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EXACT SOLUTIONS OF THE NONLINEAR BOLTZMANN
EQUATION AND THE THEORY OF RELAXATION OF
A MAXWELLIAN GAS

A.V. Bobylev

Results obtained in recent years in the theory of the nonlinear Boltzmann equation

for Maxwellian molecules are reviewed. The general theory of spatially homogeneous
relaxation based on Fourier transformation with respect to the velocity is presented,
The behavior of the distribution function f(v, t) is studied in the limit 1v! — «

(the formation of the Maxwellian tails) and t — « (relaxation rate). An analytic
transformation relating the nonlinear and linearized equations is constructed. It is
shown that the nonlinear equation has a countable set of invariants, families of
particular solutions of special form are constructed, and an analogy with equations

of Korteweg—de Vries type is noted.

1. Introduction

Derived for the first time on the basis of phenomenological arguments in 1872, the Boltzmann
equation [1] immediately became the source of many problems of both a fundamental nature (reconciliation
of time reversibility of the equations of classical mechanics with the irreversible behavior of the solution of
the Boltzmann equation) and practical nature (solution of the equation). In the question of the foundation of
the Boltzmann equation the monograph [2] of Bogolyubov has played a pioneering role; in it, he also des-
cribed systematic methods for deriving generalized kinetic equations from the Liouville equation. The
development of Bogolyubov’s ideas and methods led subsequently to the construction of new, more complicated
kinetic equations, but the solution of even the "simplest® of them — the Boltzmann equation — still remains
a rather difficult problem. The comparatively restricted group of questions with which the present paper is
concerned relates to this problem. For brevity, it is convenient here simply to postulate the Boltzmann
equation, regard it as a mathematical model of a rarefied gas, and not return to its systematic derivation,

In the classical kinetic theory of rarefied monatomic gases, the state of the gas at the time t = 0
is characterized by the (single-particle) distribution function f(x, v, t) of its molecules with respect to the
spatial coordinates x € R’ and the velocities v € RS, where R denotes the real three-dimensional Euclidean
space., The function f(x, v, ¢) is, roughly speaking, the number of particles in unit volume of the phase
space R3 X R3 at the time t, and its time evolution is described by the Boltzmann equation

ﬁ+vaj I[flf]» (1'1)
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on the right of which we have the so-called collision integral — a nonlinear integral operator that acts on
f(x, v, t} only with respect o the variable v. Omitting here and in what follows the unimportant arguments x
and t, we can represent the right-hand side of (1.1) in the form

117, 11= [ aw dng (1w, =) ) fw) =10V FW)}, 1.2)

where w € R3, dw is the volume element of RS, n € R® is a unit vector, i.e., Inl =1, dn is the element
of area of the surface of the unit sphere @ in RS; the integration is over the complete five-dimensional
space R® X 2. We also use the notation

u=v—w, u=[ul, g(u, p=uo(y, p), V="Y(vtwtun), w=Y,(v+w—un). {1.3)

It is assumed that the collisions of the molecules take place in accordance with the laws of classical
mechanics of particles interacting with two-body potential U(r), where r is the distance between the
particles, The function o(u, p) in (1.3) is the differential cross section of scattering through angle 0 < 6
< 7 in the center-of-mass system of the colliding particles expressed as a function of the arguments u > 0
and ¢ = cos 6. In the theory of the Boltzmann equation, g(u, p) in (1.2) is usually assumed simply to be
a given non-negative function subject to restrictions dictated by physical considerations. For example, for
hard-sphere molecules of radius r, we obtain g{u, p) = ur? and for point-particle molecules interacting
in accordance with the power law U(r)=a/r* (a>0, n=2), g(#, p)=u""*"g,(n), where g.(u){(1—w)* is a bounded
function.

It is the nonlinearity and complicated structure of the collision integral (1.2) that are the main
obstacles in the attempt to solve the Boltzmann equation, For this equation, one can consider problems with
both initial conditions and boundary conditions. The simplest problem, which clearly reveals all the
difficulties associated with the collision integral, is the spatially homogeneous Cauchy problem
]
T 111y lememto®), (.4
or the problem of relaxation (approach to equilibrium) of a spatially homogeneous gas. This problem is of
independent interest and, in addition, its solution is a necessary intermediate step in the solution of the
complete, i.e., spatially inhomogeneous, equation (1.1),

Many but by no means all of the general mathematical problems relating to the existence and
uniqueness of solutions of the Cauchy problem and boundary-value problems have been solved for the
Boltzmann equation, and approximate approaches generalizing the well-known Hilbert, Chapman—Enskog,
and Grad methods (3], have been developed. However, even comparatively recently studies on the nonlinear
Boltzmann equation could be characterized by the almost complete absence of exact analytic results; for
example, the first nontrivial exact solution of this equation was constructed only in 1975 {4, 5] (see also [6, 7).
In this connecticn, the results reviewed in the present paper may have some interest. The results apply
mainly to a special case of the Boltzmann equation — the so-called model of Maxwellian molecules — but
in the framework of this model, which is fairly typical from the physical point of view, one can obtain
detailed analytic information about the behavior of the solutions of the spatially homogeneous equation and
essentially construct an exact theory of the relaxation of such a gas.

Maxwellian molecules are particles that interact with a repulsive potential U(r) = a/r'. In this
case, the cross section o(u, 1) is inversely proportional to the modulus of the relative velocity u, and the
function g(u, y) in (1.2) does not depend on u, which leads to some simplifications of the calculations
related to the collision integral. These simplifications have long been known (see, for example, Chap.3 of
Boltzmann’s book [1]) and were used by practically everyone who worked with the Boltzmaun equation,
However, it was only in 1975 that it was found [4, 8] that one can here achieve a much more significant
simplification of the nonlinear operator (1,2) than was assumed earlier; this simplification is achieved by
means of an ordinary Fourier transformation with respect to the velocity. It was Fourier transformation
that made it possible to construct an exact solution for the first time [4] and served as the key method for
obtaining the majority of the results described below.

The idea of the approach is as follows. In (1.1}, we go over to the Fourier representation, setting

o(x,k, t)= j dve=""f(x, v, ), (1.5)

and as a result we obtain an equation for ¢(x, k, t):
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o0, U

i T ims = e el=f dve T4 11, (1.6)

Now in the exceptional case of Maxwellian molecules (or rather, for any u-independent function
glu, p) in (1.2)) the operator J[¢, ¢] simplifies strongly compared with the operator I[f, 7] (see Sec.2)
as a result of which it becomes much easier to work with the transformed equation. Unfortunately, the
appearance of the mixed derivative in (1.6) makes it impossible to use this property effectively to solve
spatially inhomogeneous problems. However, for the relaxation problem (1.4), which has in the Fourier
representation the form

’

(9cp_

7t o, el @lie=q(k), 1.m

this difficulty is absent, and the simplification is decisive. These are the reasons why we shall in what
follows basically restrict ourselves to Maxwellian molecules and the spatially inhomogeneous problem.

Fourier transformation made it possible to obtain a number of new results [4, 5,8-18] and ultimately
construct a comparatively complete theory of the spatially homogeneous Boltzmann equation for Maxwellian
molecules, including generalizations of previously known facts. The main aim of this paper is to give a
brief exposition of this theory. After the first papers [4-9] published in 1975-1977 there followed rapidly
quite a large number of publications on the theme that one may call "exact solutions of nonlinear models of
the Boltzmann equation." Many of them are very interesting but do not directly relate to the aims of the
present paper. Therefore, we quote only individual papers, especially since there are fairly complete
reviews devoted basically to model equations {16, 17].

The material is arranged as follows. In Sec.2, which can be regarded as the "elementary theory"
of the Boltzmann equation for Maxwellian molecules, we perform the Fourier transformation and describe
new facts (symmetry, properties of the linearized equation, moment system, self-similar solutions)
obtained comparatively easily after the transition to the Fourier representation. These results can be
expressed by explicit expressions, but they have a somewhat special nature. More general questions such
as the solvability of the Cauchy problem for the nonlinear Boltzmann equation and the asymptotic behaviors
of the solution as lvl — = and as t — « are considered in Sec.3. In Sec.4, we construct an analytic
transformation relating the nonlinear and linearized equations in the Fourier representation, we establish
the equivalence of these equations in a certain class of functions, and we describe the consequences of this
equivalence.

2. Fourier Transformation and Consequences

Fourier Transformation. [n accordance with its physical meaning, the distribution function f(v)
must be non-negative and possess finite moments up to the second order:

j dvf(v)(1+1?) <oo. 2.1)

Assuming at the start for brevity that all the additional conditions needed for convergence of
integrals, etc., are satisfied, we make a Fourier transformation of a collision integral of general form,
i.e., we simplify the right-hand side of Eq. (1.6). For this, we use the standard identity

§ avits fibe) = [ avawp) fw) [ dng (u,5%) ) -m0), 2.2)
in which the notation (1.3) is used. For h(v)=exp (—ikv), the right-hand side has the form

. VW i un ik u

—ik —
dedwf(v)f(w)e i Sdng (u, 2{;—) e ® —e 21 (2.3)
We consider here the inner integral and show that

. u
i 2 —ik ik —

d un \ = —HK—5 T —Cdnelu kn [e'ik,lzn“_e 7] @.4)
S ng(u,—u——)[e —e ]_S ng(, k) . .
Indeed, the left-hand side of (2.4) is an isotropic scalar function of the two vectors k and u and,

therefore, depends only on their absolute magnitudes k = k! and u = lul and the scalar product k-u.
Such a function is obviously unaffected by interchanging the directions of the vectors k and u (but not their
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absolute magnitudes), and the right-hand side of (2.4) is the result of such an interchange.
Substituting (2.4) in (2.3) and changing the order of integration, we obtain

I dnf dv dwf(v)j(w)g(u, —ik%) [ exp (-—iv k-lrzkn —iw k—;‘kn \) —exp(—ikv) ] .

