... [15]. 

For the gauge fields Aa, we choose the ansatz 

A, = -JLT~(~)O~ (40) 

where the constant antisymmetric tensors J~b satisfy (13), r is an arbitrary function of the coordinates x a E R 4n, and (x, fl, "y = 1, 
2, 3. The functions T u depend on ~ and take values in the Lie algebra g: of the gauge group G, i.e., Ta=T4~(~)IA, where I A 
are the generators of the algebra g. 

We substitute (40) in the definition of Fab , obtaining 

e~ = Js {T=O,O~ +/r=O~O0~} - ag {r.O.O~ + T~,0~O, to} + J~jI,[T#, T,]O~ (41) 

where T~=-dTddq~. Using (13) and (15), we calculate QabcdFcd: 

Q,,o~ Foa = - ~ F,, + 

2~, 2 ~  2,,{  1 } 

where O ~ OeO c. It is now easy to show that 

2 ( 1  ) 

(42) 

2 g:,o~). (43) 

We assume that 
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r = - [T~, ,  T#],  (44) 

Equations (44) are equivalent to the equations 

1 
T~ = - ~ [ T ~ ,  T~]. 

Therefore, if  Eqs. (44) and (45) are satisfied, the right-hand side of  (43) vanishes, and, therefore, the ansatz (40) will give an 
anti-self-dual gauge field A a. 

Proposit ion 1 [15]. With every solution Ta(~) of  the Nahm equations (44), where the function ~ satisfies Eqs. (45), one 
can associate a solution (40) of  the YM equations for the gauge fieMs A a of an arbitrary semisimple Lie group G in spaces R 4n 

with n = l ,  2 . . . . .  
The proof  follows from Eqs. (41)--(43). 
In accordance with Proposition 1, with every solution of  the equations of  the Toda chain and Eqs. (45) for ~ it is possible 

to associate a solution of the form (40) of  the YM equations in the space R 4n. In particular, such solutions result from the 

substitution of  (35)--(37) in (40) for the gauge fields of  the group SU(2) and the substitution of  (38) in (40) for the gauge fields 

of  the group SU(3). We emphasize that the Nahm equations (44) can be reduced not only to the equations of  the Toda chain. 

They can also be reduced to the equations of  the Kowalevski top [4I] and to other integrable equations. 

5.2. Equations for  Scalar Field. To find solutions of  Eqs. (45), we replace the indices a, b . . . .  by double indices (#i), 

(~j) . . . .  , where #, g . . . . .  1, .. . ,  4, i, j ,  ... = 1, ..., n. In adopting such notation, we follow [42]. The tensors J~i)(rj) (=Jaab) 
can be chosen in the form 

Ji.0(~J) ijr/.~, (46) 

where ~?~ are the well-known ' t  Hooft tensors. By definition (see, for example, [1--3]) D~ 

e#7~ r/it4 = --r/4tt ~-- ~t~ 

where a , /~ ,  3, = 1, 2, 3. It is readily seen that the tensors J~t,i)(d) satisfy (13) by virtue of  the following identities for r/~r [3]: 

We substitute (46) in Eqs. (45) and use the identities (47). We obtain 

a 2 a 

+ 6t, vrl~,(cgxia,,j~ - O~cg,i~) + r/~(20a~0~r + 61r D~) = 0, (48) 

where aXi ~ a/ax xi. w e  recall that, unless stated otherwise, summation over repeated indices is understood always. 

It is readily seen that Eqs. (48) are equivalent to 

as, axe ~ = o, (49b) 

where # and ~, can take all values from 1 to 4, and i a n d j  can take all values from 1 to n. Note that from (49b) it follows that 

t2~o = ~ ' = 1  a~ja~j~o = 0. 

5.3. Solutions of Equations for Scalar Field. 
Example 1. The simplest solution of  Eqs. (49) [and (45)] is the function 

= p~z~ = p~z~,~, (50) 

where Pa is a constant vector (momentum) in R 4n. Therefore, in accordance with Proposition 1 we can associate with each 

solution of  the Nahm equations (44) a solution of  plane-wave type [with ~ of  the form (50)1 of  the YM equations in R 4n. 

