ON THE COMPLETE INTEGRABILITY OF A NONLINEAR SYSTEM
OF PARTIAL DIFFERENTIAL EQUATIONS IN TWO-DIMENSIONAL SPACE

A.N. Leznov

Complete solutions that depend on 2r arbitrary functions are obtained for a system of
r

nonlinear partial differential equations of the form .p -=Y) kszexpp;, where k is the
f=1

Cartan matrix of a semisimple algebra of rank r.

1. In the last century, Liouville [1] found the complete solution to the partial differential equation
pr=e® (z=z+t, z=z—t OF z=x—it, T==x-+it), 1)
this depending on two arbitrary functions:
e =0.F;/(1—@F)?, 2)

where ¢ = ®(z) and F = F(z ) are arbitrary functions of their arguments provided no reality restrictions
are imposed on the solution of (1).

The present paper is devoted to the solution of the analogous problem for a nonlinear system of
differential equations of the form

r
Ouuz = Z kpexppe (1Sa<r), 3)

B=1

where k is the Cartan matrix of an arbitrary semisimple algebra. We shall find explicitly solutions to 3}
that depend on 2r arbitrary functions. Note that (1) is a special case of (3) for the algebra A, whose
Cartan matrix consists of the unique element k11 = 2,

The system of equations (3) with, in general, arbitrary matrix k is encountered in different fields
of physics — in the theory of electrolytes, plasma theory, aerodynamics, and elsewhere [2]. A system with
Cartan matrix was obtained in [3] in connection with solutions of the eylindrically symmetric Yang-Mills
duality equations in the framework of a minimal embedding of SU(2) in a gauge group. In [4], Savel’ev and
the author found complete centrally symmetric solutions p, = p_(zz) to (3) which depend on 2r arbitrary
constants and identified solutions that lead to finite values of the topological charge. Ii follows from the
results of the present paper that the system of duality equations is completely integrable under the assumption
of eylindrical symmetry.

2. Making the change of variables x = k"ip, we rewrite 3) in the form

(%o) =exp (kx)o. “)

We begin our solution of the system (4) with the case of the series A ; substituting in (4) the explicit form
of the Cartan matrix (see, for example, [5]), we obtain

(%1) z=exp (2z,—2,),

(22) z=exp (—z,+22,—x5).

(5)

(xu) F5CXD ("’xa—i'f_zza—xai—i) s

(I,,) 2z2=eXp (“1'"_1'{"2,1‘") .
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We introduce the notation exp(—x ;) = X. The first equation of the system {5) enables us to find
exp (—z,) =X, X;:—XX.;; from the second equation of (5) we find

X X, X.
exp(—$a)=—Det( X: Xz Xox )=~Det,(X).
Xi: Xz Xonse
Continuing the reduction process, we obtain

exp (—Zp) =(—1)*"2 Det, (X) (1<a<n), (6a)
exp (—ass) =(—1)"®+972 Dt ., (X) =1. 6b)

Equation (6b) is a direct consequence of the last equation of the system (5) — it is a nonlinear equation of
order 2n for one unknown function X and is equivalent to the system (5). Any solution of (6b), when substi-
tuted in (6a) gives a solution of the system (5). We shall seek X in the form
ngd
x=Y o) F(a). )

a=1

The proposed form for X (7) is suggested on the one hand by the known complete cylindrically symmetric
solutions of (5) (see [4]) and on the other by the known complete solution of the single-component Liouville
equation (2),

Substitution of (7) in (6b) leads to a product of two determinants of order n + 1 of the matrices
Q= @F; ., F*=F5 -
; 2
Det @,*XDet Fg*=(—1)n+1/2, (8)

Thus, the system of partial differential equations (3) can be replaced by two ordinary differential equations of
order n for the determination of ®"", F*** from known @¢, F°, 1<a<nr.

