
e x p r e s s i o n s .  For  concre te  calcula t ions ,  this r eno rma l i za t ion  must  be ~'estored. 
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K U B O - M A R T I N - S C H W I N G E R  S T A T E S  O F  C L A S S I C A L  

D Y N A M I C A L  S Y S T E M S  W I T H  I N F I N I T E  P H A S E  S P A C E  

A . A .  A r s e n ' e v  

An example  of  a c l a s s i ca l  dynamica l  s y s t e m  with infinite phase space that sa t i s f i es  the 
analog of the K u b o - M a r t i n - S c h w i n g e r  conditions for c lass ica l  dynamics  is const ructed 
expl ic i t ly .  Attention is drawn to the connection between the const ructed s y s t e m  and the 
r ep re sen t a t i on  of dynamics  in a Fock space .  

1. The d i s c o v e r y  of the ro le  of K u b o - M a r t i n - S c h w i n g e r  (KMS) conditions as a s tabi l i ty  c r i t e r ion  
for  dynamica l  s y s t e m s  [1-2] prompted  the study of c l a s s i ca l  dynamical  s y s t e m s  that sa t i s fy  these conditions 
[3-4]. In pa r t i cu l a r ,  in [5] an example  was given (gas of noninteract ing par t ic les )  of a c l a s s i ca l  dynamical  
s y s t e m  whose phase  space is  R ~r and which sa t i s f i e s  the c l a s s i ca l  analog of the KMS condit ions.  The p re sen t  
pape r  is devoted to the cons t ruc t ion  of a somewhat  different  example  of  a dynamical  s y s t e m  with infinite 
phase  space that sa t i s f i e s  the c l a s s i ca l  analog of the KMS condit ions.  

2. We give the main defini t ions.  Let  ~ be an a lgebra  of complex-va lued  functions and { �9 �9 } be 
the b i l inear  opera t ion  (Poisson b racke t s )  that defines the s t ruc tu re  of a Lie a lgebra  on ~, with 

{AB, C} =A {B, C} +B{A, C}. (1) 

Let  a t be the group of a u t o m o r p h i s m s  of the a lgebra  ~, i . e . ,  the action of an additive group R t on ~ such 
that  

r ~'(AB)=(z'(A).(W(B), r247 a'({A, B})={~'(A.), cd(B)}. (2) 

Let  ca: ~-*C l be a s ta te  on ~, i . e . ,  a l inea r  non-negat ive  normal i zed  functional on ~. We shall  not a s s u m e  
that  the a lgeb ra  ~ is  equipped with any topology, and accord ing ly  we shall  not a s s u m e  that the s tate  ~c is  
continuous.  

DEFINITION. The s ta te  ~' sa t i s f i e s  the KMS conditions with r e spec t  to the group of au tomor p h i sms  
a t if  

VA, B~.~: co (a'(A)) =a)(A), (0({~'(A),B})=~ ~ t  ~)(~'(A).B); ~ER t. (3) 

The a i m  of the p re sen t  p a p e r  is  to cons t ruc t  an example  of  an a lgebra  ~, a u t o m o r p h i s m  a t , and s tate  w for  
which the conditions (3) a r e  sa t i s f ied  (of cour se ,  only the case  when o~'(A)~A, {A,B}~0 is of  in te res t ) .  

3. Let  H be a r e a l  Hi lber t  space ,  ( - ,  �9 ) be the s c a l a r  product  in H, H(~)=IIeIt, and 0 be a b i t inear  
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((;) (a')) skew-symmet r i c  fo rm on H (~ : 0 ' b' = (a, b ' ) - (b ,  a'). Let  B be a self-adjoint  opera to r  in H; we 

shall a ssume that the set  
Do= 0 ~(B~) 

7 ~ 2 , t  ) - - t /~ , - -  t 

is dense in H (D(B)  is the domain of definition of B).  Let  L be an ope ra to r  in H(~): L = (  0 ,  E) _ - B , o  ' [ ' '  " } b e  

a bi l inear  f o r m  on H(~): 

[(;), (;;11 (;i)) 
and let H B be the Hilber t  space that is the complet ion of the domain of definition of the fo rm [ . ,  �9 ] with 
r e spec t  to the metr ic  induced by it. We assume that, as a set,  H.~H (~). In H~, we consider  the opera to r  

U(0 : ( : )  _~ ( x' ) x'=(e~ 
y' ' y '= -B(s in tB)x+(cos  tB)y. 