Example  2. We set 
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~Xu - z~api, (51) 

where P i - c o n s t .  Suppose the function ~o depends only on X~, i.e., ~p=~P(X1, X2, X 3, X4). It is easy to show that in this case 
Eqs. (49a) are satisfied identically, while Eqs. (49b) reduce to the Laplace equation with respect to the "collective" coordinates 

x/ 

02~~ = O. (52) 
OX~'OX~ 

Therefore, taking any solution of  Eqs. (52), we obtain a solution of Eqs. (49) [and (45)]. For example, we can choose 

K 

= 1 + ( x .  - c ; ) ( x .  - 
I=l 

where K is any natural number, and B I and C / are arbitrary constants. 

Example  3,  

s e t  

(53) 

Suppose the functions ~o i depend only on the coordinates xvi with number i, i.e., ~Pi(Xli, X2i , X3i , X4i ). We 

~o = ~ ~o~ (54) 
/=1 

It is readily seen that these equations reduce to Laplace equations with respect to the and substitute (54) in Eqs. (49). 

coordinates x #  for the functions ~oi: 

(OliOt i ..~ 02~02i .~. 03i03i ~t- 04i041)~ i = O, 

where there is no summation over the index i. Therefore, taking n functions ~o i that each satisfies the Laplace equation with 

respect to "its" coordinates x~i, we obtain the solution (54) of  Eqs. (49) [and (45)]. 
We emphasize that the gauge fields corresponding to (54) are not a direct sum of n solutions in four-dimensional 

subspaces, since T~(~) depend nontrivially on ~ and cannot be decomposed into a direct sum of  matrices. 
Example  4. We introduce K isotropic (complex) constant four-dimensional vectors pIv: ptup/~ =0,  where I =  1, ..., K, K 

is any natural number, and there is no summation over L It is easy to show that 

K 

= ( 5 5 )  

I=1  

where 9I  are arbitrary functions of  X/-xv.vol~, is a complex solution of Eqs. (49). Therefore 

K 

~b = y~.(~ot(X[) + ~ , ( X [ ) ) ,  (56) 
I=1 

where the bar denotes complex conjugation, will be a real solution of Eqs. (49) [and (45)]. 

5,4. Discussion. Equations (49) arise in the construction of metrics on hyper-K~ihlerian manifolds of  dimension 4n 
[43,42]. At the same time, there exists a correspondence between the space of solutions of  Eqs. (49) and the cohomology group 

H a (Z, 0 ( - 2 ) ) o f  a certain auxiliary space Z with coefficients in the sheaf 0 ( -2 ) ,  whose sections are homogeneous functions 
of  homogeneity degree - 2  [9,42,43]. Therefore, the general solution of Eqs. (49) can be expressed as a contour integral with 
respect to the auxiliary variable [ 'E CP 1 of  an arbitrary holomorphic function of  homogeneity degree - 2 .  In particular, for 
the space R s the explicit form of  the general solution ~ in terms of a contour integral was given by Ward [9]. In [43], a similar 

solution was given for a function ~ that does not depend on x/4, i=  1, ..., n. However, in applications it is more convenient 
to use the explicit form of  solutions of  the type (50), (53)--(56) or a superposition of them. Note that Zm CP 1 x R  4n is the 
twister space for R 4n or a certain subspace in CP 1 x R  4n. 

As we have already noted, the general solution of the Nahm equations (44) can also be expressed in terms of  theta 
functions. Therefore, in principle it is possible to give the general solution of  Eqs. (44), (45) obtained from the ansatz (40). 
The behavior at infinity and the topological properties of  these solutions must be the subject o f  a separate investigation. 

Note that Eqs. (39), the ansatz (40), and Eqs. (44), (45) admit formal passage to the limit n--,oo. As a result, we obtain 
gauge fields and anti-self-dnality equations on the infinite-dimensional (countable) space R 4~ At the same time, (50) and 

(53) (56) also give solutions of  Eq. (45) in the limit n~oo. Anti-self-dual gauge fields on infinite-dimensional manifolds are 
used in the approach of  geometric quantization of string theory [44]. 