P
no
2]

i

It is clear from this that Fourier transformation leads to a definite simplification of the collision
integral for molecules interacting in accordance with a power law and for hard spheres (see, for example,
(19]), the greatest simplification being achieved for Maxwellian molecules, for which g(u, pj = g(p). In this
case, the inner (six-fold) integral in (2.5) reduces simply to the difference, multiplied by g(kn/k), of
products of the Fourier transforms of the distribution function, i,e., the final result — the right-hand side
of (1.6) — has the form

IMo.01= [ avt, le=T dng () { o (“52) ¢ (S5) e @0t }. 2.6)

where f(v) and ¢@(k) are related by the Fourier transformation (1.5) (the arguments x and t are not
important),

Thus, for the considered model the transition to the Fourier representation has led to two important
simplifications: 1) instead of the five-fold integral (1.2) the two-fold integral (2.6) has been obtained and 2)
the integrand has also been significantly simplified. These advantages are most strongly manifested for
distribution functions isotropic with respect to v: f=f(|v|]). Then in (2.6) we can set o=¢(k*/2) and,
introducing the notation x 21{2/2, reduce (2, 6) to the very simple form

J[<P,¢]=fdso(s){<p(sz)<p[(1—S)x]—<p(0)cv(x)}, =0, p(s)=4ng(1-2s), 2.7

from which one can clearly see the advance achieved compared with (1.2).
It is readily verified that for g = g(u) the condition (2.1) and the inequality
0<g(p)<comst (1—u) %, >0, 2.8)

guarantee validity of all the transformations (change in the order of integration, etc.) made above in the

transition from (2,2) to (2,6), In all that follows we shall, when special requirements are not stipulated,
assume that the conditions (2.1) and 2.,8) are satisfied. The inequality (2.8) is valid, in particular, for
true Maxwellian molecules, i.e., for the potential U(r)~r*, for all 0<<e<<!/,.

Relaxation Problem. We shall consider the Cauchy problem for the spatially homogeneous Boltzmann
equation in the notation (1.3):

fe=Ili, /1= dwdng (=) (1) W) =19 (W), 2.9)

where the subscript denotes the derivative with respect to t; without loss of generality, we can assume that
the initial condition satisfies the normalization conditions

Hemh): favm=1,  [awim=0, [ awiw=3. (2.10)

By virtue of the conservation laws for the particle number, the momentum, and the energy, the
solution f(v, ) of the problem (2.9)-(2,10) will satisfy the same requirements for all t > §:

favio=1, fawitwo=0, | awitv,n=3, (2.11)
and the corresponding Maxwellian distribution has the form

fu(v) =(27) =% exp (—v%/2). 2.12)

The formal approach to the solution of the problem, and also to any other problem associated with
Eq. (2.9), is rather obvious. Going over to the Fourier representation

o(k, t)=.[ dvf(v,t)exp(—ikv), (2.13)

823



we obtain instead of (2.9) the simpler equation

kn k+in k—Fkn
cpz=1[(p,cp]=j.dng(—7€—){fp( 5 )cp( 5 )—’(P‘(G)CP(k)} (2.14)
with initial condition
Q| imo=y (k) == j' dvfo(v)exp(—ikv): @olx=o=1 ?j)-o ={ —@)— =—3 (2.15)
Todk e 7] ' . ! ’

after which we study the solution ¢ (k, t) of the problem (2,14)-(2,15) and, finally, formulate the final
results for the distribution function f(v,t), using, for example, the inversion formula

F(v, )= (2m) -2 jdvcp (k, ) exp (tkv) (2.16)

under the assumption that this integral converges. For the purposes of this section this formal scheme is
entirely adequate, and rigorous definitions of the concepts of the distribution function and the solution of
the Cauchy problem (2.9)-(2,10) will be given in Sec. 3.

The Fourier analogs of Egs. (2,11)-(2.12) have the form

ok 2ok, ) 2
9(0,5)=1, lfﬁ{’—t)- _=0 ﬂ‘;—(k;’-t-) =3 gu()=exp (—"7) 2,17)
Remark. For brevity, we shall not dwell here on the solution to the relaxation problem for small
deviations from equilibrium, for which the linearized equation can be used., We merely mention that
Fourier transformation made it possible to generalize significantly the classical results [3] for this equation,
i.e., to give a complete solution to the eigenvalue problem for the linearized collision operator [4, 8] and
construct in explicit form a solution to the linear problem of relaxation in a maximally large (from the
physical point of view) class of initial conditions [11].

We now describe some properties of the nonlinear equation (2, 9); their proof in the Fourier
representation is very simple.

Symmetry Property. Equation (2.9) is invariant with respect to the one-parameter semigroup of
transformations

2

Tof—exp [’g“*gv—z]f= (2n0)-* jdwf(w, t) exp [— Ly=w)®

], =0, 2.18)
20

which leave the distribution function non-negative.
For the proof, it is sufficient to note that the corresponding transformations ¢ (k, t) have the form
Top=exp(—0k¥/2)p(k, ), 0=0, 2.19)
and, obviously, do not change Eqs. 2.14).

This property, which is peculiar to Maxwellian molecules, has a number of interesting consequences.
The simplest of them is that besides the classical H function of Boltzmann one can find a one-parameter
family of functionals H,[f] on the solution f(v, ¢) of Eq. (2. 9),

Hilfl= [avfov,0lnfo(v,0), fo=Tsf, 6>0, (2.20)

which have the same property, i.e., they do not increase with increasing t. An advantage of these functionals
is that, in contrast to the usual H function, they are also defined on generalized solutions of the Boltzmann
equation (see Sec.3). This result cannot be generalized to the spatially inhomogeneous equation (1,1), for
which the classical H function is the only nonincreasing functional [20].

Another trivial consequence of this symmetry, on which we shall dwell below, is that the equation
for the moments (hormalized in a special manner) of the function f(v, ¢) is identical to the equation for
the coefficients of its expansion in Hermite polynomials (Laguerre polynomials in the case isotropic with
respect to v).

Finally, combining (2.19) with the scale transformation k — ak and the shift t — t + 7, which
also leave Eq. (2.14) unchanged, we can readily construct a two-parameter family of transformations that
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leave not only Eq. (2.14) itself but also the normalization conditions (2.17) invariant. In exponential form,
these transformations are

Ur,u(p==exp{’c [—%—u(k%k%)]}(‘)(k,t), 2.

and for f(v, t) they correspond to the operators
3

ot ov:  Ov

We describe in this section invariant solutions of the Boltzmann equation, these being fixed points
of the transformations (2.22),

The invariance of the nonlinear equation (2, 9) with respect to the transformations (2.18) was

U‘,,,f=exp{‘1:|:——j—-i-u(a2 +—0—v)]}f(v,t). 2.

21)

22)

established for the first time in [4, 8], but the analog of this property for the linear equation was known much

earlier [21].

Moment Equations. In what follows, we shall mainly consider isotropic solutions f(|v|, £) of the
Cauchy problem (2.9)~-(2,10),

i

In the Fourier representation, it is convenient to introduce the variable x = k2/2, set ¢ = ¢(x,t),

and rewrite (2.14)-(2.15) in the form

1
¢ = j.ds p(s) {o (sz) ol (1—s_):c]~ e e(x)}, pls)=4dag(1-2s); (2.
0
Plmo=p(2):  @(0)=1, ¢,/ (0)=—1, @
where the prime denotes the derivative with respect to x.
We now formulate two properties of isotropic solutions of the Boltzmann equation (2.9); the
Fourier representation (2.23) makes these properties obvious.
A. We set
zﬂ(t)=——-1—-—jdvf(|v] v, n=0,1 ; (2
01 B T ’
then the equations for z (t) have the form
w1
2,=2=0, Z,= Z Hk,'n‘h (Za2n-n—%02n), 1=2,3,..., 2.
Rt
where the dot denotes the derivative with respect to t,
E+ly ¢
Hoo—H(k, 1) = ( X ) [aso)2(1=9) K i=1,2,.... @,
9
B. Let f(|v|, t) be represented by a Fourier series in Laguerre polynomials:
FUVE )= (2m) e VY (0 225 (0%/2), @.
n==0
this being convergent with respect to the metric of the Hilbert space L2 with norm
o (et
I =2 [avenise) = ¥ L o e, @
n=0

(Zn) 1!

then the system of equations for the coefficients u, (t
the simple replacement in (2.26) of z (t) by u,(t)

) can be obtained from the moment system (2.26) by
n =201 ..,.

