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R E N O R M A L I Z A T I O N  G R O U P  A N D  F U N C T I O N A L  S E L F -  

S I M I L A R I T Y  IN D I F F E R E N T  ] ] R A N C H E S  O F  P H Y S I C S  

D . V .  S h i r k o v  

A general formulation of "different" renormalization groups is given for different 
branches of physics - quantum field theory, the theory of kinetic phenomena, 
turbulence theory, polymer physics, the theory of radiative transfer. The unified 
formulation uses the language of group transformations and functional equations. 
The transformations and equations are based on a simple property, functional 
self-similarity, which is a generalization of ordinary self-similarity. The difference 
between the physical basis of the renormalization-group transformations in systems 
with infinitely large number of degrees of freedom and the functional self-similarity 
of simple physical systems is discussed. 

1. I n t r o d u c t i o n  

During the las t  r a t he r  more  than ten yea r s  there  has been a r e m a r k a b l e  extension of the ideas and 
methods of the r enormal i za t ion  group for  different  b ranches  of phys ics .  The renormal iza t ion  group a rose  
or iginal ly  about 30 y e a r s  ago in quantum field theory .  The exis tence of a special  group of continuous 
t r ans fo rma t ions  assoc ia ted  with a finite a r b i t r a r i n e s s  that a r i s e s  as a resu t t  of the quantum-f ie ld  p rocedure  
of el imination of u l t rav io le t  d ivergences  was es tabl i shed in 1953 by Stueckelberg and P e t e r m a n n  [1], who 
introduced the t e r m  "la groupe de normal i sa t ion . "  Subsequently, in s tudies  during 1954-1955 [2, 3], r e n o r m a -  
l i za t ion-group  t r an s fo rm a t i ons  were  rea l ized  as specif ic  t r ans fo rma t ions  (of the type of Dyson t r ans fo rmat ions )  
of ver tex  functions and p ropaga to r s  with a s imul taneous  s t re tching t r ans fo rmat ion  of the energy  and m o m e n -  
tum sca l e s .  It was found that these t r ans fo rma t ions  could be exp re s sed  in the fo rm of functional equations 
for  the Green ' s  functions and new specif ic quanti t ies  - the effective coupling cons tants .  Very helpful f rom 
the p rac t ica l  point of view a re  the differential  group equations cor responding  to inf ini tes imal ly  smal l  group 
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t ransformat ions ;  these were obtained for the f i rs t  time in [31 (and for  the multiply charged case  in [41). On 
the basis of these equations, Bogolyubov and Shirkov [3] proposed a regular  procedure for improving the 
results  of perturbation theory in the ul traviolet  and infrared regions,  i . e . ,  in regions in which the solutions 
of the equations of motion have singular  behavior.  This procedure ,  which was f i rs t  successful ly applied [51 
to the asymptotic  behavior of the Green ' s  functions of quantum elect rodynamics ,  is now known as the 
renormal iza t ion-group method. 

At the beginning of the seventies,  the renormal iza t ion-group  method was successful ly used [6] in 
the theory of cr i t ical  phenomena in stat ist ical  physics .  The renormal izat ion group here obtained a s impler  
physical formulation on the basis of the so-cal led Kadanoff mechanism [7]. The mechanism corresponds  to 
the possibility of an equivalent descript ion of the proper t ies  of a macroscopic  sample in the neighborhood of 
a phase transit ion point by means of a sequence of different microscopic  models related by a t ransformat ion 
that changes the magnitude of the "e lementary"  microscopic  scale (for example, the lattice constant of 
a crystal)  with a simultaneous appropriate  change in the coupling constants .  

This physical basis of the renormal iza t ion group, which is c l e a r e r  than in quantum field theory,  
facilitated its fur ther  extension into other  branches of physics.  For  example, the renormal iza t ion-group 
approach to turbulence theory [8, 9] is based on invariance of the macroscopic  charac te r i s t i c s  with respect  
to a change in the lower (in frequency) limit of the high-frequency fluctuations, which are not described 
by equations but are  taken into account phenomenologically by cer tain suitable pa ramete r s  ffor example, 
an effective Reynolds number).  