One can also carry out a different limiting process - -  with respect to the dimension of  the gauge group. Then for the 
ansatz (33) Fxts. (34) become the equations of  an infinite Toda chain, whose solutions are known. For infinite-dimensional Lie 
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algebras g [of the type su(oo)] one can also obtain [45] a general solution of the Nahm equations (44). 

6. ( A N T I ) S E L F - D U A L  E Q U A T I O N S  IN R 4 

6.1. Ansatz and Solutions. We now consider the case of gauge fields in the space R 4 with metric 6~  in a little more 
detail. In accordance with (46), the ansatz (40) in d=4  takes the form [18,19] 

A~, = -~l~a T,~( ~,)O~ ~. (57) 

It is easy to show that in ~4 (39) are identical to the standard antiself-duality equations (4). Equations (39) were reduced in 
Sec. 5 to the system of equations (44)--(45). In their turn, Eqs. (45) are. equivalent to Eqs. (49), and for n = 1 Eqs. (49) reduce 
to the Laplace equation for the function ~: 

I:3~o = 0, (58) 

where [] -Ot, O ~. The matrices Tc~(~o) must still satisfy the Nahm equations (44). 
If we choose the simplest solution of the Nahm equations, T~=(1/r where I s are the generators of the group SU(2), 

the ansatz (57) becomes the CFTW ansatz. If ~o =x~x~, then for Ta(~o) of the algebra su(2) (57) becomes the Minkowsld ansatz 
[35], and for T~(~o) belonging to an arbitrary semisimple Lie algebra G (57) becomes the ansatz of [16,17]. 

Proposition 2 [16--19]. Let T~(~) satisfy the Nahm equations. 
A. I f  ~o=x~x~, then the gauge f ieM (57) will be self-dual. 
B. I f  the function ~ satisfies the Laplace equation (58), then the gauge field (57) will be antiself-dual. 
Proof of A. From (41), (46), and (47) we obtain 

~ {  ( 1  ) } 

{ ( ) } - ~."~ T,~O;~@~,~+ 7'~, - -~e~p.t[T#,T.~] O;~O~,~ +rl;,,e~r , (59) 

where T~mdTo/d ~. In (59) we substitute ~=XoX o. It is readily seen that if Tc~ satisfy the equations 

: 

which are obtained from the Nahm equations (44) by the substitution Td-- , -T  ~, then the tensor Fg~ will be self-dual: 

F ~  = 4~ff,.(T~, + zazxe,~TTt~T,y ). (60) 

Proof of B. This follows from formulas (41) (45) and (46)--(49). 
All the solutions of the Laplace equation in R 4 are known, and for Eq. (59) we can write down the general solution. 

Therefore, to find solutions of the form (57), it is sufficient to find solutions of Nahm's equations. We discuss these equations 
and their solutions in Sec. 4. In particular, for the gauge group SU(2) one can take the solutions (35)--(37), and for the gauge 
group SU(3) the solution (38). 

6.2. Monopoles and Vortices. The reduction of the (anti)self-duality equations (4) to three dimensions (for OaA,=O ) 
leads to Bogomol'nyi's equations (see [1--3,34,36,37]). Therefore, every solution of Eqs. (44) and (58) with 04~=0 describes 
a monopole configuration. The ansatz (57) for such monopole solutions takes the form 

A,~ = e,~.fT~(~)O.~, A4 = T,~(~)O,,~, 

where a,/3, 3'= 1, 2, 3, ~o =~(xa). 
It is also known [46] that the reduction of the self-duality equations to two dimensions (with a3Au=O4A,=0 ) leads to the 

equations of the two-dimensional Ge/G o model, where G e is the complexification of the Lie group G. Therefore, every solution 

of Eqs. (44) and (58) with O3~o---i)4~P=0 gives a solution of the d=2  equations of the Ge/G g model. The ansatz (57) in this 
case has the form 