By di rec t  calculat ion we ver i fy  

LEMMA 1. The ope ra to r  U ~ 
topological vec tor  space of functions R 1is uni tary  in H,: [U~~ U~~ z'], z, z~HB. Let CT(H B) be the -~ H B that a re  continuous in the weak topology of HB; by definition, 
the base of neighborhoods of the origin in Ca, (H B ) consis ts  of sets  of the fo rm N(e, {L}, T)={a; sup l <]~, u>t <e}, 

t~T 

where  {/,} is a finite subset in H B and T is a compac tum in R 1. In C~.(HB) , "we cons ider  a subset  of  the 
fo rm 

n(f) 

where a i (~) a re  a r b i t r a r y  continuous functions with compact  support  and q~,~D(L)~H.. Let D be the c losure  
of the set  D in the met r i c  

_ o o  

We set 

Let  ~/ 

We set 

oo 

be the a lgebra  of functions on Cr(H B) of the fo rm 

A (Iz) = Z  a~A,~ (u) (z,fifiL 

{A,, As} ( a ) = - 0  ( L 5U_,~ L S U_,"g(t)dt) A,+g(u)-----[ S U_,~ L i U-'~ A,+g(a) 

and extend the definite of the brackets {. ,  �9 } to all elements of the algebra ~ by linearity. 

LEMIVL4 2. The algebra ~ with bilinear operation {.,  �9 } is a Lie algebra. 

Proof. It is sufficient to verify the Jacobi identity on the generators. We set 

c(I, g)=-e v-,v(0 L i v_,'g(0 

We note that c(f, g) =-c(g, l). F r o m  the definition (4), we obtain 

{{AI, As}, A~} + { {A~,A,}, At} + { {A~, A~}, A~}= (c(], g)e(l, h) +c(], g)c(g, h) +c(g, h)c(g, h)+c(g, h)c(h, 1)+ 

c (h, ]) c (h, g) +c (h, 1) c (1, g) ) Ai+,+h=0. 

LEMMA 3. The e lements  of the a lgebra  2 sa t is fy  

{AB, C} =A {B, C} +B {A, C}. 

(4) 

(5) 
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Proof .  It is sufficient to prove Eq. (5) on the genera to r s :  

{A~.Ag, Ah} = {A~+~, Ah} = (c ([, h) +c (g, h)) A~+g+h=Ag{A~, Ah} +.4: {Az, A~}. 

On the genera to r s  A/,  we define the au tomorphism 

and extend this definition to all e lements  of 2 by l inear i ty .  

LEMMA 4. For  the au tomorphism s t Eqs.  (2) a re  sat isf ied.  

Proof .  It follows f rom the definitions that 

{a~(A,), r162 A,(,_,,}=-O ( L ~ U_~~ L U_~~ A tc,-,)§ 

-O (LU-? ?U-,~ LU-t~ i U-~~ = 
- - ~  - - a o  

We have used the uni tar i ty  of the ope ra to r  U~ The ver i f ica t ion of the remaining conditions is t r iv ia l .  

We define the state ~c on the gene ra to r s  by 

o)(A,)=exp ( - ~ [  S U-~~ S U-,~ 
~ o o  - - c o  

and extend this definition to all e lements  of the a lgebra  ~ by l inear i ty .  Equation (7) r ea l l y  does define a 
state,  since the function I-->(~(A~) is posit ive definite:  

Z ~cCco (Ate-q) >10. 

LEMMA 5. The state r sa t i s f ies  the KMS condit ions.  

Proof .  The invariance of the state is a consequence of the uni tar i ty  of the opera to r  U~ We check 
the fulfi l lment of the second condition. We have 

a o  

- - ~  - - a o  

F r o m  this our  asse r t ion  follows. Thus,  we have proved 

THEOREM. The a lgebra  2, au tomorphism s t and state w constructed above sat isfy the KMS 
conditions. 

4. Let  us elucidate the origin of our  sys tem.  Let  ~ be an a lgebra  of functions of the fo rm 

I k I ~ m ~ J  

Clear ly  ~ -2 .  We extend the definition of the Poisson bracke ts  { - ,  �9 }, the au tomorphism s t , and the state w 
to the a lgebra  ~ 'by l inear i ty .  It is eas i ly  seen that 

'/,r Af~' ({ A,, ( 5 [(p(~),t~]d~)'})) =:~--[  5 U-~~ L S U-r lx  

(6) 

(7) 
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i S  U_,~ )d-c, S U_,~ o(A~(,)+j(,_,,). (8) 