1

To prove properties A and B, it is sufficient to note that the corresponding solution ¢ (x, t) of
Eq. (2,23) can be represented in the form of the power series

hd o0

q>(x,t)=Z(—-l)"zn(t)—:—;=e"‘2un(t)§, 2,

=0 =0

23)

.24)

25)

26)

27)

28)

.29)

30)
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substitution of which in (2,23) immediately leads to eguations of the form (2.26). The identity of the
equations for z, (t) and u,(t) is an obvious consequence of the invariance of (2.23) with respect to multi-
plication of ¢(x, t) by exp(~x) and replacement of x by -x.

It follows from the conditions (2.24) and the first equations in (2.26) that z, =2, =1, u =0, u =0,

¢ 1 ) 1
Therefore, the equations for u, (t) when n = 2, ... reduce to the form
n=-2
5+ a 2, 5=0, l‘ln+7v,,u,.=ZHk,,._huhu,._k, n==4,..., (2.31)
Rz=2

where we have used the notation (2.27) and
n~-i i

A=A (n)= ZHM_,, = j ds p(s) [1—s" — (1—s)"]. (2.27a)

h=1 o

The solution to the Cauchy problem for the system (2.31) can obviously be given in the recursive
form

,5(8) = 153 (0) exp (~Aast), uan(t)=u,(0)exp(—A.t)+

n—2 t
Z Hyns _" At (1) tn—i (D exp[ A (t—1) ], n=4,.... (2.32)

Similar expressions can be written down for zn(t), n=2,....

Thus, we have at our disposal now simple expressions making it possible in principle to write down
in the form of a finite sum of exponentials an expression for the moment z,(t) (or the coefficient u, (t) of
the series (2.28)) of arbitrary order n = 0, 1, ... . In reality, such a procedure is effective only for
comparatively small n £ 10, since the number of terms in these sums increases very rapidly with increasing
n. Therefore, in Sec,4 we will describe a different approach to the solution of the system (2.31).

The method of solving the nonlinear Boltzmann equation by expansion in series of the type (2.28),
which in the general case contain tensor Hermite polynomials

an
—exp(—v*/2)

Hiny(v)=(—1)"exp(v*/2) p

or their irreducible representations
Frim (W)= 0'Z"" (0/2) Yy (v/0),

was first proposed in 1949 by Grad [22]. In particular, for Maxwellian molecules, for which the last
expression determines the eigenfunctions of the linearized collision operator, Grad [22] established the
structure of the equations for the expansion coefficients and showed that the spatially homogeneous problem
can be solved by a recursive scheme analogous to (2.32), The corresponding expressions for the solution
f(v, t) of the Cauchy problem (2.9)-(2.10) were apparently given explicitly for the first time in [23] (see also
the earlier paper [24] of Kac on the one-dimensional model that he proposed). However, investigations of
this kind were long formal in nature, since the constant coefficients in moment systems of the type (2.,21)
were expressed in terms of cumbersome multiple integrals difficult to estimate. In this respect, the use of
Fourier transformation changed the situation greatly and made it possible to obtain the final, i.e., not
admitting further simplifications, form of the equations for the coefficients of expansion in series of the
type (2.28). TFor the isotropic case, the result — the system (2.31) — is obvious and was given for the first
time in [4] (see also [10]); for the anisotropic case, the analogous problem was solved in [25] (see also [26]).
Equations (2.26) for the normalized moments (2.25) in the special case p(s) = 1 were solved explicitly

for the first time in [6, 7], in which Fourier transformation was not used. The obvious derivation of

Egs. (2.26) described here was given in the general case in [10], in which the identity of the systems for
z,(t) and u, (t) due to the symmetry properties was noted.

It will be shown further that for many practically interesting initial conditions representable in the
form of the series (2.28) for t = 0 the corresponding series for the function f(|v|, t) converges only over
a very short time interval 0 = t < t, < 1. For this reason, the use of the space L, with the norm (2,29)
is inconvenient for solving the nonlinear problem (2.9)-(2.10), and we replace it in Sec.3 by a larger class
of functions.

Thus, Fourier transformation significantly simplified the procedure for calculating any finite number
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of moments of the solution f(v, t) of the Boltzmann equation (2.9) but did not make trivial the construction

of the actual function f(v, #), which depends on an infinite number of moments. To investigate the properties

of this function, it is necessary (in the case isotropic with respect to v) to be able to describe simultaneously
the properties of the complete set of quantities u, (t) or z, (t) for n = 0,1, ... . We do this now in a special
case associated with symmetry properties.

Self-Similar Solutions. The simplest scheme for constructing such solutions of Eq. 2.14) is as
follows. It is natural to seek a solution in the form ¢(k, t)=v[k0(¢)], from which after substitution in (2.14)
we find that 9(t)=exp(—ut), where p is a constant. We are interested only in solutions that have physical
meaning and describe the relaxation process, i.e., tend in the limit t — e« to the equilibrium function ¢x(k)
and satisfy the conservation laws (2.17). These conditions are not explicitly satisfied by the self-gimilar
function ¢lk exp(—ut)], but this defect can be readily corrected by using the symmetry property (2.19),
The final form in which we shall seek the solution of {2.14) can be conveniently expressed in terms of the
corresponding initial condition ¢ (k):

¢ (k, t) =@, (ke™") exp [—-l;—z(i—e“‘“) ] (2.33)

where the function ¢ (k) and the constant p are as yet unknown. Substituting (2. 33) in (2.14), we obtain an
equation for their determination:

P
" (k’-i-_k .ﬁ) ®otJ [0, 9a]=0. (2.34)

The functions (2. 33) are obviously fixed points of the group transformations (2.21).

We restrict ourselves to the case isotropic with respect to k, i.e., we consider Eq. (2.23) and
describe its solutions of the form (2. 33)

¢z, t)=y(ze ™) exp[—z(1—e?)], z=k¥2, B=2u. (2.35)

For y(x), we obtain from (2.23) the equation
paly’ (z)+y(z) I+ deP(S) {y(sz)y[ (1—5)z]—y(0) y (z) } =0. .36)

[t is natural to seek a solution in the form of the series

o
7

y(x)=2 (—1)nyn%7 Yo=Yyi=1, (2.37)

A==
it being assumed for the sake of definiteness that the conditions (2.24) are satisfied.

Substitution of (2.37) in (2.36) leads to the simple algebraic system

n—i
Yo (o) = Bnyos = ¥ Hooriilfrns 91=1, 2.38)
R=1
where n = 2, 3, ... and we have used the notation of the system (2.31). The trivial solution of the system
(2. 88) has the form y, =1 forall n =2,3,.... Itis readily concluded after an elementary investigation
of (2.38) that nontrivial solutions can exist only for definite values of the parameter 8:
A 14
p=Bs = —p=—j.ds p(s)[t—s?—(1—5)*], p=2,3,..., 2.39)
p p?

which are associated with eigenvalues of the linearized operator.

For p = 4, the solution of the system (2.38), in which g = By, is constructed as follows: y, =1
for 2 =n=sp -1, y, can be chosen arbitrarily, and y, for n = p + 1 are determined in accordance
with recursion relations obtained from (2.38) by dividing this equation term by term by the factor n(B,—p.),
which occurs on the left-hand side of (2.38) and is positive for n = p + 1

The case p = 2, 3 requires special study, since 52 = B, In this case, not one but two quantities
can be chosen arbitrarily, v, and Y, in (2.38), and y, for n = 4 is calculated in the same way as described
above. In particular, one can set Yy, =Y, = 0 and conclude that then v, =0 forall n =2,3,.... This is
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the only case for which the series (2. 37) terminates, and we obtain the simplest solution of Eq. (2.23),
represented in the form (2. 35):

@(z,t)=(1—Bze™)exp[—z (1—0e7) ], A=P2s= 5ds p(s)s(1—s), 2.40)

where the constant @=exp(—Af) takes into account the possibility of arbitrary choice of the origin of time.
For z=k¥/2, p(s)=4ng(1—2s), Eq. (2.40) determines the solution of Eq. (2.14}, and inverting the Fourier
transformation in accordance with (2.16) we obtain the solution of the original Boltzmann equation (2, 9):
vt 1—t y* 3
o (-5)[ 15 (- )]
f0v, 1) = (2aw) ™" exp 27 T \2t 2
(2.41)

T=r()=1-8e, % =(w/2) [ dug(p) (1—p), t0,

where f(v, 1)=0 for 0<8</;, but in what follows nonpositive solutions corresponding to 2/;<<0<1 will also
be helpful.