A2, = -T3(~)epqO,~, A3 = e2,,Tp(~)Oq~, A4 = T,(~)0,~, 

where p, q= 1, 2, ~=~(xq). 
Similarly, with every solution of the equation OqOq~=O and the equations obtained from Nahm's equations by the 

substitution Tl~iT1, T2~iT2, T3--*T 3 we can associate a solution of the equations of the principal chiral model in ~2 [47]. 
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6.3. Plane-Wave Solutions. We have considered (anti)self-dual gauge fields in Euclidean space R 4,0. (Anti)self-dual 
solutions in the Minkowski space R 3A (see, for example, [48,49]) are also interesting. It is known that self-dual gauge fields 
of a Lie group G in the space R 3,1 are complex. However, as was already shown by Wu and Yang [50] (see also [48,49]), 
complex gauge fields of the Lie group G can be regarded as real gauge fields of the complexified Lie group G e. 

The ansatz (57) is readily continued to Minkowski space R 3,1 . For this, it is sufficient to set x 4= - / x  ~ Then Nahm's 
equations (44) remain unchanged, while in Eq, (58) the Laplacian in Euclidean space is replaced by the Laplacian in Minkowski 
space: 

(0~ + 0~ + 0J - 0~) 9 = 0. (61) 

As solution of Eq. (61) we take a function of the form 

M 
~' = Ao + ~ A 2  exp(p~z 1 +p~tz2 +p~za + polXO), (62) 

.r=l 

where M is any natural number, A 0 and A! are non-negative constants, and pt=(p{,/~2, P/3, P/O) are constant isotropic vectors, 
i.e.~ 

(p() '  + (p~)' + (p~)' - (p01) ' = 0, I = 1 , . . . ,  M. 

As solutions of Nahm's equations (44), we choose solutions of the equations of the finite nonperiodic Toda chain, the 

reduction to which is described by ansatzes of the type (33). In particular, for the gauge group SU(N) we obtain a reduction 

to the equations of  the ordinary Toda chain associated with the algebra sl(N, R). Solutions of  these equations are known 
explicitly for all N [40]. Solutions for N=2 and N=3 are given in (36) and (38). The solutions that are obtained have the same 
form as the solutions of De Vega [49], who considered G=SU(2) [6X=SL(2, C)], and generalize them to an arbitrary gauge 
Lie group G. 

Proposition 3. With every solution of the Nahm equations (44), where ~o has the form (62), it is possible to associate a 
multi-plane-wave solution (57) of the YM equations for the gauge fields of an arbitrary semisimple Lie group G r in Minkowski 
space R 3,1, 

6.4. Linearly Rising Potential. As solution of Eq. (61) we take a function of the form 

~o = z~ + z] + ~s r + 3zo ~. (63) 

Considering the group SU(N), as solutions of the Nahm equations (44) we take, for example, the solution of the nonperiodic 
Toda chain, the reduction to which is given by the ansatz (33). For ~ of the form (63), the free parameters of the solution of 

Eqs. (34) can be chosen in such a way that Ta(~) will be nonsingular [19]. At the same time, following [40], we can show that 

for ~o~oo T3(~o ) tends to a constant matrix. Therefore, Fur does not decrease and in the limit x--,oo we obtain 
F~F,~v(c~) = const # 0 [19]. 

7. A N T I - S E L F - D U A L  S O L U T I O N S  O F  T H E  Y M  E Q U A T I O N S  I N  R 4n+2 

7.1. Anti-self-duality Equations. We consider the space 1~ 2k with metric ~MN and complex structure JMN" We introduce 
anti-self-duality equations of  the form (10b) for the gauge fields A M of the semisimple Lie group G: 

TM~pQ FI'Q --- --2FMIq , (64) 

where TMNpQ is given by formula (8), M, N . . . .  = 1 . . . .  ,2k. For k=2, TMNPQ=eMNPQ, and (64) are identical to the standard 
anti-self-duality equations (4). 

if  k=2n, then d=2k=4n. Examples of,inti-self-dual fields in R 4n were given in Sec. 5. Therefore, we consider here the 
case k=2n+t ,  which corresponds to d=2k=4n+2, n=l ,  2 . . . . .  Solutions of Eqs. (64) in d=4n will be obtained as a special 
ca~e of solutions in d = 4 n + 2 .  