Let  {r be a comple te  o r thonormal i zed  s y s t e m  in H a .  Setting q~(~)=~p~6(z) in (8) and summing  ove r  j, we 
obtain fo rma l ly  

-~--o(Ag.a ({A,, [gj, ulZ})) = 21--- e(Ag-cd({A,, in, al}))---- 
j = t  

L L j' v_:g( )eq 
(only the f i r s t  of these equations has not been proved) .  Thus,  for  all  e l ements  AI, AgUE 

(d/dt)(o(Ag.a~(A:))=eo(Ag.a*({A!, V~[u, u]})), 

i . e . ,  the s tate  cc is concentra ted  on o rb i t s  of the group of au tomorph i sms  a t that sa t i s f i es  the equation 

(d/dt) a t (AI) =o~t( {A~,/Td (u) }), ~ (u) =V,_[u, u]. (9) 

This  equation d e s c r i b e s  a Hamiltonian s y s t e m  [6] with Hamil tonian /Tg(u) and is equivalent  to the wave 
equation O,~p=~, O,n=-B~. 

5. We note an in teres t ing  connection between our  p r o b l e m  and quantum field theory .  F i r s t ,  we 
r eca l l  some well-known facts  [7, 8]. 

We t r a n s f o r m  the set  Do| ~-~ into a l inear  space ove r  C i, sett ing by definition i(xe.q)=(-B-'y)eo 
(Bx) and on D,,eDo we define a fo rm that is c o m p l e x - l i n e a r  with r e s p e c t  to the second argument :  <Z, z')=( B'~`x, 
B'~x')+(B-'/'y, B-'~y')+iO(z, z'), z~xeg. Let I~ be the Hi lber t  space obtained by complet ing the set  D~$Do with 

0 
r e spec t  to the s c a l a r  product  ( �9 . ) .  It is r ead i ly  ver i f ied  that the ope ra to r  U t is unit_ary with r e s p e c t  to 
the f o r m  ( - ,  ") .  Let  Y- be a Hi lber t  space ove r  C 1 with s c a l a r  product  <., .)~-, z~W(z) be a mapping of 
the space H into the group of uni ta ry  o p e r a t o r s  on B- that is continuous in the weak topology of H and the 
weak o p e r a t o r  topology of Y-, and 

W(z)W(z')~exp(-~-Im <z,z'> ) W(z+z'). (10) 

It follows f r o m  the re la t ion  (10) that the mapping t --> W(tz ) for  any z E I~ is a group of un i ta ry  o p e r a t o r s  
in ,~r. Let  r  be an inf ini tes imal  ope ra t o r  of  this group.  For  x, y E I~, we set  

1 1 
O(x)-~tp(xeO), P(y)=~(O@y), a ' (x)=-~ (Q(z)+iP(x) ), a(y)=~-~ (Q(y)-ip(y) ), 

Then 
Q(x)P(y)-P(y)Q(x)=i(x, y), a*(x)a(y)-a(y)a*(x)=(x, y). 

Let ~2 0 be a vec to r  in Y- such that ~2 0 is cycl ic  for  W(z), t1~01[=1, a(x)~o=0. Then 

(Q0, W(z) ~0>oy=exp (-i/4<z, z>). 

Let  d F ( L )  be an ope ra t o r  which is se l f -adjoint  in 9- and sa t i s f i es  

exp (itdF (L) ) W (z) exp (--itdF (L) ) = W (Ut~ 

( d F ( L )  is the "second-quant ized Hami l ton ian ' ;  if the ope ra to r  ]3 is the ope ra to r  of mult ipl icat ion by the 

function v (k) ,  then d F ( L )  has the s tandard f o r m  dF(L)=~  v(k)a*(k)a(k)dk). 

We cons ider  the a lgebra  ~0 of functions on I~ r/ H B whose g e n e r a t o r s  a re  functions of  the f o r m  
Al~ z]), ], z~flNH,. We t r a n s f o r m  the a lgebra  % into a p r e - H i l b e r t  space,  set t ing by definition 
((A~~ A,~ .A,6(,)). L e t  ~ be the Hi lber t  space  obtained by  complet ing ~0 with r e s p e c t  to the 
s c a l a r  product  (( . ,  .)) ; we do not know if the s tate  ~' is faithful, and the re fo re  the e l emen t s  of ~ a r e  in 
genera l  equivalence c l a s s e s  with r e s p e c t  to the relaLion A~B: o~ (]A--B 12) =0). We define the ope ra to r  

0,: (<AI ~ 8,A~~ (A;,(,)'A~,(,-,)). 