It is c lea r  that a procedure  for cutting off high frequencies is physically close to res t r ic t ions  on 
minimal s izes .  Similar  considerat ions,  which exploit the f reedom in the choice of the "minimal block" 
in a long molecule,  form the basis of the use of the renormal iza t ion-group method in the theory of polymers  
[101. 

An original use of the idea of changing the "frequency l imit"  was recently made in [11] in the theory 
of radiative t rans fe r  in opaque media with a s t rong frequency dependence of the photon mean free path. 

It is curious that at a lmost  the same time renormal iza t ion-group associat ions arose  in two- 
dimensional t ranspor t  theory in an ent irely different context.  Using Ambar t sumyan ' s  invariance principle 
[12], it proved possible to obtain [13] a functional formulation of the corresponding symmet ry  proper t ies  in 
the real configuration space in a form identical to the renormal iza t ion-group  functional equations. The 
t ransformat ion corresponding to the renormal iza t ion-group  t ransformat ion changing the momentum or  
frequency scale is in the present  ease a shift with respec t  to the spatial eoordinate.  

The remarkable  general i ty  of the mathematical  fo rmal i sm based on functional group equations was 
found [14] to have a ra ther  simple basis ,  which can be explicitly formulated for examples of c lass ica l  
mechanical  sys tems .  This basis ,  which we have called functional se l f - s imi la r i ty  (or automodelity) [14, 15], 
cor responds  to the proper ty  of t ransi t ivi ty of the cha rac te r i s t i c s  of a physical sys tem with respect  to the 
method of specifying their  initial o r  boundary conditions. The renormal iza t ion-group t ransformat ions  of 
quantum field theory and the theory of cr i t ical  phenomena are  special cases  of functional se l f - s imi la r i ty  
t ransformat ions .  

In this paper, we begin by introducing functional se l f - s imi la r i ty  t ransformat ions  in general  form 
and establish the connection between functional se l f - s imi la r i ty  and ordinary  se l f - s imi la r i ty ;  we then discuss 
the cor respondence  between the complex construct ion of Kadanoff type that is the basis of the renormal izat ion 
group in the theory of cr i t ical  phenomena and the s impler  symmet ry  proper ty  that leads to functional se l f -  
s imi lar i ty  of simple dynamical sys tems .  

2 .  F u n c t i o n a l  S e l f - S i m i l a r i t y  T r a n s f o r m a t i o n s  

We consider  a set of o n e - p a r a m e t e r  t ransformat ions  of two quantities x and g charac te r ized  by 
a continuous positive pa rame te r  t, 

x---~x'=x/t, g-~g'----~ (t, g), 

where ~(t, g) is a s ingle-valued function of its arguments  that sat isf ies  the condition 

g( ] ,g )=g .  

nature. 

<1) 

(2) 

It can be seen that with respect  to x these t ransformat ions  are scaling t ransformat ions  with a group 
The functional t ransformat ions  of g form a group if the t ransformat ion function ~ sat isf ies the 

779 



composition condition 
~ (t,t2, g) = g  (t~, g (t~, g) ) ,  (3) 

which  i s  a func t iona l  equa t ion  fo r  g.  We sha l l  c a l l  such  t r a n s f o r m a t i o n s  func t iona l  s e l f - s i m i l a r i t y  t r a n s -  
f o r m a t i o n s .  

A funct ion f of the a r g u m e n t s  x and g f o r m s  a r e p r e s e n t a t i o n  of the  funct ional  s e l f - s i m i l a r i t y  
g r o u p  if  i t  t r a n s f o r m s  u n d e r  the t r a n s f o r m a t i o n s  (1) in a c c o r d a n c e  wi th  

f(x, ~) -*f(x', g') =#(x, g), (4) 

w h e r e  z is  a c o n s t a n t  tha t  depends  on the t r a n s f o r m a t i o n  p a r a m e t e r .  The s p e c i a l  c a s e  z = 1 c o r r e s p o n d s  
to an f tha t  i s  an i n v a r i a n t  of the  t r a n s f o r m a t i o n .  

Se t t ing  t i t  2 = x  and t; = t in (3), we w r i t e  i t  in the f o r m  

~(x, g) =$(x/t, ~(t, g) ), (5) 

f r o m  which  i t  can be s een  tha t  the funct ion  g ( x ,  g )  i s  an i n v a r i a n t  of the t r a n s f o r m a t i o n .  