This is the first and as yet unique nontrivial (i.e., non-Maxwellian} solution of the nonlinear
Boltzmann equation that can be expressed in closed form in terms of elementary and special functions.
We give here also exact solutions of the moment equations (2.26) and 2. 31) corresponding to the series
expansion (2. 30) of the function (2.40):

zo=z=1, 2, (£)=(1—0e=*)"[1+(n—1)0e™]; u.(@)=(1—n)0%™; A=A,/2=A,/3, n=2, 3,.... 2.42)

The solution (2.41) was constructed for the first time in [4] by the method described here, and then
in [5] an entirely elementary derivation of (2.41) without use of Fourier transformation was given. Somewhat
later, the same solution for the special case p(s) = 1 was constructed independently in [6] on the basis of
the moment system (2.26) obtained in [6] for p(s) = 1; it was then generalized in [7] to arbitrary functions
p(s). Self-similar solutions were also first constructed in [4], and thea in [9] the group properties of the
corresponding solutions f(|v|, £} of the Boltzmann equation were studied in more detail. These results were
repeated later in [27,28]. The exact solution in elementary functions and the self-similar solutions have
been much discussed in the literature [16], and therefore we shall not dwell on them but turn to more
general questions.

([t

3. General Relaxation Theory

We make more precise the concepts of the distribution function and solution of the Cauchy problem
(2.9)-{2.10). Note that from Eq. (2.9), using Eq. (2.2), we can derive the well-known equation for the
evolution of the mean value of the function h(v),

dit<h(v)>= ((jdng (-‘-mu—) (V) —h(v) ] >> , (3.1)

where

<h(v)>=jdvj(v,t)h(v), CH(v,w)) = J-dvdwf(v,t)f(w,t)H(v,w).

Equation (3.1) has a clear physical (probability) interpretation: The change in the mean value of
h(v) in unit time is equal to the mean change in h(v) in one collision, averaged then over the number of
collisions. On the basis of this interpretation, it is possible to give a phenomenological derivation of (3.1)
without recourse to the Boltzmann equation (2.9), using however in the calculation of the number of collisions
the same hypotheses as in the derivation of Eq. (2.9). Regarding v ¢ R° as a random variable, we note
further that the main tool for calculating the mean values of functions of such a variable is the probability
measure w(v; t) in RS, this depending in the present case parametrically on the time t = 0. Then the mean
value of the function h(v) is determined as an integral with respect to the measure,

b)) = [do(viDh(v), (3.2)
and we define the mean value (H (v, w)? on the right-hand side of (3.1) as an integral with respect to a

product of measures,
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CH(v,w)} = _f da(v;t)do (w; t) H(v,w), (3.3)

regarding v and w as independent random variables with the same distribution. Such a rule for calculating
¢H(v, w)Y in (3.1) is obviously equivalent to Boltzmann’s main hypothesis that the colliding particles can
be assumed to be independent,

Equation (3.1) in the notation (3.2)-(3.3) can be taken as the basis with the requirement that it be
satisfied on any continuously differentiable function h{v) of compact support; differentiability of h(v)
is needed only when one considers true Maxwellian molecules, for which g(y) has a nonintegrable singularity
at p =1. The dependence of the measure «w(v;t) on the parameter t = 0 must be such as to ensure
continuous differentiability with respect to t of (h(v)). The initial condition can also be assumed to be
given in the form of the measure (v; 0)=w,(v).

In such a formulation, the main object of the investigation is the probability measure wiv; t),
which describes the velocity distribution of a randomly chosen molecule of the gas, However, it is less
convenient to work with the measure, which is a function of a set, than with an ordinary function of a point.
This can be done in two ways. First, it can be assumed that the measure w(v; t) has a density f(v,i) -
called in kinetic theory a distribution function — that is integrable with respect to v and differentiable
with respect to t. We then naturally return to the original Boltzmann equation 2.9). Another — more
general — method is to consider the characteristic function of the measure w(v; t), i.e., its Fourier
transform

0

@k, t)= e > = jdm (v;t)e ™ ; (3.4)

this way obviously leads to the simpler equation (2.14) and does not require any additional restrictions on the
local properties of w(v;t). In order not to have to give up the usual expression of the Boltzmann equation,
we introduce in the necessary manner the concept of a generalized solution of it.

DEFINITION 1. Let w(v) be a probability measure in R®, We shall call the linear functional 7
defined on functions h{v} that are integrable with respect to the measure w(v) by the equation

(f,h) =<k (v)> =fdm(v)h(v) (3.5)

the distribution function or generalized density of the measure «(v); we shall call the Fourier transform of
the measure w(v) the characteristic function ¢ (k), i.e., ¢(k)=<exp (—kv)>.

We shall use the notation f(v) for the distribution function f and write (3.5) in the form

(f, 1) = <h(v)> = [avin),

irrespective of whether the generalized function f is regular, i.e., F(Vv)EL(R®), or not.

We now congider the Cauchy problem (2.9)-(2.10), making the assumption that fo(v) is a distribution
function.

DEFINITION 2. We shall say that the distribution function f(v,f), which depends parametrically on
t = 0, is a {generalized positive) solution of the Cauchy problem (2. 9)-(2,10) if the corresponding charac-
teristic function ¢ (k, t) for all k € R’ t= 0, satisfies Eq. (2.14) and for any k ¢ R
lim @(k, t) = @o (k) = (fo, e=*").
1> 40
It is obvious that in order to construct in this manner a definite solution f(v,?) to the problem (2.9)~
(2.10) it is sufficient to 1) construct a classical solution ¢ (k, t) to the problem (2.14)-(2.15), 2) show
that ¢ (k, t) is a characteristic function for any t > 0, and 3) use the well-known fact of the one-to-one
correspondence between a probability measure (distribution function) and its characteristic function [29].
Such an approach makes it possible, exploiting the simplicity of Eq. (2.14) and the well-known properties
of characteristic functions, to prove fairly easily an existence and uniqueness theorem for a generalized
positive solution to the Cauchy problem (2, 9)-(2.10) and a theorem of stabilization as t — « of this solution
to the Maxwell distribution (2.12). We shall not do this here in the general case, since the aim of the paper
is to describe more subtle properties of the solutions for at least a comparatively small class of distribution
functions. Restricting ourselves to isotropic functions f=f(|v|), we introduce this class Bx as follows [15].
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Rapidly Decreasing Distribution Functions. By Bsx we denote the set of isotropic distribution
functions f(|v|) for which for some r > 0 there is convergence of the integral

¥(r)= jdvf(lvl)exp(rv2/2)< o
and the two following normalization conditions are satisfied:

favitvh=1, [avitlv)yv=3. (3.6)
The function 7€éBx has a natural characteristic asymptotic behavior as |vl — «, which we shall
call the tail temperature 7 and determine by the equation
T l=gup T, (3.7
where the upper bound is taken over the r > 0 for which ¥(r) < o,

In particular, the class B, contains all non-negative functions of the Hilbert space L with the
norm (2.29) for which the conditions (3.6) are satisfied. Such functions correspond to 7 = 2.

We now consider the Cauchy problem for the Boltzmann equation (2. 9) with the initial condition
fo(|v])€Bx (2.10), making the assumption that the inequality (2.8) is satisfied.

PROPOSITION 1. A solution f(|v|, £) to the problem (2.9)-(2.10) exists and f(|v|, 1)€Bx for all
t = 0. Inthe limit t — <, the solution f(|v|, ) converges weakly to the Maxwell distribution f(|v|) (2.12),
i.e., (f, )~ (fu, B) as t — « for any bounded continuous function h(v),

The main stages of the proof will be briefly described below in the process of constructing a solution
of the corresponding Cauchy problem in the Fourier representation. We note first some properties of
characteristic functions corresponding to rapidly decreasing distribution functions.

We denote by A« the set of functions ¢ (x) defined for x = 0 by the equation

sin vi

q)(x)«4njduv21() —[jdvf(m)e—wv] . f6B,. (3.8)

x=h%/2

An important property of the functions @(x) € Ax is that ¢(x) can be analytically continued to the
complete plane of the complex variable x and is an entire function of exponential type [29], the type o of
this function being equal to the tail temperature 7 of the corresponding distribution function f(|v|)€Bx. If
€A« and f€Bx are related by the transformation (3.8), then

— 3 —_4\n f_ﬂ_ 2(n+1) o
‘P(x)—Z( 1) Zn n!' Zp == (2 +1)”jdl)f(v)l7 n 0,1,...,
" (3.9)
l - n——
o=1lim supM= lim sup ¥z, = 1<<oo,
2> x n—>eo
We also define a natural extension of the class Ay, denoting by A the set of functions that can be
represented in the form

q)(:c)=zl(—1)"z,.—%, a=zi=1, sup¥|z.]<w. (3.10)

n=0

It is obvious that Ay« C A consists of functions of the class A that are characteristic (with allowance
for the replacement of x by k%/2).