The space R 4n+2 can be represented as the direct product R4n• of the space R 4n and the space R 2. We shall assume 

that a, b, c . . . .  =1 . . . . .  4n; p, q, r = l ,  2; ~x,/3, % 6=1, 2, 3. As was shown in See. 3.3, in the space R 4n it is always possible 

to find three constant antisymmetric tensors ~ab" Each of these tensors can be chosen as a complex structure Jab on R 4n that 
satisfies in accordance with the definition (7) the relations Jaelcb = --fiab" We denote the complex structure on 1~ 2 by Jpq, 
]pJrq = --~pq. W e  choose  the complex structure JMN on l~4n+2=R4nxR 2 in the form 
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JMN = { J a b = J a n ~ , M = a , N - b ;  d~,=0, M = a , N = q ;  J ~ q , M = p , N = q } .  (65) 

It is readily seen that the tensor (65) satisfies (7). 
Substituting (65) in the definition (8), we find that the only nonvanishing components of the tensor TMNPQ are 

T,,,,~ = J,~S,a + Ja4Jb~ - -  SaeJbd, T,~vq = -T,~,~ = T~b~ = --T~,,~b = J.~Jp~. (66) 

In accordance with (66), Eqs. (64) can be rewritten in the form 

Tc, b,,~F,~ + 2F~,b + S,~J~,qF~o = O, 2Fpq + J~,Ja~r~,~ = O, g~,~F~ + Jp~F,,~. = 0. (67) 

7.2. Ansatz. We shall seek solutions of Eqs. (67) in the form 

A~ = -J~,T~,(~o)O,~o, A, = ~T~(~o). (68) 

Here, the ~o-dependent functions To,={Tq, T3}={T1, T2, T3} take values in the Lie algebra 6 of the Lie group G, ~o is an 
arbitrary function of the coordinates xaG R 4n, J~ are the constant tensors (13), and x =const. The ansatz (68) generalizes the 
ansatz (40) for d=4n and goes over into it for x =0. 

Substituting (68) in the definition of FMN, we obtain 

~'., =,.{~' ,o.~-[r. ,r ,  ls=o~ r .  = ~,'[T.,T,], 

where To~mdToJd~, Oc- O/Ox c. 
We substitute (69) in (67). After fairly lengthy calculations, we obtain 

r o j ~  + 2~o~ + s . ,s . ,~. ,  = 2s:~{r~o~ + (r3 + trl, r,l)0o~0o~ + . , ' [ a , r , ] }  + 2 e, + ~ , . , [ r , ,  r,l 

(69) 

s:oo,~ao~ + 4 S:oa~,oova,~ 2T,{aloooa,~ - s:~ + , ,  s" s ~ ~ ~ 1 

2p,, + 4 ,  s ,w, ,  = 24,  {rso~ + (~, + [T~, T,])a,~Oo~ + ~'[T,, T,]}, 
(70) 

(,1 ) 
J, aF~, + JpqF,, = g + ~%ap[T~,,To] {6,,JLO,~o + S~,,O,,~o} , 

where [] ~-OcO c and we have used the fact that [Tp, Tq]=Jpq[T1, T2] , evq-~Jpq. We recall that J3ab=Jab; p, q, r = l ,  2; c~, /3, 
7,/}=1, 2, 3. 

It is obvious from (70) that the anti-self-duality equations (67) are satisfied if the following equations hold: 

~"a+[T,,T3]=~' ,+[Ts,T1I=T3+ 1 + ~  [T , ;T , ]=0 ,  (71) 

Y~O~O~o - J~ O,O,~o + E~r O~O,~o = O. (72) 

Note that we consider real functions ~or For such functions, Ocr162 and, therefore, we can divide by 0r 
Equations (71) generalize the Nahm equations (44). Equations (72) are equivalent to Eqs. (49), which were considered in See. 
5, and therefore from (72) the equation [2]~ =0 follows. The equivalence of (72) and (49) becomes obvious after the substitution 
of (46) and the use of the identities (47). 