In quan tum f ie ld  t h e o r y ,  the t r a n s f o r m a t i o n s  (1) and the r e l a t i o n s  (4) and (5) c o r r e s p o n d  to the 
s i m p l e s t ,  s o - c a l l e d  s i n g l e - c h a r g e  r e n o r m a l i z a t i o n  g r o u p  in the  m a s s l e s s  c a s e .  The  v a r i a b l e  x is  the s q u a r e  
of the 4 - m o m e n t u m ,  and g is  the  coup l ing  c o n s t a n t  of the f i e l d s .  The  funct ion ~ i s  c a l l e d  the e f f e c t i ve ,  o r  
i n v a r i a n t ,  coup l ing  c o n s t a n t .  G e n e r a l i z a t i o n s  of  the c o n s i d e r e d  t r a n s f o r m a t i o n  c o r r e s p o n d  to m o r e  c o m p l i -  
c a t e d  q u a n t u m - f i e l d  r e n o r m a l i z a t i o n  g r o u p s .  We sha l l  c o n s i d e r  s o m e  of t h e m .  

Suppose  that  in add i t i on  to the a r g u m e n t  x, the  m a i n  p h y s i c a l  v a r i a b l e  of the  p r o b l e m ,  t h e r e  is  
a p a r a m e t e r  X having  the  s a m e  d i m e n s i o n s ;  in the q u a n t u m - f i e l d  c a s e ,  th i s  is  the s q u a r e  of the  p a r t i c l e  
m a s s .  i n s t e a d  of (1), we w r i t e  

x-~x'=x/t, X~X'=X/t,  g - ~ ( t , X , g ) .  (6) 

Thus ,  the  t r a n s f o r m a t i o n  changes  the  s c a l e s  of x and X in the s a m e  way .  In add i t ion ,  the  p a r a m e t e r  X 
o c c u r s  in the t r a n s f o r m a t i o n  funct ion ~, the  func t iona l  equa t ion  fo r  which  t a k e s  the  f o r m  

(z, X, g) = ~  (x/t, X/t, ~(t, X, g) ). (7) 

Equa t ion  (4) is  m o d i f i e d  s i m i l a r l y .  In quan tum f ie ld  t h e o r y ,  t h e s e  t r a n s f o r m a t i o n s  c o r r e s p o n d  to 
the r e n o r m a l i z a t i o n  g roup  fo r  a mode l  of i n t e r a c t i o n  wi th  one coup l ing  c o n s t a n t  and one m a s s .  The  p a r a m e t e r  
X can  be " m u l t i p l i e d . "  The  c a s e  wi th  s e v e r a l  p a r a m e t e r s  X c o r r e s p o n d s  to q u a n t u m - f i e l d  m o d e l s  wi th  
s e v e r a l  d i f f e r e n t  m a s s e s ,  fo r  e x a m p l e ,  quan tum c h r o m o d y n a m i c s .  

One can  a l so  " m u l t i p l y "  the a r g u m e n t  x, which  does  not o c c u r  in the  t r a n s f o r m a t i o n  funct ion g.  
H o w e v e r ,  the n a t u r e  of the g r o u p  is  not changed  by t h i s .  Of g r e a t e r  c o n s e q u e n c e  i s  " m u l t i p l i c a t i o n "  of  
the  a r g u m e n t  g.  Suppose  that  i n s t e a d  of one g t h e r e  a r e  two: g and h.  We w r i t e  the m a i n  t r a n s f o r m a t i o n  
in the f o r m  

x--~x/t, g ~ ( t ; g , h ) ,  h~t(t;g,h) .  (8) 

The  cond i t i ons  of g r o u p  c o n s i s t e n c y  of the  t r a n s f o r m a t i o n s  of the a r g u m e n t s  g and h now have  the 
f o r m  of the s y s t e m  of func t iona l  equa t ions  

{ ~(z; g, h)=~(x/t; g,, hJ ; gt----~(t, g, h), (9) 
(x; g, h) = ~  (x/t; gt, h,); h~=~(t, g, h). 