To solve the Boltzmann equation (2. 9) with the initial condition (2.10) f,€Bx, it is necessary to
consider the following Cauchy problem for the function ¢ (x, t):

= jds p(s) {9 (s2) 9l (1—5)z] -9 (0) @ (@)}, @|imo=00(2) € As, (3.11)

where @i (z) and f,(]v]) are related by the transformation (3.8). It is natural to seek the solution of (3.11)
in the form of the series
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q>(x,t)—2( 1)”zﬂ(t)———; z,.(O)——zm, n=0,1,.... (3.12)

=0

Substituting this series in {3.11), we obtain the system (2.26), which it is here convenient to
rewrite in the notation (2.27) and (2.272) in the form
fn~-1i
fo=2,=0, Zn+AnZoZn= ,Z,Hk,n_kzhz,.*k, n=2,.... (3.13)

k=1

The solution of these equations corresponding to the initial conditions (3,12) can be written down
immediately:

Zn () =2, e'“"‘+ZHM kjdre'*ﬂ“"” 2, () 2o (1), (3.14)

k=<1

The series (3.12) with coefficients (3.14) obviously determines a formal solution ¢ (x, t) of the
Cauchy problem (3.11), and it remains for us to estimate the growth of Iz, (t)l and |z, (t)l as n — = (it
is convenient not to make use yet of the fact that z (t) > 0 for @, € Ax but consider the more general
case ¢, € A in (3.11)). Such an estimate leads to the inequalities

1
|z, @< ar,  [2()] < 2Bnar, a___sup)/[z“’), gdsp(s)s, (3.15)
b

which hold for all t = 0, n = 2, ... . The proof of (3.15) is based on elementary application of induction to
(3.14) using the connection (2,27a) between A, and H,: and the simple estimate A.<nd for n = 2

3 e e s s

Thus, we have constructed the solution ¢ (x, t) to the Cauchy problem (3.11) for ¢, ¢ A and
showed that ¢(x,t) € A forall t > 0. The constructed solution is obviously unique in the class of functions
that can be represented by convergent power series. It remains to prove that @(x,t) ¢ Ax forall t > 0
provided ¢ € Ax. In other words, it is necessary to show that the constructed function ¢ (x, t) will be
the characteristic function (3.8) for all t if it was suchat t = 0. If p{s) = 0 in (3.11) is a function
integrable on [0, 1], then for the proof one can use representation of ¢(x, t) in the form of the Wild's
sum [30]

@z, )= Z(i—e“"?‘)" @ (2), Qo= j dsp(s), (3.16)

n=0

where q)o(x) is the initial condition from (3.11), and

Puss(2)= Z f d5 0 (5) s (52) Gas (1=5)2 ). (3.17)

(n +1)

The convergence of the series (3.16) for 0 = x < = and the identity of (3,16), (3.17) to the solution
(3.12), (3.14) constructed above is readily verified. It follows from the well ~known properties of charac-~
teristic functions [29] that for all n = 0, 1, ... the functions ¢, (x) are characteristic functions and,
therefore, so is the sum of the series (3.16) for any t = 0; this is what we had to prove. To prove ¢{x, t} €
Ay in the case of a nonintegrable function p(s) (see the condition (2.8)), it is sufficient to consider a
sequence of solutions ¢ (x, t; e,) of problems (3.11) in which the lower limit in the integral is replaced by
s=¢g,, 0<e,<<1, n=0, 1,.... Going then to the limit e, — 0 and using the fact that the limit of a sequence of

characteristic functions that is continuous at x = 0 is also a characteristic function, we can readily show
that ¢(z, t)=g¢(z, t; +0) €4x.

To investigate the behavior of ¢ (x,t) as t — «, we can use the representation of this function in

the form of the series (2.30) with coefficients u_(t), n = 0,1, .... From the recursion relations (2.32)
we readily conclude that u, — 0 as t — « for any fixed n = 2, ... . On the other hand, ‘an estimate
analogous to (3.15) shows that [, (@) |<(a+1)", n=0, 1,... . Tt follows that ¢ (x,t) — exp(—x) as t - w0

the convergence being uniform on any finite interval [O, X] lor in any disk Ix! <R if x is regarded as
a complex variable).

To complete the proof of Proposition 1, it is now sufficient to take into account the well -known
connection between the convergence of characteristic functions and the convergence of the corresponding
probability measures [29].
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Thus, we have established above unique solvability {in the large) of the Cauchy problem (2.9)-(2.10)
on functions of the class B, and weak convergence in the limit t — « of its solution f(|v|, ¢) to the
Maxwell distribution (2.12). For the physics applications of the Boltzmann equation, the main interest
attaches to the asymptotic properties of the distribution function f({v], £) as |v| —> « (the formation of
Maxwellian tails) and as t — e« (relaxation rate). We turn to the investigation of these properties.

Asymptotic Behavior as Ivl — «. The asymptotic behavior as |vl — o« of the solution f(|v|, £)6Bx
to the problem (2.9)-(2.10) can be formulated as follows: What can be said about the tail temperature 7(t)
determined by the equation

T!=supr: jdvf(lv],t)exp(rv’/2)<°°, r>0, (3.18)

for given initial condition f,(}v|)€B«? We describe here the simplest method of constructing upper and lower
bounds of 7(t) [15].

The method is based on (3.9), which relates 7(t) to the normalized moments z, (t),

oo

" duf (v, £) v+, (3.19)

1(¢)=lim sup {’zn (), z.()= Tzn—_:jti—)_—‘—l-

and on the monotonic dependence of the non-negative solution zn(t), n=20,1,..., of the system (3,13)
on the coefficients i, H,. and the initial conditions z, (0}. Applying induction to the recursion relations
(3.14), we can readily establish the following lemma.

LEMMA. Let Z, (t) be a solution to the system of equations obtained from (3.12)-(3.13) by
replacing A., Hy:, and zQ | respectively, by hn, Hs,, and Z forall n =0, 1, ...: k, [ s )
if AuZha, 0SH,<H,; 0%, <z, , then Z (t) = z,(t) forall t > 0; conversely, if My Hoi=Ho s Zn 22a s
then Z (t) = ¢z, (t) forall t > 0.

The lemma makes it possible to obtain upper and lower bounds for the complete set of normalized
moments z, (t), n = 0,1, ..., but for brevity we shall restrict ourselves below to formulations of the
results only for the tail temperature 7(t) (3.19). Tt is convenient to have in mind already some characteristic
values of this quantity: 1) 7(0) =0 for initial conditions f&Bx of compact support, i.e., in the case when
fo(lv])=0 for ivil > Yy where A is some limiting velocity; 2) 7 = Ty = 1 for the Maxwell distribution (2.12);
3) 7(t) = 2 for non-negative functions f(|v|, £)€L, with the norm (2.29); 4) for the exact solution (2.41)

T(t)=1-8e™, A= dep(s)su—s). (3.20)

The properties of the tail temperature that are common to all solutions f(|v|, t)€Bx of the problem
(2.9)-(2.10) are as follows.

PROPOSITION 2. The function 7{t} does not decrease with increasing t, and forall t = 0

1 —exp(~M)<t(f)< sup Vnz,.__(b_i, (3.21)

n=01,...
where ) is defined in (8.20).

Proof. The upper bound in (3.21) follows immediately from the analogous estimate in (3.15). The
lower bound is obtained by comparing the solution of the system (3.13) for the initial conditions (3.12) with
the exact solution (2.42) of this system, this corresponding for # = 1 in the notation of the lemma to initial
conditions 2" =%"=1, " =0forn =2, .... Finally, to prove the monotonic dependence of 7(t) on the
time we note that a trivial consequence of the lemma is the inequality z,(t) =2z.(0) exp (—Aat), n=2,..., which
for 7(t) (3.19) leads to the estimate

()= lim sup[l"’z_,.—(—(_)—)exp(—}w,. t/n)]. (3.22)
But (A/n)—0 as n — o, which can be readily deduced from the explicit expression (2.27a) for A, by using
the upper bound (2.8) for g(u). Note that for true Maxwell molecules A.~n* as n — = [3]. Thus, it
follows from (3.22) that 7(t) = 7(0) for any t = 0. This inequality is equivalent to the inequality 'T(ti) =
T(tz) forall t, = t, = 0, since the origin of time can be chosen arbitrarily. This proves Proposition 2.

For applications, an interesting question is that of the manner in which the Maxwell tail is formed
in the process of relaxation of initial conditions of compact support when 7{(0) = 0. The lower bound in
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(8.21) shows that 7(0) = 0 is possible only for t = 0, while for t > 0 the distribution function f(]v|, #)
decreases roughly speaking as |v| — « not faster than exp [—v*/2(i—e™™)]. The fact that every non-negative
continuous solution of the Boltzmann equation for t > 0 is bounded below by a function of the form

aexp (—bv***) for any & > 0 was already found by Carleman [31], however for Maxwellian molecules we can
obtain much more accurate estimates. Moreover, since in general we consider generalized solutions, it is
not the distribution function f(|v|, t) that is estimated but rather an intergral characteristic of it — the tail
temperature 7(t).

We give an example of more accurate estimates of 7(t) for one class of initial conditions of compact
support, a typical representative of which is the monoenergetic distribution
1
2n¥3

where the constants are chosen to make the conditions (3. 6) satisfied. Assuming the possibility of "smearing"
the ¢ function over a small finite interval, we obtain the class of initial data to which the following
proposition applies.

follvl)=

8 (v*-3),

PROPOSITION 3. Suppose in (2.10) f(jv])=0 for Ivl > Vo where 3 = vi = 5. Thenfor t = 0

I—eM<t(t) <10, O8=(1—0,"/5)",
where X is the same as in Proposition 2.