Proposition 4. With every solution of  Eqs. (71) and (72) it is possible to associate an anti-self-dual solution (68) of the 
Yang--Mills equations for the gauge fields A M of the arbitrary semisimple Lie group G in the space R 4n+2 with n= 1, 2 . . . . .  

The proof follows from formulas (69)--(72). 
Remark. All the fields in the ansatz (68) depend only on xaER 4n, and for such fields the YM equations in R 4n+2 can 

be regarded as YMH equations in R 4n [4,7,51], the role of the Higgs fields being played by Aq ( q = l ,  2). The YMH 
Lagrangian in R 4n can be obtained by trivial dimensional reduction of the YM Lagrangian in R 4n+2 [7,51]. The 
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Euler--Lagrange equations for this Lagrangian will be the YMH equations in R 4n, and the solutions of Eqs. (67) give solutions 
of these YMH equations. 

7.3. Examples of Solutions. Using the explicit form (46) for J~ab, we can readily show, repeating the calculations of 
See. 5.2, that Eqs. (72) are equivalent to Eqs. (49). In Sees. 5.3 and 5.4 we described in fair detail the solutions of Eqs. (49). 
It remains to give solutions of Eqs. (71). 

Example 1. Note that for x = 0  (71) are identical to Nahm's equations, the solutions of which we discussed in Sees. 4.2 
and 4.3. For x =0, the solution given by the ansatz (68) is identical to the solution (40)--(41). 

Example 2. We choose the simplest solution (50) of Eqs. (72). Then Oc~Oc~ =p2=const and (71) reduces to Nahm's 
equations (44) after the redefinition 

(I+g"~: '*I 'T1,  T~ ~ (1 + " " ~ - t / '  T~, Ta ---* Ta. 7"i--~\ p, ] \ p2 ] 

Example 3. We assume that the group G is complex. Let T 1 =iT 2. Then T3=0=T3=const, and (71) reduce to the 
equation 

= [7"1, iT31. (73) 

Let gE  G be a solution of the equation ~,=igT3, where g -dg /d~ .  Then the solution of Eel. (73) has the form 

Tt = g-tTag, T3 = - ig - tT3g ,  Ta = - i g - l  ~ = const. 

Example 4. Let ~; =s/(2N, R) or sl(2n, C). We choose Tc~ in the block form 

T ' : ( :  z)O T ,= ( :  B ) ,  Ts= ( G  O )  ' 0 , tr Ta = O, (74) 

where each block measures NxN. Then ~t 3 =0=C and D are constant matrices. For the ansatz (74), Eqs. (71) reduce to 

/t = BD - CB, B = CA - AD. (75) 

As a simplification, we shall assume that C and D are diagonal matrices, i.e., C=diag(cl, c2, ..., cN) , D=diag(dl, d2, 
.... dN). Then for A = {aq}, B = {bq} Eqs. (75) in components take the form 

hq = - (  e/ - dj )bq , bq ---- ( e /  - -  dj )aq , 

where there is no summation over i, j =  1 . . . . .  N. The solution of these equations has the form 

aq = Qi# s in(e / -  dj)%o + / ~ i  cos(e/-  dj)~o, bq = P~# s in(e / -  dj)~o - Qq cos(e/-  dj)~o, (76) 

where QU and R U are arbitrat 3, constants and there is no summation over i and j.  

"I"nerefore, taking any solution of Eqs. (72) and the solution (76) of Eqs. (71), we obtain the solution (68) of the YM 
equations in R 4n+2 for G=SL(2N, R) or G=SL(2N, C). 

Example 5. We substitute in (71) the ansatz (33) with aN=0 for G=su(N). Then Eqs. (71) reduce to 

d~o d~o 2 1 (al_ , - a~). (77) 

For x =0, these equations are identical to the equations of the Toda chain (see See. 4.2). In the simplest case G=SU(2), Eqs. 
(77) for ~ = 1/X~X u [cf. (53)] are close in form to the equations that arise in the description of vortex solutions of the YM 
equations in R4o 

8. A N T I - S E L F - D U A L  S O L U T I O N S  O F  T H E  Y M  E Q U A T I O N S  IN R 7 

In the space R 7 with metric t$ab we consider the gauge fields A a of the semisimple Lie group G. We assume that 

3 
A, = ~ff,b, dZbW, a(u), (78) 

where the antisymmetric tensor Wed = -Wac depends on u=p2+XaXa (O=const) and takes values in the Lie algebra ~ of the 
Lie group G, and the explicit form of the tensor ~,al, ca is given in (19b). 

