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SPECTRUM OF RENORMALIZATION GROUP DIFFERENTIAL
M.D. Missarov

The spectrum of the differential of Wilson’s renormalization group at a non-Gaussian
fixed point is described.

Introduction

In [1], Wilson’s equations were solved for an effective scalar Hamiltonian with free part determined
by the long-range potential U(z)~const/|z|?, z—>c. A new non-Gaussian branch of fixed points of Wilson’s
renormalization group bifurcates from the Gaussian branch of fixed points at the point a=%/,d and for d not
a multiple of 4 describes the critical behavior of models with long-range interaction. The Hamiltonian is
obtained by projecting the Hamiltonian of the (p4d theory onto the ball Q={k]|%|<R} by means of the
operation of analytic renormalization: H=In(A.R.:exp(u(e)9*): —a—x), where

(P" = j‘ o(ky)...o(k)d(k,H... +k,) dk,

twi-ag-y 1S the transition to Wick polynomials with respect to the Gaussian field with propagator —A (1—y) (k)
=—k|**(1—xa(k)), xa(k) is the indicator of the ball Q, u(e)=use+u.e’+... is a formal numerical series in &,
and A.R. denotes some variant of analytic renormalization. The Hamiltonian can be represented in the
form of the power series H=H,teH,+e*H.+..., where e=a—%/,d, d is the dimension of space.

In {2], the leading eigenvalue of the renormalization group differential was calculated at a non-
Gaussian point, and a corresponding eigenfunction was also constructed. This made it possible to find
expressions for the critical exponents. Usually, the critical exponents are sought independently of the
question of the existence of an effective Hamiltonian and the so-called Callan—Symanzik equations are used.
In this case, the original Kadanoff-Wilson dynamical model of critical phenomena is neglected. The studies
of [1-2] return to this original model and realize some of its basic propositions.

In this paper, we analyze the complete spectrum of the linearized renormalization group at a non-
Gaussian point. We obtain a natural picture of the "bifurcation" of eigenspaces and the corresponding eigen-
values.

1. Renormalization Group Differential

at a Gaussian Fixed Point

Let H<°’=8H,(°)+,32Hz(°)+ ... be a formal smooth Hamiltonian. The action of the operator of the
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smoothed renormalization group on H® is represented in the form

Foon (H ) =1exp(F2H™) :E—A(zz,L %) 1.1)
Here, :...:5,, denotes the Wick operation with respect to the Gaussian measure with correlation
function & (k. tk:) (—A (ya—yx) (k)),

A (u—x) (k) =k | (x (k/2) =% (k) }, 1.2)

where y(k)€C,*(R") is the smoothed indicator of the ball Q={k||k|<R}, a=%/,d+e. The symbol ¢ means that
only connected diagrams are taken. The operator of such stretching of %° to an m-particle Hamiltonian

m

H= J.h(kh k) 8 (kL —I—km)H o (k) dk;

fmal

acts in accordance with the formula

FytH — pomi2-md+d S h (%— .. .kx_”*) (ki + ...+ kp)o(ky)...o(ky)dk...dk,, (1.3
o™

and can be extended by linearity to the complete space of formal Hamiltonians.

We denote by Df., the differential of the nonlinear transformation %%, of the renormalization
group at the point H:
. < 1 .
RH(o)JH= ,ZW : (ﬂAaH(O))n%laH;_A(xl —x)- (1 . 4:)
n={
The spectrum of the renormalization group differential at the Gaussian fixed point H®=0 is construcied as
follows. We are interested in only smooth and even (with respect to the spin variable} eigenforms,

PROPOSITION 1 (see [1-3]). Let h,, (k

+ -+ ++ Ky) be a homogeneous polynomial of the variables

k, ..., k, ofdegree deghn=s, ki=(ks, ..., kig), i=1, ..., m. Then the Hamiltonian is an eigenform of the

renormalization group differential:
a
DO,A.:Hm:—A(1—1)=7\4am/2—m‘i+d_':Hm:—A(i—x)- 1 . 5)