In quan tum f ie ld  t h e o r y ,  such  t r a n s f o r m a t i o n s  c o r r e s p o n d  to a s o - c a l l e d  t w o - c h a r g e  r e n o r m a l i z a t i o n  
g roup ,  i . e . ,  the g roup  fo r  a mode l  of i n t e r a c t i n g  f i e ld s  wi th  two coupl ing  c o n s t a n t s .  I t  is  not d i f f icu l t  to 
w r i t e  down t r a n s f o r m a t i o n s  wi th  s e v e r a l  a r g u m e n t s  of the type  X and s e v e r a l  a r g u m e n t s  of the type  g 
s i m u l t a n e o u s l y  and so fo r th .  

L e a v i n g  quan tum f ie ld  t h e o r y ,  we note tha t  the t r a n s f o r m a t i o n s  of the s o - c a l l e d  Wi l son  r e n o r m a l i z a -  
t ion g roup  in the t h e o r y  of c r i t i c a l  p h e n o m e n a  can  r e a d i l y  be g iven  the f o r m  (1). It m u s t  only  be b o r n e  in 
mind  tha t  the  o r i g i n a l  f o r m u l a t i o n  was  b a s e d  on the w e l l - k n o w n  Kadanoff  c o n s i d e r a t i o n s  [7], wh ich  con ta in  
d i s c r e t e  t r a n s f o r m a t i o n s  of the m a c r o s c o p i c  s c a l e s .  To th i s  t h e r e  c o r r e s p o n d  d i s c r e t e  ( in tegra l )  v a l u e s  
of the  t r a n s f o r m a t i o n  p a r a m e t e r  t in (1). Such t r a n s f o r m a t i o n s  do not a lways  have  i n v e r s e s  and f o r m  a 
s e m i g r o u p .  The  con t inuous  r e n o r m a l i z a t i o n - g r o u p  t r a n s f o r m a t i o n s  in the t h e o r y  of t u r b u l e n c e  and the o t h e r  
b r a n c h e s  of p h y s i c s  noted above  c o r r e s p o n d  e x a c t l y  to the  c a s e  (1) o r  to one of the  g iven  g e n e r a l i z a t i o n s .  
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We now establish the connection with ord inary  se l f - s imi la r i ty .  For  this, we must  consider  solutions 
of some of the functional equations. We note in this connection that the general  solutions of these equations 
found [16] in the middle of the fifties contain a rb i t r a ry  functions with number of arguments  one fewer than in 
the solution determined by them. For  our  purposes ,  it is sufficient to r e s t r i c t  ourselves  to solutions l inear  
in the second argument  of the form ~(x, g) =gf(x). Substituting such an expression in (5), we readily find 
~ ( x , g ) ~ , g x ' .  Using this expression in the main t ransformat ion (1), we see that it has taken on the form of 
a power-law s imi lar i ty  t ransformat ion,  the basis of the se l f - s imi la r i ty  used in problems of hydrodynamics 
and gas dynamics.  Thus, the t ransformat ions  (1) are a functional general izat ion of ordinary  se l f - s imi la r i ty ,  
and this justifies their  name. 

3 .  p h y s i c a l  D i s c u s s i o n  

It follows from the above brief  review of the development of the renormal iza t ion-group method in 
physics that, however paradoxical it may appear,  the historical  development has proceeded "from the more 
complicated to the s imple r . "  Indeed, the basis of the renormal izat ion group in quantum field theory is the 
least c lear .  In the pioneering paper [1], the renormal iza t ion-group  t ransformat ions  were introduced as 
formal t ransformat ions  in a space of finite pa ramete r s  without any discussion of their  physical meaning. 
The following paper [2], devoted to quantum elec t rodynamics ,  used a fairly complicated momentum cutoff 
procedure,  the cutoff momenta playing simultaneously the part  of normalizat ion momenta,  in par t icu lar  
charge normalizat ion.  A physically perspicuous image cor responds  to an electron of finite size "smeared"  
over  a small  region of radius [ IA=McA,  the relation ln(A/mo)>>t holding. The charge e(A) of this electron 
is assumed to depend on the cutoff momentum h in such a way that this dependence ref lects  the effects of 
vacuum polarization due to virtual e % -  pairs  at distances less than R A f rom the real point e lect ron.  When 
the radius is increased to the electron Compton wavelength, we a r r ive  at the well-known experimental  
value of the charge:  e ' ( r n ~ ) = h c / t 3 7 .  In this language, the renormal iza t ion-group t ransformat ion is a transit ion 
from one smear ing  radius,  i . e . ,  one cutoff momentum, to another, R l -~ R2, with a simultaneous t o r t e -  
sponding change in the charge:  e(Ai)-*e(Az). One can say that this is a transit ion from one nonlocal physical 
model to another, each of them being equivalent to a local model at large distances r>>-ft/rn~c. 