For the proof, it is sufficient to estimate the normalized moments for t = 0 as follows:
(0) {0

3v2(n—1)
i) o
Zy =z =1, 0=z, <

Ty T, =2,3,...,
G nn’ "

and then make an elementary but somewhat lengthy comparison with the exact solution (2.64) for t = 0
and 8=(1—v,%/5)" and, finally, apply the lemma and the expression (3.19) for 7(t).

Thus, we have found a class of initial conditions for which the evolution of 7(t) takes place in
accordance with a law close to (5.20) for the exact solution (2,63). At the first glance one might think that
for other initial conditions of compact support satisfying the normalization (3.6) 7(t) will increase with
increasing t = 0 monotonically (see Proposition 2) from the initial value 7(0) = 0 to the value Ty =1,
which corresponds to the Maxwell distribution. However, it can be shown that there exist initial conditions
of compact support for which 7(t)>1.>>1 as t — «, This, of course, does not contradict the relaxation
of the function f(|v|, t) itself to the equilibrium distribution 2.12). The extent and duration of the exceeaing
of the equilibrium value 7 = 1 in the process of relaxation of initial conditions of compact support can be
estimated from the following proposition.

PROPOSITION 4. Suppose that in (2.9) g(p) = ¢ forall =1 = u = 1 and some ¢ > 0., Then for
all numbers N > 0 and t; > 0 one can find an initial condition fi(|v|) (2.10) of compact support such that
for all t > t; the inequality 7(t) > N holds.

Proof. Using the lemma, we find a lower bound of the solution to the Cauchy problem (3.12)-(3.13)
as follows:

® SO o o

1) we replace the initial conditions (3.12) by 2y =1, £ =z, , Z; =12, =2,(.°)=.:.=O;

2) we replace the coefficients A, and H,, of the system (3.13) with allowance for the condition in
1
the proposition by the quantities X,=né=Ai,, 6 = J'dsp(s)s, n=2,...; B ,=e(k+i+1)"'<H,, k 1=1,2,....
0

The solution {Z.(t), n=0, 1,...} to the Cauchy problem "spoilt" in this manner can be expressed,
as is readily seen, by
Zo=1, 2'zm-H:O, 2zm=ym[z?.(°)]”' tm_ie_zmbtv m=1,. EER) (3.23)

where the numbers y, are determined recursively: y, =1

?

m—1i
e
—— e M=2, ...
4 (m—1)(2m+1)‘;yky wo T

mei

Hence, after application of induction and simple calculations based on the identity Zk(m—k)=
h==1
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Yem(m*~1), we obtain the lower bound y,=m(e/12)™* for all m =1, ,... We now substitute this estimate
in (3.23), note further that in accordance with the lemma z, = % (n =0,1,...), and, finally, we use the
representation (3.19) of the function 7(t). We obtain the inequality

T(t) =e~"Ytez,(0)/12, {3.24)
which relates the lower bound of the tail temperature 7(t) to the moment of fourth order of the initial

1
distribution function f,6Bx, z:{(0)= 'R j‘dv (v ot

But for fixed z (0) = z (0) = 1 the quantity ZZ(O) can attain arbitrarily large values even for
functions of compact support. Indeed, one can specify a function f.(v) that decreases as v -—» « in pro-
portion to v and then "cut off" its tail at a sufficiently large distance R > 1 from the coordinate origin.
Then the moments zZ, and z, will hardly depend on R, but the moment z, will increase unboundedly with
increasing R. Choosing now an arbitrarily short time interval t, we can always make the cutoff radius R
sufficiently large that the right~hand side of the inequality (8.24) for t = t, exceeds a given number N > 1.
By Proposition 2, 7(t) = 7(t,)) for t = t,» and therefore Proposition 4 is proved.

Remark 1. The condition g(u) > ¢ of Proposition 4 can be weakened, but we shall not do this,
since it is very clear and satisfied for the models most frequently used: glu)=(4n)"" for isotropic scattering
and g(u)=g(—1) for true Maxwellian molecules,

Remark 2. Proposition 4 shows that the class B, we have chosen is in a certain sense the
minimal class of distribution functions containing all solutions of the Cauchy problem @, 9)-(2,10) for initial
conditions of compact support. In other words, the restriction (3.5) on the asymptotic behavior as |vi >
cannot be weakened.

Remark 3. The representation of the solution in the form of the series (2.28) for all t = 0 is
meaningful only when the initial condition f,(]v]) is in a comparatively small neighborhood of equilibrium,
fo—full<<r. fGwe shall not dwell here on the estimate of r ). Otherwise, as Proposition 4 shows, the necessary
condition 7(t) = 2 of convergence of the integral (2.29) can be violated for all t > t, where t, > 0 can be
chosen arbitrarily small. It is clear that the example of an initial distribution f,(|v]) constructed in the Proof
of Proposition 4 belongs to the space L,.

With this, we conclude the study of the asymptotic behavior as lv] — «. Nonmonotonic (in time)
behavior of the distribution function at large velocities was noted for the first time in numerical experiments
[32] and has often been discussed in the literature at a physical level of rigor [13,16]. The precise signifi-
cance of the effect (Proposition 4) became clear only after the introduction in [15] of the concept of the tail
temperature and the construction of an asymptotic theory based on this concept.

Asymptotic Behavior as t — . To study this question, it is convenient to transform Eq. (3.11),
setting in it :

¢la, t)=e=[1+u(z, t)]. (3.25)
We then obtain
w+ jdsp(s) {u(z)—u(sz) —ul (41—s)xl}= jdsp(s)u(sx)u[ (1—s)z]. (3.26)

By A  we shall denote the set of functions u(x) representable in the form

u(z) = 2“% sup V| ua| <. (3.27)

n=2

If ¢(x) and u(x) are related by the transformation (3.25), then the inclusions ¢ ¢ A (3.10) and
u € Ao are obviously equivalent.

Since u(x,t) — 0 as t — «, it is to be expected that the right-hand side of (3.26) makes an
unimportant contribution to the asymptotic behavior. Setting u(x, t} = y(x,t) in (3.26) and retaining only
the linear terms, we obtain the linearized equation

yo+ [ dsp(s) {y (@) —y (s2) —y[ (1—s5) 2]} =0. (3.28)
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If y(x, 0) € A, then the solution of the Cauchy problem for this equation can be written down
directly:

e WO

An = jd,sp(s) [1—s"—(1—s)"], (3.29)
n!

n=2

from which it is clear that y(x, t) € A forall t = 0. In the following section, we construct an exact
transformation relating solutions u(x, t) € A of the nonlinear equation to solutions yix, t} € A, of the
linearized equation; here we restrict ourselves to t — « asymptotic estimates.

It is clear from (3.29) that y(x, t) ~ exp(—xzt) as t — », A similar estimate can be expected
for the solution u(x, t) € A _of the nonlinear equation (3.26). To obtain such an estimate, it is sufficient
to represent u(x, t) in the form of the series (3.27), whose coefficients u, =u, (t) are determined by (2.32).
On the basis of these expressions, it is easy to show that for all t = 0

n/2-1 [
Jua (1) < (-,;—) bre™', b=sup V|u.(0)], n=2,.... (3.30)

n=2,...

Hence, for the solution of the original problem (3.11) we have

PROPOSITION 5, Let ¢(x,t) € Ay be the solution of the Cauchy problem (3.11). Then for any
X >0 forall t = 0

o (z, ) —e~*[= sup |¢(z, 1) —e~*|<K(X)e™, (3.31)

x6[0,X]
where K(X) is a positive number that depends on X and the initial condition ¢ (x).

From the inequalities (3.30) there follows the validity of Proposition 5 for K(X) =exp[ X (bV[:—1)].
The exponential growth of this quantity does not in general make it possible to obtain an estimate of the type
(8.31) for distribution functions f(|v], £)6Bsx by simple application of the inversion formula 2.16). However,
for a very small class of functions, when b° < 3/7 in (3.30), this can be done and we obtain as a result
the inequality

(1], £)— (2m) =he="/2| <const e~ (3.32)

which can be regarded as an example. In the general case, the problem of estimating the proximity of
distribution functions on the basis of an estimate of the proximity of the corresponding characteristic
functions is rather difficult [29], and we shall not go into it, limiting ourselves to the inequality (3.31).