It can be seen from this that degeneracy of the spectrum is possible in the Gaussian case., We are
particularly interested in the bifurcation value a,='/,d. Let h be a homogeneous polynomial of m variables
of degree s. Then the exponent of the eigenvalue of the corresponding eigen-Hamiltonian is y(m, s) = m00/2
—md +d —s =d(1 — m/4) — s. The values of the exponents v(m, s) form a discrete series for
m=24,6,...,5s =0,1,2,.... We fix some value of y in this series, We denote by T(y) the space of
homogeneous even polynomials of m variables of degree s such that

d(1—m/4) —s=y. (1.8

We recall that polynomials are regarded as equivalent if they are equal on the hyperplane k1 ...t

We denote by :5(y): the eigenspace of the differential Dy, consisting of forms of the fype
:H,,.:_A“_,,=:j Bk, ... km) 8 (ki .. +km)ﬂ 6 (k) i —agimgys
FE
where h(k) € T(y). Clearly
CHE) =@ Z H(m,s) e,
m, s:d(l—m/4)—s=y
where :56(m,s): is the space of ‘Hamiltonians of the form
H gyt | Bk Kn) (K +km)H 0 (k:) dki - agimsyy
dm=f

in which h(ki, ...,k ) is a homogeneous polynomial of degree s.

m

Note that for a=3%,d+e, e>0 the degeneracy in the spectrum of the differential is partly lifted. The
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spaces of §4(m,s) are eigenspaces of the renormalization group differential for all a.

We shall seek eigenforms of the renormalization group differential at the non~Gaussian fixed
point H"’).—:A.R.:exp(u(s)(p“):fA(l_x; in the form
AR Hexpu(e)g*) :Zag—, am
where the coefficient function h(ki, ..., k) of the Hamiltonian H belongs to T(y).

A form of the type (1,7) bifurcates from the corresponding eigenforms at the Gaussian point,

2. Theorem on Analytic Renormalization

To determine how a Hamiltonian of the form (1.7) transforms under a renormalization transforma-
tion, we need to rewrite it in "counterterms." Let :Hi-su—y, ‘Haleag—y, -y Hui-ag—n be some basis in the
space H#(y), n(y)=dimdE(y). Without loss of generality, we can assume that the coefficient functions of

the Hamiltonians H; are chosen in the form of the monomials A;(ky, . .., k) =kiﬂi. X k= (R, . k),
my ¢

j=4,...,my, ai are multiple indices, iocil=2 lafl, d(1—mif4)—|ou|=1.
=1

THEOREM 2.1,

n{¥}
AR Hiexp(ug*) :Zag—y = 2 wy () :Hyexp(w (@) 9*) fagny» 2.1)

Juned
where w(u) and wij(u) are formal series in u:

w(u) =20‘") (e)ur,  wy(u) =5: & (e)u,

n=1 =0
C™ (e), C{ (e) are polynomials in ¢~ with vanishing free terms, and =0, i#j, € =1.

We note first that it is sufficient to prove this theorem for the case x = 0, since A.R.:H exp (ue*):
fA(H)=:A.B.:H exp (ug*):°, .. Let G be an arbitrary single-particle-irreducible graph and % be the corre-

sponding amplitude. It follows from the additivity property that A.R.&F;= Zsrm, where A(G)={{H,,..., H}|H,
ABA(G)

are pairwise different single-particle-irreducible subgraphs of G},

Foa=(2m) ™ jdﬂk,...dﬂkh H A,(q,)HO(H).

18L(G/A) HEA

Here, A ¢ A(G), G/A is the graph G contracted with respect to A, L(H) is the set of internal lines of
the graph H, h = h(G/A) is the Betti number of the graph G/A, {ki Ii =1, ...,h} is a certain choice of
cyclical variables, {q.,|I€L(G/A)} ({p.|e€E(G/A)}) are internal (respectively, external) momenta of the
graph G/A, and O(H) is the vertex part corresponding to the subgraph H (in our case, a polynomial in k
and p with coefficients that depend meromorphically on &),

We denote by A the operator of the "last subtraction": AF ¢=F ¢ As in [1] (see also [4]), we use
the counterterm formula: AR.:Hexp (ug'):*=:A(:H exp (up*):®) exp A(zexp (ng*):*~1): (in what follows, we shall
omit the propagator notation in the Wick operation),

Ford =1,2,3
Aiexp uo*—1) =w (u) ¢,
where w{u) is a formal series in u.
Thus, Theorem 1.1 follows from the proposition

LEMMA 2.1.

n(v)

Al (@)=Y Cy(e)H,.