We substitute (78) in the definition of the tensor Fab. We obtain 
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Fab = --3~abedWed + 3=aZk~l~edWed -- 3rb~l~gakcdWed + ~mtngam,d-gbnek[Wed, Welt], (79) 

where Wce •-dWce/du. We substitute (79) in the anti-self-duality equations [cf. (21b)] 

habed Fed = - 2Fab, ( 8 0 )  

where the tensor habcd is introduced in See. 3.4. Using the identities (18)--(21), we can show that after fairly lengthy 
manipulations Eqs. (80) for the ansatz (78) reduce to the equations 

S.~o~... #r = - [w.~, Wo~]. (81) 

Here, 

Sabcd, nn = ~(~ac6btm n]d - -  6be~atrg&n]d + 6bgSatm6nle - -  ~,d6btm6n]c) 

are the structure constants of the group SO(7). Equations (81) are a special case of the RW equations (29)�9 
If Wab(U ) satisfy Eqs. (81), then the t e n s o r  Fab has the form 

The anti-self-duality of the tensor Fab is now obvious [see (21b)]. 
Proposition 5 []4]. For the ansatz (78), the anti-self-duality equations (80) of the d=7  YM model with arbitrary 

semisimple gauge group G reduce to the RW equations (81)�9 Conversely, with every solution of the RW equations (81) we can 
associate a solution (78) of the d=7  anti-self-duality equations (80)�9 

If we take the solution (31) of the RW equations and replace t by u=p2+XaXa, then we obtain the simplest anti-self-dual 
solution of the YM equations in R 7. 

9. ANTI-SELF-DUAL SOLUTIONS OF THE YM EQUATIONS IN R 8 

In the space R 8 with metric ~)MN w e  consider the gauge fields A M of the semisimple group G. For A M we make the ansatz 

4-- 
Ag = "~GMNcDZNWcD(U), (83) 

where the antisymmetric tensor WCD= --WDO which depends o n  u=p2+XMXM (p=const), takes values in the Lie algebra 
of the Lie group G, and the constant t e n s o r  GMNCD is given by formula (23b). 

We substitute (83) in the definition of the tensor FMN. We obtain 

8 - -  8 - -  �9 1 6  - -  - -  

FMN -: --'~GMNcDWcD + "~z[MGN]BCD~'BWcD "4- -~-ZczvGmcj.oG.vAn[W~.o, WAn], ( 8 4 )  

where WCD--dWcD/dU. We substitute (84) in the antiself-duality equations [cf. (24b)] 

HcDu.  F ~ .  = -2Fcv .  (85) 

After fairly lengthy calculations using the identities (22)--(24), we obtain the equations 

SaBCDUNI;Vu~ = - [Wan,  Wco], (86) 

where 

1 
SAn cV Un = ~ !6Ac 6BtM ~n]o -- ~B C ~AtU ~,]o + 6SV 6AtU ~"lc -- ~AD 6n tu.~,]c) 

are the structure constants of the group SO(8). 
If WAB(U) satisfy Eqs. (86), then the tensor FMN has the form 

1;'..  = -'.:G~t.,ju2-- (12Wx.r -l- 6(u - p')l;V~r3 -1" 8~:.'GcD.[jzl]l;Vc. ) (87) 
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The anti-self-duality of  FMN is obvious on the basis of  (87) and (24b). 
As in See. 8, we obtain the following proposition. 
Proposition 6 [14]. For the ansatz (83) the anti-self-duality equations (85) of the d = 8  YM model with arbitrary semisimple 

gauge group G reduce to the RW equations (86). Conversely, with every solution of the RW equations (86) we can associate 
the solution (83) of the anti-self-duality equations (85). 