Forn =1,
O'0, 0, 0'=—1, F'F*—F'F/=1. (8)

A particular solution of (9) is ®'=z, ®*=1; F'=—2z, F’=1. It follows from the conformal invariance of the
system (3) that the functions

0'=0 (D), O=(0) F=—F(F)™, F=(F)" (10)

satisfy (9) (where &(z) and F(z) are arbitrary functions of their arguments), which can be readily seen by
direct substitution of (10) in (9). Thus, the general solution of the Liouville equation has the form exp (~z)=
(DF—1)/(®.F;)", which agrees with @),

We assume induectively that the functions 05, and F., (I<a<n—1) satisfy (8) in the case of the
algebra A,-,. Then there is one obvious particular solution of (8) for the algebra A :

13 ?
0. 5= [0, (), Fuo=[duFi (), 0s=—Fr=1 (1<a<n—1).
The functions ®%, depend functionally {through quadrature) on n — 1 arbitrary functions (the same
is true of F%,), Using the conformal invariance of (5), we find that the functions

®(z) F(z)

0,%=(@) | a0, ©n=(0)", Fo=(F)= [ doFi.,  Fr=(F)™", 1)

satisfy (8) and depend on n arbitrary functions, leading, thus, to the complete solution of the system 4) in
the case of the algebra A . It is easily shown by induction that the explicit expressions for ¢ and T¢ have
the form

(D,.“=(poj. (o3} dz, j @2 dz, .. J Qo 0Zayy; (CPO) ‘!=II (%) a/tntn,
' (12)

z 2, n

Z
P = (= 1750 G142 Tz, . Qudiaey @07 =[] @)oo,

1
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E3

In (12) (0<<a<n) jcpi...j(poai; (=1)* in the expression for FY is needed to satisfy (8). Thus, (6a) and (12)
solve the problem of complete integration of the system (4} in the case of the series A .

Note that any permutation of the function &g with any simultaneous permutation of the function F¢
such that the sign of the product of the determinants does not change also leads to a complete solution of (5)
and reflects the invariance of the algebra A, under transformations of the Weyl group {or rather, the Weyl
group of the algebra GL(n, C) if we drop the requirement that the solutions of the system (5) be real).

To obtain complete solutions in the case of the series B, and C,, we can use a recursive procedure
analogous to (6), the last equation for %, being the equation for determining X:

(—1)" Det,+s {X) =2 Det, (X} in the case of B,, Det,,,(X)=—Det,-,(X) in the case of (,,

It is however simpler to use the symmetry of the system (5) under the substitution Z.=z..;.. and find condi-
tions on the functions ¢, and g_o'a that lead to solutions with z,=1,.,,—,; in the case of even n = 2k, the
system (5) (after the substitution x, — 2x,) goes over into the system of equations (2) with Cartan matrix of
the series B,, while in the case of odd n = 2k + 1 we obtain the system of equations 2) with Cartan matrix
of the series C,. '

It follows from (6) and (7) that (—1)%exp(-x ) is equal to the sum of the mutual products of the

minors of order « constructed from the first @ rows of the matrices @7, ., = .. For the minors of n-th

B B

order ®,% F,* we find by induction

z z Za n
8.5~ [uds [ Qoo [gediar, @)= [ (ga) e 13)
1

For F,*, we obtain similar expressions with the obvious substitution ¢, — '(p'a , ete,

Comparing (12) and (13}, we find the condition (®,*=®.*), which leads to solutions of the system (5)
for which z,=z,,,a,
Pe=QPrt1—a; DPa=Prit-a- (14)

In the case of even n = 2k, (14) imposes precisely k additional conditions on ¢, and Ea; in this
case, (12) and (14) determine the solution of the system (4) for the case of the series B, (O(2k +1)). In
the case of odd n = 2k + 1, the number of additional conditions (14) is again equal to k ffor o = k, (14) in
this case is satisfied identically), and (12)-(14) lead to the solution of the system (4) for the series C,.