An interesting effect — appreciable slowing down of the relaxation rate already at the level of the
characteristic function ¢ (x, t) — occurs in the case of a strong extension of the class By of rapidly
decreasing distribution functions. Indeed, the linearized equation (3.28) admits solutions of the form

H
ylz, t; p) =P, A(p)= I ds p(s) {1—s*— (1—s)?}, (3.33)
[ ]

where A{p) — +0 as p — 1, sothat a(p) > 0 can be made arbitrarily small. From this it is clear how
one must choose the initial conditions for the nonlinear equation (3.26) if one is to expect analogous behavior
of its solution u(x, t) as t — «. We set

uo(z) =0z*, 0>0, 1<p<2, (3.34)
and then in accordance with (3.25) and (3.8) the corresponding initial condition for the Boltzmann equation is
—_— 2 3
wvh =0 e {1+ =0.r(—p, = 2)} (3.35)
Tn 2 27k

where F (...) is the confluent hypergeometric function. It can be concluded from the known properties of
this function that: 1) for sufficiently small 8 > 0 the quantity f,(]v]) is non-negative and 2) fo(iv]) ~|v|-@+22
as |vl — e, Thus, fo(|v|) is an isotropic distribution function satisfying the normalization conditions (3.86)
but, in contrast to functions of the class Bs, fo(|v]) decreases as [vl — « in accordance with a power law,

To construct a solution of the Boltzmann equation with the initial condition (3.35), it is necessary
to consider Eq. (3.26) with the initial condition (3.84). It is natural to seek a solution in the form of the
series



©

u(z, 1) = Zun(n (027)",  un(0) =8, (3. 36)

Timai

substitution of which in (3.26) gives us recursion relations of the type (2. 32):

-4 t

un(t)= Y\ hlkp, (n—8)p] | 4 (1) uoms (1) expl=lnp) (t=)1, m=2,...,

k=1 0

. (3.37)

a(t)=expl-A(p)], hla,B)= "dsp(s)s*(1—s)".
[

Assuming for simplicity of the proof that the function p(s) is bounded (pseudo-Maxwellian
molecules: 0<<p(s)<px), we can readily obtain by induction from (3.37) the estimate
Pm [P(P“‘l) ]n t
0<u.(t <[ S (3. 38)
AN EYP5N Y=y

Hence, taking into account (3.36) and (3.25), we obtain for the characteristic function ¢(x, t) the
inequality

Brre MRty (2, 1) —e KAge P52 A=) (p)Dlpy, DP=0puT (p+1)/A(p). (3.39)

For sufficiently small 6 > 0, the function ¢ (x,t) decreases exponentially as x = « and the
corresponding distribution function f(|v|, t) can be obtained from the inversion formula

kZ
F(vl =2~ [ dke=* g (1), (3.40)
which completes the construction of the solution of the Boltzmann equation (2, 9) with initial condition (3.35).

The estimate (3.39) enables us to prove readily the following proposition.

PROPOSITION 6. Suppose that in the Boltzmann equation (2.9) g{u) is a bounded function. Then
for any 0 = § < 2, it is possible to find a non-negative solution f(|v|, t) of this equation satisfying the
normalization (3;6% and such that forall t = 0

M=M= j dv|F(Iv], 8 — (2m) he 2| <Coe, (3.41)

the corresponding characteristic function ¢ (k?/2, t) satisfying the inequalities

Ce™"<[p—oulle<Ce™, l[lo—pulic= sup [¢(z,t)—e=, (8.42)

0gx<C o0
where C1 and 02 are positive constants.

The proof has actually already been given above by the explicit construction of such a solution.
Indeed, it is simply necessary to choose in (3.34)-(3.35) the quantity p, > 1 such that A(p;) = 6. Then
(3.42) follows from (3.39), and (3.41) from the well-known relation {o—@u|c<||f—ful. between an integrable
function and its Fourier transform. '

Remark. Proposition 5 also remains true in the general case (2,8), but the proof of an estimate
of the type (3.38) in this case becomes rather lengthy.

Thus, initial conditions with power-law tails can lead to equilibrium much more slowly than distribu-
tion functions that decrease rapidly as vl — «, The existence of such solutions was suggested by the linear
theory [4,8]. A general method of solving the nonlinear Boltzmann equation in the class of slowly decreasing
distribution functions based on formal "reduction” of this equation to a system of ordinary differential
equations of the type (2.31) is described in [33]. For a different approach to this problem, see [34].

4. Equivalence Theorem and Consegquences

We now establish an exact correspondence between the nonlinear equation (3,26) and the linearized
equation (3.28), these being considered on functions of the class A, i.e., on functions ulx, t) and y(x,t)
that for all t = 0 can be represented by power series:
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w@n =Y w®o, y@=Y nos, .1

supl 2. (2) [<eo, supY[ya(2) | <ce. 4.2)

For such functions we shall write u{x, t) € A, and y(x, t) € A, and omit the variable t when it
is not important. Restricting ourselves to the case of pseudo-Maxwellian molecules, we formulate the main
result of this section in the form of a theorem,

THEOREM. Suppose o{s) = 0 and that o(s) is integrable on [0, 1], Then there exist nonlinear
operators (transformations) R and S acting on the variable x from A to A and such that:

1 if y(x,t) € A is a solution of (3.28), then ﬁy =ulx,t) € A, is a solution of (3.26);

2) if u(x,t) A isa solution of (3.26), then Su = y(x,t) € A is a solution of (3.28);

3) fié = éﬁ = f where 1 is the identity operator;

4) the corresponding transformations of the coefficients of the series (4.1) are polynomial:
=Ry =y tPo(ys, ..., ¥Yn), n=2,..., y=§u<=>yn=un+0n(uz, cey Unm2), m=2, ...,

where P, (...) and Q,(...) are polynomials of degree [n/2] not containing terms of zeroth and first
powers.

R The proof can be done in two stages — first the construction in explicit form of the transformations
R and S and then the verification that all the propositions of the theorem do indeed hold for these transforma-
tions.

Considered on functions of the class A, Egs. (3.26) and (3.28) reduce to corresponding systems of
equations for the coefficients of the series (4.1):

l.ln—,_}" (n) Un= Z H(k17 kZ) U, Upys n=27 31 rrey (4. 4:)
Ry B2
Bythy=n

Ut () y.=0, »n=2,3,..., 4.5)

where we have used the notation (2,27), 2.27a), For n = 2, 3 the summation condition k, + k, = n on the
right-hand side of (4.4) cannot be satisfied, and we assume in such cases by definition that the right-hand
side of (4.4) is zero. We consider the reduction of the system (4.4) to normal form. Applying the usual
method [35], we can readily conclude that for reduction of this system to its linear part the condition

An(Bry e hm) = (Zm k,)——i?y(k;)%o (4.6)

et

for all natural m=2, 1<j<m, k=2 is sufficient. In other words, because of the special form of the right-
hand side of (4,4) only resonances of a certain type that violate the condition (4.6) are important. From the
expression (2.27a) for the eigenvalues there follow the inequalities

A(r) A (m) = (ntm) =24 (2) A (4) =2 j dsp(s)s*(1—s)* C .

for n, m = 2,3, .... Therefore, the condition (4.6) is indeed satisfied. In addition, it can readily be
verified that the system (4.4) can be reduced to the normal form (4.5) by polynomial transformations, i.e.,
the Poincaré series terminate, If we were talking about finite systems (4.4), (4.5) for n =2, ..., N, our
arguments would be sufficient to conclude that these systems are equivalent. However, since we are
interested in the equivalence of Egs. (3.26) and (3.28) themselves, it is necessary to establish that the
reduction to normal form does not take us outside the class AO, i.e,, that it preserves inequalities of the

type (4.2). This requires a more detailed knowledge of the normalizing transformation.

We seek such a transformation — a change of variables in (4.4) — in the form

[n/2] m
U= Z Z‘ Ty, oens En) I I v, (k=1 n=2...
Mt R hy 2 i
ket thpe=n
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Here, the coefficient r,(k,) of the linear term is taken equal to unity, as always in the method of normal
forms [35], and the structure of the nonlinear terms is suggested by the form of the right-hand side of (4.4).
Substituting (4.8) in (4.4) and requiring that the transformation (4.8) carry an arbitrary solution of the
system (4.5) into a solution of the system (4.4), we obtain after simple but lengthy calculations the following
expressions for the recursive calculation of r,, (...):

ri(ki)=1’ r'm(kh e ’km)Am(kiy' . '1km)=

Maxi

2 H(leb ol bt Al sy ) Py (B oo o), m=2seas, (4.9)

ls=i

where we have used the notation (4. 6),

It is clear that rm(k,..., k) in (4.8) are determined only up to any permutation of the arguments
ki, ..., km The lack of uniqueness can be eliminated by symmetrization, but we do not do this but rather
choose rulky, ..., kw) in such a way that they are determined by the simplest expressions (4.9).

We construct similarly a transformation that carries a solution of the system (4.4) into a solution
of the system (4.5). The result has the form

[n/2]

Y= E Z s,,.(k,,...,km)ﬁ my, n=2...; (4.10)

mel Ry, b2 et
Reyorislig=n

m—1
S1 (ki) =11 s‘m(kla e km) Am (kh ey km) = Z‘ H(kj; kj-l-l)sm—l(ki, caey kj—-i, k;‘+kj+1+kj+z, ceny km), m=2, cee o (4. 11)
J=1

The fact that the transformations (4.8)-(4.9) and (4.10)-{4.11) are mutually invertible follows from
the uniqueness and one-to-one invertibility of the normalizing transformation, The expressions (4.8)-(4.11)
cEetermiAne the explicit form of the polynomials P, and Q, in {4.3), and the corresponding transformations
R and S of the functions y(x,t) € A and u(x,t) € A can obviously be determined on the basis of
representation of these functions in the form of the series (4.1).