The so-cal led  Wilson renormal tzat ion group in the theory of cr i t ical  phenomena considers  a Kadanoff 
sequence of "block" lat t ices with increas ing size a ,  2a ,  3a . . . .  , na  . . . .  , of the block, the coupling constants 
of neighboring blocks forming a sequence K1, K2, K 3 . . . .  , K n . . . .  , whose general  t e rm can be represented 
in the form K n = ]g(n, K). A renormal iza t ion-group t ransformat ion is a set of t ransformat ions  changing 
the scale of the microscopic  distances,  r --> nr, and a simultaneous t ransformat ion K ~ l~(n, K) of the 
coupling constant.  The explicit form of the dependence 1~, like the function e(A) in the previous example, 
can be determined from the equations of motion. Like the foregoing case,  the transit ion f rom a sys tem 
consist ing of blocks of one size to a sys tem composed of blocks of another size is a transit ion between 
different models,  i . e . ,  between approximations of the same physical system, each of which co r rec t ly  
reproduces  the macroscopic  charac te r i s t i c s  in the neighborhood of the phase transit ion point. 

The use of the renormal iza t ion-group  approach in the theory of turbulence [8, 9], polymer  physics 
[10], and the theory of incoherent radiative t rans fe r  [11] also uses a s imi la r  logic. In each ease,  one 
const ructs  (or understands) a sequence of related models {Jt'~}, these differing f rom one another in the 
scale of some variable x (the cutoff l imit of high-frequency fluctuations, the length of an "e lementary"  
block in a long molecule, e tc . ) ,  and also in the values of some pa rame te r  (or set of parameters )  g, the 
analog of the coupling constants e and K, whose t ransformat ion law is determined by the proper t ies  of the 
"original" physical model. Thus, the renormal izat ion group is a group of t ransformat ions  within a set of 
models {Jt'~}. 

In contras t  to this, the property of functional se l f - s imi la r i ty  of simple c lass ical  sys tems (flexible 
rod, two-dimensional problem of radiative t r ans fe r  . . . .  ) considered in [13, 14, 15] is a proper ty  of a 
symmet ry  of the (single!) model i tself formulated in the language of its natural variables and simple physical 
cha rac te r i s t i c s  determined by the equations of motion. 

It is interesting to note that the formulation of the quantum-field renormal izat ion group given by 
Bogolyubov and the present  author [3] (see also Chap. 9 of our  monograph [17]) is in a cer tain sense in ter -  
mediate between these two ex t remes .  It is based on concepts and functions (propagators and vert ices)  
relating to one local renormal izable  quantum-field model. At the same time, it uses auxil iary var iables  
(normalization momenta) and functions (invariant o r  effective coupling constants) that do not occur  in the 
equations of motion. 

781 



I should like to thank N. N. Bogolyubov and A. N. Vas i I ' ev  for  fruitful d iscuss ions  of the quest ions 
touched upon here .  

L I T E R A T U R E  C I T E D  

1. E.  Stueekelberg and A. Pe t e rmann ,  Helv.  Phys .  Acta, 26, 499 (1953}. 
2. M. Gel l -Mann and F. Low, Phys .  Rev . ,  95, 1300 (1954). 
3. N. N. Bogolyubov and D. V. Shirkov, Dokl. Akad. Nauk SSSR, 103, 203 (1955). 
4. D. V. Shirkov, Dokl. Akad. Nauk SSSR, 105, 972 (1955). 
5. N. N. Bogolyubov and D. V. Shirkov, Dokl. Akad. Nauk SSSR, 103, 391 (1955). 
6. K. Wilson, Phys .  Rev.  B, 4, 3174, 3184 (1971). 
7. L. P.  Kadanoff, Phys ics  (Long Island City, N .Y. ) ,  2, 263 (1966). 
8. C. De Dominieis  and P.  Mart in,  Phys .  Bey.  A, 19, 419 (1979). 
9. G. Pe l l e t i e r ,  J .  P l a s m a  P h y s . ,  24, 421 (1980). 