The obtained solutions can be expressed in a unified manner in terms of the root spaces of the
corresponding series A, B,, C,. We call the functions ¢, and Ea introduced in (14) simple roots of the
corresponding series. In the case of the series A .+ O ranges over all values from 1 to n; for even n = 2k,
we have by virtue of (14} 1 = o = k (O(2k +1)) andforodd 1 = @ = k + 1 we have Sp2(k + 1);

Then (12) determines ¢,~'®,* as a multiple integral of the product of simple roots taken in an
appropriate order and corresponding to all multiple roots in which the given simple root = occurs, it being
necessary in all multiple roots to add a zeroth root corresponding to o = 0, for which ¢, '®, =1.

Thus, to construct the functions &% and F2 it is necessary to find all the multiple roots of the
algebra containing a simple root encountered a minimal number of times in them. The index « of the
functions ®* and F@ in (12) must be associated with one of these roots, after which ¢ is determined as a
multiple integral of the product of the simple roots from which the given multiple root is composed.

We consider as an example the algebra C3. The system of multiple roots containing m is oy, 7,41,
sttty w245, 2m,H 20+, For brevity, we omit the sign of the multiple integral, but we retain the
order in which the factors in the integrand are arranged:

0.~ (9.), D™ (P, P2):  Owpmppn,™> (91, @2, 0:)y Owpionprns= (P, P2 03, P2),  DPovirzmsrn™ (@1, Pz, P3, Pz, P1),
where we denote by ¢ the functions of a simple root introduced above in (14).

In the case of the series D, (orthogonal group of even order O(2n)) the roots of the algebra deter-
mining X are*

* The last expression 2wi+... +2n, ,+n,_+n, is not a root of the algebra D,; however, the corresponding
function &% must be added to obtain the correct expressions for x.
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bt A2 b, M2t 2R b s, 272t . L 200 gt Tt T
The associating of the functions &* and F® in accordance with (15) undergoes some changes as compared

with the series A,, B,, and C, considered above. Up to the root m,+m.+...+n. o+n, +n, the construction
law is the same as in the preceding cases:

Quis 450 (D1, P21 e ooy Prmts ) T (i Pry o« oy Py Pra) -
For the following functions &¢, there is a symmetrization of the multiple integrals with respect to the roots
7, and fa-y, i.e.,
DQuis . s2mnstmnstmn™ (P G2y - -+ 1 Przy Pucsty Py Prz) F(Ps, v oo, Przy Py Pty Pama)
where the multiple integrals are taken in the order indicated in the brackets.
For the series D,, we find
exp (—7,)'=(—1)*@"2Det, (X) (ISa<n~—2), exp (—Tn,—,)=(—1)C-1'C-22Det, ,(X);
exp (—2z,_,) texp (—2z,) =(—1)""=" Det, (X).

The two last relations determine exp {(—z._,}, exp (—%»), for which one can write down independent
expressions analogous to the expression for X in terms of a chain of multiple roots containing .., and .,
respectively,

In the case of the algebra E . the augmented system corresponding to the first simple root has the
form s, s+, wytnsta,, mt st Tttt Retmst ottt mtme st aotns, bRttt
ftmet st 2t s, ottt 2 st wt st 20t 2t s, b e 20 20 W, TUaF ot 20052004 s,

290, + 2705+ 2515+ 20 s e, 200, 5o 2+ 200 20t ate, 20yt 2530+ 2 ave, 200, 30yt 3t 2005 ot

20+ 20t 2053, 2t ts, 2005+ 270 3t 3t 2t ms, 2025, 3msH A 20 T s, 201, 25,4 3 H At S T,
25, +2m,+3n,+H4n,+3ns+2n.. Then the expression for X is constructed in accordance with the standard
rules:

Det, (X) _ Det(Y)

TP U oam

exp (~z.) =—Det,(X) =—Det;(Y), exp (—z;)=—Dets(¥), Y=exp (—2s).

exp(—z,) = - Det, (V) =—Det,(X),

To find exp(—x,) and exp(—x o), it is convenient to use the symmetry of the system (4) (for E) under the
transformations z.=z,, s==2;. The solutions for the algebra F4 are obtained from the case E 6 by setting

X, =X,, = x_, which follows from comparison of the Cartan matrices for these algebras. The functions
exp( "'X1) and exp(—x, ) for the algebra G2 can be constructed by equating the functions x, and x, for the
case of the algebra B,(0(7)) (explicit expressions for the solutions in the algebra G, are given in [4n.