To complete the proof of the theorem, it is sufficient to establish that the transformations R and 8
map from A to A,. This can be done as follows. First, from the recursion relations (4.9) and (4.11),
using the condition of the theorem and the inequality (4.7), we obtain by induction the estimate

[rm(Byy .oy ) [SA™Y, sy, oo k) [SA™Y, m=t,.. 4.12)
where
1 . £
A=j dsp(s)/2f dsp(s)s*(1-s)* (4.13)
[ ¢
Now suppose y(x) € Ay then in (4.1) |ya|<a® for some a>0 andall n =2,.... We consider

a function u = Ry such that the coefficients u, and y, of the series (4.1) are related by Egs. (4.8). The
inclusion u(x) € A is equivalent to the generating function

F(z)==2 1,2 4.14)

n=2

being analytic in some neighborhood of the point z = 0. Substituting (4.8) in (4,14) and estimating | F(z)|
with allowance for (4.12), we obtain the simple inequality

|F (2) |<<a*|z|*[1—ea|2|—Aa*|z|*]~",

which guarantees convergence of the series (4.14) in some disk Izl < r. Therefore, u(x) € A, fe., ‘Ehe

transformation R maps from A to A,. The proof of the analogous fact for the inverse transformation S
reduces to the argument given here by a simple change of the notation. The theorem is proved.

Remark. The local — in a sufficiently small neighborhood of the equilibrium solution — equivalence
of the nonlinear and linearized Kac equations [24] on functions of the Hilbert space L, was established in
[36], and then in [37] an analogous proposition for the Boltzmann equation 2.9) was formulated without
proof. The theorem proved here differs from the results of [36, 37] above all in the global nature of the
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equivalence, and also by the choice of a class of functions different from L2 {in L, only local equivalence is
possible) and by the explicit representation of the normalizing transformation.

1t follows from this theorem that Eq. (3.26) admits extensive families of particular solutions
that generalize the class of self-similar solutions described in Sec.2.

COROLLARY 1. Equation (3.26) for any N = 1, ... and any set of natural numbers n,=2,..., ny=2
has solutions of the form
uy (z, ty=Uy[yame™d, ..., ywa™e*n'], u.€4,, (4.15)
where Uy(z,..., zv) 15 an analytic function of N variables, and y,,..., Y5 are arbitrary constants., These

coustants can be chosen sufficiently small in absolute magnitude for substitution of (4.15) in (3.25) and (3.40)
to determine the solution fx(|v|, f) of the Boltzmann equation (2.9).

The solution uy(x, t) can be constructed as follows. In (4.8), we set

Yni=Y16XP (—'}vmt), ceoy Yoy =YnweXp ('_'}\ant)a .l/n=0, n¥n,, (4. 153)
forall j =1, ..., N. Substituting the result in the series (4.1) for u(x, t), we obtain
T'm (njl, <oy n;m) H n
V5, Z FexD (— hy, 1), (4.186)

which determines the right-hand side of (4.15). The growth of [u (x, t)! as |x|— « can be estimated in
the same way as in the proof of the theorem. It is clear that for N = 1 the result reduces to the self-similar
solutions constructed in Sec.2. The expression (4.16) determines a solution of Eq. (3.26) for nonintegral
n=2,..., ny=2 as well if the substitution z! = I'(z + 1) is made for nonintegral z [14].

Thus, the direct transformation u = ﬁy makes it possible to distinguish special classes of particular
solutions. We now give an example of the use of the inverse transformation y = Ru.

COROLLARY 2. Let f(|v], {)€Bx be a solution of the Boltzmann equation (2.9). There exists a
countable set of functionals T'.[f}, n==2, 3,..., which are conserved in time.

To prove this, we note that with every solution f(|v|, £)6B« of Eq.(2.9) it is possible to associate
a formal (in general, divergent) series of the form (2.28), where

(2n)1!

Up () = e T

—f avi(Iv], 0 2. "-( ) n=2,.... (4.17)

Irrespective of the convergence with respect to the metric L, of the series (2.28), its coefficients
(4.17) uniquely determine in accordance with (2.30) a characteristic function ¢(x,t) ¢ A, and, therefore,
a distribution function f(]v], #)€Bx. The time evolution of quantities (4.17) can be described by the system
(4.4), and in accordance with the theorem there exists a set of polynomials {4.10) of the form

Y () =u. () +Qulma(2), ..., uwasa(t) ), n=2,3,..., {4.18)

these varying in time purely exponentially,

Un (@ =pn (e, Au={ dsp(s) [1—s"—(1=5)"], n=2,3,.... (4.19)

If y;‘:’ #0 for some n, then obviously

To=1ya.(t) )"/ | yno (¢} |""=const, n=2,3,..., 4.20)

and Eqs, (4.17)-(4.18) show that T, is indeed a functional defined on functions of the class Bs. The case
y, = 0 forall n =2, 3, ... is of no interest, since it corresponds to the trivial solution (2.12).

It is not the invariants (4.20) that are of practical interest but the functions y_(t) (4.18), which

may be called normal coordinates of the solution f(l\}f, t) of the Boltzmann equation. The transformation
that is the inverse of (4.18) is also polynomial (4.8) and can be expressed in the form

a () =y ) F Py (8), ..., Yna(8)], n=2,3,.... (4,21)

We describe the scheme of solution of the Cauchy problem ©2.9)-2.10) for fe€Bx by the method of
transformation to normal coordinates. In the first step, we calculate in accordance with the expressions
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(4.17) the sequence {u, (0), n = 2, ...}, and then in accordance with the expressions {4,18) the sequence

{y,(0), n =2, .. .} of initial values of the normal coordinates. In the second (trivial) stage, the
expressions (4.19) are used to calculate the sequence {y, (t), n =2, ...} forall t > 0. In the third stage,
the expressions (4.21) are used to calculate the sequence {u, (t), n =2, ...} for all t > 0, and then, in

accordance with (2.30), the characteristic function ¢ (x,t} € Ax is constructed. In this paper we nowhere
consider the problem of recovering the distribution function f(|v|, {)€Bx from its characteristic function
¢{x) € Ay, restricting ourselves to the remark that there is a one-to-one correspondence between these
functions. Therefore, the third stage can be regarded as the final one,

From the practical point of view, such a scheme is unnecessarily complicated, since it is possible
to calculate {u, (t), n = 2, ...} using the recursion relations (2.32) without recourse to normal coordinates.
However, this scheme is helpful not only for understanding the structure of the general solution of the
nonlinear Boltzmann equation but also for comparison of its properties with the properties of other eqguations,
in particular equations of Korteweg—de Vries type. It is easy to see an analogy between the scheme we have
described and the classical scheme for integrating the KdV equation by the inverse scattering method. The
normal coordinates, whose evolution has the form (4.19), correspond here to the scattering data, and the
transformations (4.18) and (4.21) correspond, respectively, to the solution of the direct and inverse
scattering problems. It is well known that N-soliton solutions of the KdV equation correspond to the case
when the set of scattering data reduces to a finite set of numbers (reflectionless potentials). In the con-
sidered scheme, this case corresponds to a finite set of nonzero normal coordinates (4.15a), and the
analog of N-soliton solutions are for the Boltzman equation the solutions fx(|vl, t) described in the formula-
tion of Corollary 1. Other aspects of the formal analogy between the equations of KdV and Boltzmann type
are pointed out in [14, 38].

5. Conclusions

We mention some generalizations and applications of the methods described here. The simplest
generalizations of Eq. (2. 9) are the system of equations for a mixture of Maxwellian gases [33, 39] and the
analog of this equation in Euclidean space of arbitrary dimension [10]. Fourier transformation leads here
to the same simplifications, and the theory of relaxation can be constructed in exactly the same way.

However, for a system, as for one equation in the general — anisotropic — case [25], resonances may

arigse, and, therefore, the nonlinear and linearized equations are not in general equivalent. Less trivial

is the generalization to the case of a velocity-dependent collision frequency. The expression 2.5) indicates
the simplifications that arise in the case when gf{u, cos ) is a-polynomial in w. Indeed, the two-dimensional
Boltzmann equation for g{u, cos ) = u’|sin 0] is exactly solvable for isotropic distribution functions [40, 41].
Generalizations to equations associated with the theory of polymers are discussed in [16,17].

A natural application of the exact solutions is to the analysis of approximate methods. In connection
with Grad’s method, we mention the examples constructed in Sec.3 of convergence and divergence of the
series (2.28) in the relaxation problem. Examples of convergent and divergent Hilbert—Chapman—Enskog
series encountered in model nonlinear problems are described in [39,42]. However, the main question for
the Chapman-Enskog method is not the problem of the convergence of the series but the problem of making
the Navier-Stokes hydrodynamics more accurate. Can one assume, ignoring boundary-value problems and
making a restriction to Cauchy problems, that the Burnett equations are more accurate forms of the Navier~
Stokes equations at sufficiently small Knudsen numbers? The answer is evidently in the negative. The
equilibrium solutions of the Burnett equations are unstable with respect to small periodic perturbations with
wavelength less than or of the order of the mean free path [43]. This unphysical instability has the consequence
that the behavior of the solutions of the Burnett equations differs qualitatively from the behavior of the
solutions of the Navier—Stokes and Boltzmann equations. Thus, despite its well-known logical elegance,
the Chapmann—Enskog method requires certain modifications,

I am very grateful to D. N. Zubarev for helpful discussions.
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