Schematic Proof of Lemma 2.1. Consider the expansion
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E(@)] 1Z(G}]

:Hi(q>’*)":°=zlj ?G(p,,...,p,z(a,l)é( z‘pi) H o(p:) dp:.

T==i qe={
An arbitrary amplitude %, can be represented in the form

(E] wout O 5 0y
9—(‘1 (ph ey p|E|) = H pl 2.‘]'5) R S H l[d/zl+s dkl e dkh(G}:

i=1

where Kk, ...,k is some set of cyclical variables, Z, (ql) is a2 monomial of degree r,, and
Z T +Z foel=s;. ©.2)
16L(@)  eGE(G)

We consider the generalized Feynman amplitude

= [ ] 2@ tat=ero ... i,

16L(G)

and expand it with respect to distinguished s families: F¢’ =237'G’ (&). We fix a particular s family and
&
go over to scaling variables. We can show (see [5]) that F'(&) can be represented as a sum of terms of

the form
1E(G)}

JTI & e Lo ar ot mesn( = Y, 40, 0pm) - @2.3)

D Heg# 160(8) 1=t
We use here the o representation in the real form,

The integration is over the region D: 0 =ty = « if H is a maximal element in &; 0<tx<i, if He&
is not maximal, ¢(&) is the set of distinguished lines, 0<p, <1, F(B, ¢, p), 44(p, ) are continuous functions
in D,

1

V= (—;Z—-H-Jl) h(H)d Z (r—a) = Es,—kH, ©.4)

leL(H) leL(H) IEL(H)

0<a<r, a; is an integer. F(B,t, p) is a polynomial in p of degree Za,.
1eL(G)
The vertex part corresponding to the graph G can be calculated in accordance with

0= Y . @.5)

H<G

where the operator %’(H)=2 (—1)P@=2EY .V, is the operator of the "analytic value" {see [5]).
H cH

The summation in (2, 5) is over all single-particle-~irreducible subgraphs H such that E(H) = E(G).

We represent each factor 77~ ! in the form
— S (¢
tHH ='—1(L+7‘H(t}1),
el - Zez
lel(H)

where the regularization rg(t;) is analytic at 0 with respect to e;—e, I€L(G). Expanding the brackets in 2.3),
we obtain a sum of terms that depend meromorphically on &, I€L(G). We can show that if H # G, then
P(H)F ;=0. This follows from the fact that the operator #(H) carries the amplitude ¥  into the

amplitude (with different coefficient functions) of the contracted graph G/H. If H # G, then in the graph
G/H a loop is formed, and by virtue of the homogeneity of the propagator in our theory graphs with loops
have zero amplitudes, Following [5], we can also show that the only nontrivial contribution to the vertex part

n
is made by the term containing the product H sE (tmy), where H, ..., H, are the Z-connectedness
i=1
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components of the graph G. Using the fact that 4 ;(, ) limg =0, =4
term is a polynomial in p of degree

Fae B B4 (& vnma) 280 o N9 ) oy

=0, we find that the corresponding

.....

i=1 I6L(Hp) 16L{G)
From this we find that AF(py, ..., Pirey) 18 2 homogeneous polynomial in p of degree
IL(G)] 1L(G)!
deg AF o (P, - . ., Procey) = d( : —h(G)) + Z et Z; a,,:d( = —h(G)) +s:.
aL(G) eGE(G)

Now, using the relations k(G)=|L(G)|—n, 4nt+m=2|L(G)|+|E(G)|, we find that d(1—Y.|E(G)|)+deg AF o=
d(1--im)—si=y, i.e., AF:€T(y), which is what we had to prove,

The remaining propositions of Theorem 2.1 can be readily verified.