We shall not write out the cumbersome systems of roots of the algebras E7 and E 5" To solve the systems (4)
in these cases, the results above are sufficient.

3. The complete integrability of the system (3) poses numerous interesting questions of both mathe-
matical nature and relating to the physical applications of the obtained results; these call for further investi-
gation. In the first place, we must consider to what extent the connection between complete integrability of
the system (3) and the properties of semisimple algebras is or is not fortuitous; do there exist other
nontrivial matrices k (which are not Cartan matrices) leading to complete integrability of @). The method
of integrating the system (3) developed in the present paper has a semi-invariant nature, since we succeeded
in finding a solution in the case of the algebra A, and the results for the other algebras (B, C,D, E, F, G)
were actually obtained by the simple restriction of A tothem. It would be interesting to rewrite the
solutions of {3) (or rederive them) using only the invariant root technique, which would clarify the situation
considerably.

The system (3) evidently possesses a Bicklund transformation [6] relating the solutions of @) to r
free Laplace equations (z,;=0) by analogy with the case of the algebra A [7]. It would be interesting to
relate the integration of (3) to the inverse scattering problem [8]; it is well known that this can be done in
the case of the Liouville equation (1). We note finally that the Liouville equation is intimately related to the
sine—Gordon equation; they both describe two~dimensional spaces of constant curvature in different coordinate
systems. Does there exist a connection between the system (3) and the many-component sine—Gordon
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equation ? If this question has an answer in the affirmative, one could use the many-component sine~Gordon
equations to construct exactly solvable two-dimensional models of quantum field theory with an exact S
matrix [9]. The quantum numbers of the soliton states of such models would form multidimensional manifolds.

I should like to thank B. A. Arbuzov, A. A. Kirillov, V. I. Man’ko, M. A. Mestvirishvili,
M. V. Savel’ev, and O. A, Khrustalev for discussing the results.
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VACUUM EXPECTATION VALUES OF THE ENERGY-MOMENTUM
TENSOR OF QUANTIZED FIELDS IN A HOMOGENEOUS
ISOTROPIC SPACE-TIME

S.G. Mamaev

A unified method is used to calculate regularized vacuum expectation values of the energy—
momentum tensors for scalar and spinor fields in a homogeneous isotropic metric with
hyperbolic, spherical, and flat three-space. Allowance is made for the contribution of
produced particles and also vacuum polarization by the gravitational field. For massless
fields, the obtained expectation values have a nonvanishing trace {conformal anomalies).

1. Introduction

In recent years, much interest has been shown in effects that arise from the interaction of quantized
fields with an external gravitational field. These effects include the production of particle—antiparticle pairs,
vacuum polarization, and also spontaneous symmetry breaking,

The most important quantities for describing these effects are the expectation values of the operator
of the energy—momentum tensor T;, of the quantized field. In order to give expressions of the type
(¥|Ty|¥> a meaning, it is necessary to solve two related problems.

First, it is necessary to construct the Fock space of the states |¥) of the field and define
particle creation and annihilation operators. In curved space-time, there is no Poincaré invariance, which
provides the basis of the standard construction for a free field in Minkowski space [1], and the corpuscular
interpretation of a field becomes ambiguous,

Second, for any choice of the Fock space the expectation values (¥ |T.|¥> diverge. Such diver-
gences also arise in Minkowski space, where they are eliminated by normal ordering of the energy—
momentum tensor operator. In curved space-time, normal ordering requires definition of the creation and
annihilation operators and the vacuum, which brings us back to the first problem.
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