If  in the solution (31) of the RW equations we replace t by u=p2+XMX M and substitute in (78), then we obtain the simplest 
anti-self-dual solution of the YM equations in R 8, which was found in [10,11]. 

10. S O L U T I O N S  O F  Y M  E Q U A T I O N S  I N  T I l E  S P A C E S  RPq 

In the space RPq with metric t~ab (a, b, . . . .=1,  ..., pq) we consider the gauge fields A a of the semisimple Lie group G. 
We replace the indices a, b . . . .  by double indices (#/), (vj) . . . . .  where #, v . . . .  =1 . . . . .  p; i , j  . . . .  =1 . . . .  , q. We take the metric 

tensor b(ui)(pj) (=~ab) in the form 

~f0a)(~j) = 6.~6ij. 

We introduce the variables 

X~, = z~ip~, (88) 

where pi=const, and, as usual, summation is understood over repeated indices. For the gauge fields A(ui) (=Ab) in Req we 
make the ansatz 

A(ui) = A~,(Xu)pi, (89) 

where A# depends only on the "composite" coordinates (88). 
Substituting the ansatz (89) in the definition of the tensor F(ui)(pj) (=Fat,), we obtain 

F(.,)(~r = V~p~(OuA~ - O~A. + [A., A~]) ---- p, pjF.~, (90) 

where, by definition, O~- O/aXu. We substitute (89) and (90) in the YM equations in RPq. We obtain 

O.iF(.o(.j) + [A(. 0 '  F(.0(.j)] -- pjplpi(O.F.. + [A., Ft,.]) = 0. (91) 

~Je assume that the Pi are real constants, and therefore p/pi ~ 0, and, as a consequence, the ansatz (89) reduces the YM equations 
in the space l~q to YM equations in the space 1r163 parametrized by the coordinates Xu: 

O.F.~ + [A., F..] = O. (92) 

Proposition 7. For the ansatz (89), the YM equations in l~q reduce to YM equations in ~ .  Conversely. with every 
solution of the YM equations in the space RP one can associate a solution (89) of the YM equations in the space RPq, where p, 
q=2, 3, .... 

The proof follows from formulas (88)--(91). 

Example 1. Let p = 4 ,  q=2,  3 . . . . .  Then for the ansatz (89) the YM equations in Raq reduce to YM equations in R 4. 
Therefore, with every anti-self-dual solution of the YM equations in R 4 it is possible to associate an anti-self-dual solution of 
the YM equations in R4q. Special cases of  such an association were considered in [9.15] and in See. 5 of  this paper (Example 

2). Moreover, with every non-self-dual solution of the YM equations in l~ 4 (for example, a meron solution) one can also 
associate a solution of the YM equations in R4q. Special cases of this were considered in [52]. 

Example 2. Let p = 8 ,  q=2,  3 . . . . .  In this case, the ansatz (89) makes it possible to associate with every (anti)self-dual 
solution of the YM equations in R s a solution of the YM equations in R sq. We give the explicit form of one such solution: 

4-- Xupi 
A(M~) = "~GMNcD (p2 + XBXB ) leo,  

where XB=xB~i, Pi =const, XBi are coordinates in R gq, and ICD are the generators of the Lie algebra so(8). 

11o C O N C L U S I O N S  

In this paper, we have shown that Nahm's equations and the Rouhani--Ward equations, which generalize them, arise in 
the study of Yang--Mills equations in spaces of dimension d_> 4. By means of the ansatzes considered in this paper one can 
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associate with solutions of  the Nahm and Rouhani--Ward equations different types of  solution o f  the Yang--Mills equations in 
d>_4. 

For Nahm's equations, general solutions of  elliptic and trigonometric types are known and can be expressed, respectively, 
in terms of  theta functions and hyperbolic functions. It is desirable to find solutions of  such type for the Rouhani--Ward 
equations too. 

We thank A. V. Bolsinov, D. V. Volkov, V. L. Golo, C. Devchand, B. A. Dubrovin, E. A. Ivanov, M. A. Ol'shanetskii, 

V. I. Tkach, V. V. Trofimov, and A. T. Fomenko for valuable discussions. We also thank V. G. Drinfel 'd and R. Ward for 
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