3. BSpectrum of the Renormalization

Group Differential

Suppose

He= bk, k)8 (k.. +n) [ ] o) dk, (3.1)
iept
where h € T(y). We can directly verify
LEMMA 3.1,
Dy H () msempTHime: { () e, (3.2)
Using this lemma, and also the relation
Do H=D,, (H exp H*) exp (—~H), (3.3)
we can calculate the action of the differential Df,, on the Hamiltonian A, R.: H exp(ug*) :*

Note that the differential Dy, is a multiplicative group of linear operators with respect to A, We
make the substitution A = exp(1/2). Then the operators Do epez form an additive semigroup with respect
to 7, and it is natural to calculate the spectrum of the generator of this group. We denote the generator of
this group by Da

LEMMA 3.2,

(Y

D AR H,exp (ug*) = E——w,, [(“{-Fm, 5 ) +ewe* ]H,-e)q)(w(p’*):c

This expression can be readily transformed to the form (3.4),

LEMMA 3.3,
n(y)
Do AR.:H;exp (ug'): °=p(u)—AR ‘Hiexp(ug*) i+ Za,, Hjexp (wo*) :, (3.4)
J==1

where oy="{wy(y+ ame) —pwy/, p(u)=sw(u)/w' (u).

Inverting the relation 2.1, we can write

a d W
Dy AR.:H;exp (ug*) :*=p (u)EE AR.:Hiexp(ug*):*+ Y By(u)A.R.:H exp(ug'):e, (3.5)
dout
where 8,.. is the element of the matrix B=AW-!, —(a,,){,,';(?, W—(w.,).'f,‘_”. Note that inversion of the matrix W

is possm{e since W =1 + W where all the elements of the matrix W are formal series in u with
vanishing free terms,

The matrix A can be represented in the form W(%H—eAa) —pW.'. where A0 is a diagonal matrix:

A=) PP, 5 Aa'="umy, M =0, i%4j, and all the elements of the matrix oW’ are formal series in u with
¥ U
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vanishing free terms, It follows that the matrix B can be represented in the form B='/,yI-+eA,+B..
THEOREM 3.1. All the elements of the matrix B, have the form
By’ (u)= 2 by u",
fami
where the coefficients b’l?]. are constants that do not depend on e,

The proof of this theorem follows from the linear independence of the Hamiltonians : H;:, i=1,...
r(y) and can be verified by induction on n, We immediately obtain

COROLLARY. The spaces AR.:3(y)exp(u(e)e’) : that bifurcate from the spaces :#(y): are
invariant subspaces of the renormalization group differential at a non-Gaussian fixed point.

Here, u(e) is the effective coupling constant, p(u(e)) = 0,
Thus, the spectral properties of the differential in the subspace A.R.:J(y)exp(u(e)g*) :° are

determined by the matrix B, Let us consider it in more detail:

B=W (% I+8Ag) Wi W W1,

1 ~
The expansion W=I+uA,*Tu*A;+ ... holds. Here, A, =?A,, where the matrix elements of A1 are constants.

Substituting this expansion in (3,6}, we obtain

B= ;—I+8Ao+eu[Ai, Aol—euA+uB+. .. . 3.7
It can be shown that [A,, AJ]J=0 in dimensions 1, 2, 3. Substituting the expansion u(e)=u,etu,e*+..., we
obtain
B= _g_ I+e(Ao—wAy) e Tote'Tot ... |
where T, , T, ... are matrices that do not depend on €. In accordance with the general theory of perturba-

tions of fmlte-dlmensmnal matrices, the eigenvalues of the matrix B can be expanded in powers of g? (p=2)
in Puiseux series (see [6]). But it is easy to see that if the spectrum of the matrix A1 is nondegenerate,

the eigenvalues can be expanded in powers of & and the eigenvectors will also have an expansion in powers

of £, Expressions exist for the matrix A but they are cumbersome and we omit them. We note that for
values of y and m that are not large the spectrum of the matrix A is nondegenerate, but in the general

case this question remains open.

T am very grateful to P. M. Blekher and Professor Ya. G. Sinai for helpful discussions.
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