10 P . G .  de Gennes,  Scaling Concepts in P o l y m e r  Phys ics ,  I thaca (1979). 
11 T. Bell ,  U. F r i s eh ,  and H. F r i s ch ,  Phys .  Rev.  A, 17, 1049 (1978). 
12 M . A .  Mnatsakanyan,  Soobshch. Byurak.  Obs . ,  Akad. Nauk Arm.  SSR, 50, 59 (1978). 
13 M. A. Mnatsakanyan,  Dokl. Akad. Nauk SSSR, 262, 856 (1982). 
14 D. V. Shirkov, Dokl. Akad. Nauk SSSR, 263, 63 (1982). 
15 D. V. Shirkov, P r e p r i n t  E2-83-790 [in Englishl,  JINR, Dubna (1983). 
16 L. V. Ovsyannikov,  Dokl. Akad. Nauk. SSSR, 109, 1112 (1956). 
17 N . N .  Bogolyubov and D. V. Shirkov, Introduction to the Theory  of Quantized Fields  [in Russian],  

Third  Edition, Nauka, Moscow (1976), Fourth  Edition, Nauka, Moscow (1984). (English t rans la t ion 
published by In te r se i ence  (1959)). 

D Y N A M I C  S T O C H A S T I C I T Y  A N D  Q U A N T I Z A T I O N  

B . V .  M e d v e d e v  

It is shown that a f t e r  quantization of a c lass ica l  dynamical ly  s tochast ic  s y s t e m  
1) the s p e c t r u m  can be pure ly  d i sc re te ,  2) s ta t ionary  s ta tes  co r respond  to s imple  
closed c l a s s i ca l  t r a j e c t o r i e s ,  3) s tochas t ica l ly  entangled motions a r e  "pushed" 
upward in energy  to infinity. 

1.  I n t r o d u c t i o n  

In recen t  y e a r s ,  much attention has been paid to the phenomenon of so -ca l l ed  dynamic s tochas t ic i ty ,  
which means  that for  a comple te ly  de te rmin i s t i c  dynamical  sys t em,  frequently with only ve ry  few degrees  of 
f reedom,  the overwhelming major i ty  of the motions a re  e x t r e m e l y  i r r egu l a r ,  chaot ical ly entangled, and 
unpredictable ,  the source  of these i r r egu l a r i t i e s  being in no way connected with external  random per turba t ions  
but in the ex t r eme ly  s t rong (exponential) d ivergence  of t r a j ec to r i e s  that begin at phase points with a r b i t r a r i l y  
smal l  separa t ion .  The re  is a l ready  a r ich l i t e r a tu r e  on the subject  {see, for  example ,  the rev iews  [1-4]), 
and numerous  appl icat ions in physics ,  a s t rophys ic s ,  and celes t ia l  mechanics  have been found. In pa r t i cu la r ,  
Matinyan et al.  [5-7] (see also [8-10]) have found that dynamic s tochas t ic i ty  is exhibited by non-Abelian 
gauge fields in the long-wavelength  approximat ion ,  when the dependence on the spat ial  coordinates  can be 
ignored and it can be a s sumed  that the fields and potent ials  a re  functions of only the t ime .  

The phenomenon of dynamic s tochas t ic i ty  was d i scovered  and invest igated in the f r a m e w o r k  of 
c lass ica l  mechan ics .  It is of e x t r e m e  in te res t  to cons ider  how c lass ica l  dynamic s toehas t ic i ty  affects  the 
p r o p e r t i e s  and behavior  of the cor responding  quantum sys t em.  Various commen t s  have been made about 
this in the l i t e r a tu r e .  It was stated long ago (see, for  example ,  [11]) that in quantum dynamics  s tochas t ic i ty  
is not poss ib le  at all, since for  a c losed s y s t e m  confined in the phase  space the energy spec t rum is always 
d i sc re te .  In [4] there  was an invest igat ion of the specif ic  manifes ta t ions  of s tochas t ie i ty  that can be 
obse rved  in a quantum s y s t e m  in the p roces s  of es tab l i shment  of a s ta t ionary  s ta te .  The fea tures  of the 
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