(11) 
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F r o m  the definition of the s tate  ~' we read i ly  ve r i fy  d i rec t ly  the equation ((Aj, UtA~))=((A~, A(u'_tg))). Let ~ be 
the o p e r a t o r  of mult ipl icat ion by the function A~ acting on ~ .  Compar ing  (7) and (11), we obtain 

) (12) 
~, O, B '~' . "  

On the lef t -hand side of (12) we have es sen t i a l ly  the c h a r a c t e r i s t i c  functional of the measu re  that is 
the projec t ion  onto the set  of  functions which depend only on the values  of these functions at the point T = 0 
of  the m e a s u r e  concent ra ted  on the t r a j e c t o r i e s  of the s y s t e m  (9). On the r ight  we have the cha r ac t e r i s t i c  
functional of the Fock r ep re sen t a t i on  of commuta t ion  re la t ions .  
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U N I F I E D  F O R M A L I S M  F O R  Q U A N T U M  A N D  

C L A S S I C A L  S C A T T E R I N G  T H E O R I E S  

Y u .  M. S h i r o k o v  

Nonre la t iv is t ic  sca t t e r ing  theory  is formula ted  sole ly  in t e r m s  of physical  and mathemat ica l  
concepts  which have meaning in both c l a s s i ca l  and quantum mechanics .  An in tegra l  equation 
is obtained whose i t e ra t ions  give the quantum c o r r e c t i o n s  to c l a s s i ca l  sca t te r ing .  

1. In the s tandard  formula t ions  of c l a s s i ca l  and quantum sca t t e r ing  theory,  one uses  comple te ly  
di f ferent  concepts ,  which do not " su rv ive"  the t rans i t ion  f r o m  one theory  to the o ther .  In c l a s s i ca l  theory,  
there  is  no analog of the S ma t r ix  o r  the sca t t e r ing  ampli tude,  whereas  in the quantum theory  there  is no 
impac t  p a r a m e t e r .  This  h inders  the development  of  sys t ema t i c  s e m i c l a s s i c a l  methods.  In [1-4], I developed 
a unified f o r m a l i s m  for  quantum and c l a s s i ca l  theor ies ,  cal led the combined q u a n t u m - c l a s s i c a l  a lgeb ra .  In 
this f o r m a l i s m ,  one u se s  only physica l  and ma themat i ca l  concepts  which have meaning in both f o r m s  of 
mechan ics .  I show here  that in this manner  one can formula te  na tura l ly  a theory  that may be called 
Hamil tonian sca t t e r ing  theory .  It too u se s  only concepts  that have meaning in both c l a s s i ca l  and quantum 
mechan ics .  The theory  is t he re fo re  sui table for  both f o r m s  of mechan ics .  

For  s impl ic i ty ,  we r e s t r i c t  o u r s e l v e s  to e las t ic  potential  sca t t e r ing  of nonre la t iv is t ic  sp in less  
p a r t i c l e s .  We cons ide r  Weyl quantization,  which is  dist inguished by the fact  that in it f ree  (nonrelativistic) 
motion o c c u r s  in the same  way in both the quantum and the c l a s s i ca l  c a s e s .  

Notation introduced without explanation is the same  as  in [2]. 

2. Following [2], we shall  desc r ibe  o b s e r v a b l e s  by  c - n u m b e r  functions A(p,  q) of the coordinates  
and the momenta  and s ta tes  by l inea r  functionals  p (p, q) .  The cor responding  topological  vec to r  spaces  and 
the i r  topologies  a r e  desc r ibed  in [2, 3]. Specific ma themat ica l  objec ts  of the combined a lgebra  a re  the quantum 
and c l a s s i ca l  opera t ions  of  mult ipl icat ion of o b s e r v a b l e s .  In the combined a lgebra ,  there  a re  four  opera t ions  
of  mult ipl icat ion of obse rvab l e s :  the o rd i na ry  c l a s s i ca l  mult ipl icat ion v0' the c l a s s i ca l  Poisson  mul t ip l i ca -  
tion G0, and, r e spec t ive ly ,  the o r d i n a r y  quantum mult ipl icat ion ~ and quantum l:~isson mult ipl icat ion (r~. 
These  opera t ions  a r e  defined in [2], in which it is  shown that the opera t ions  of  mult ipl icat ion a r e  the only 
ob jec t s  that change on t rans i t ions  f r o m  the one theory  to the o the r .  The Hamil tonian of sca t t e r ing  theory  will 
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