expressions. For concrete calculations, this renormalization must be restored.
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KUBO-MARTIN~-SCHWINGER STATES OF CLASSICAL
DYNAMICAL SYSTEMS WITH INFINITE PHASE SPACE

A.A. Arsen’ev

An example of a clagsical dynamical system with infinite phase space that satisfies the
analog of the Kubo—~Martin—Schwinger conditions for classical dynamics is constructed
explicitly. Attention is drawn to the connection between the constructed system and the
representation of dynamics in a Fock space.

1. The discovery of the role of Kubo—-Martin—Schwinger (KMS) conditions as a stability criterion
for dynamical systems [1-2] prompted the study of classical dynamical systems that satisfy these conditions
[3-4]. In particular, in [5] an example was given (gas of noninteracting particles) of a classical dynamical
system whose phase space is R and which satisfies the classical analog of the KMS conditions. The present
paper is devoted to the construction of a somewhat different example of a dynamical system with infinite
phase space that satisfies the classical analog of the KMS conditions.

2. We give the main definitions. Let ¥ be an algebra of complex-valued functions and {-, -} be
the bilinear operation (Poisson brackets) that defines the structure of a Lie algebra on % with

{4B, C}=A4{B, C}-+B{A4, C}. 1)
Let af be the group of automorphisms of the algebra %, i.e., the action of an additive group R! on % such
that
o't (4) =t (a"(4)), o' (AB) =a' (4) -a* (B), o' (ad+bB)=aa! (4)+bo' (B), o' ({4, BY) ={x'(4), «*(B)}. @

Let w: ¥—~C! be a state on %, i.e., a linear non-negative normalized functional on ¥. We shall not assume
that the algebra ¥ is equipped with any topology, and accordingly we shall not assume that the state « is
continuous.

DEFINITION. The state « satisfies the KMS conditions with respect to the group of automorphisms
at if
d
VA, BEY: o(a'(4))=0(4), o({a'(4),B})=p Ez—m(a’(A) -B); PER.L 3)

The aim of the present paper is to construct an example of an algebra %, automorphism of, and state w for
which the conditions (3) are satisfied (of course, only the case when a‘(4)#4, {4, B}#0 is of interest).

3. . Let H be a real Hilbert space, (-, ) be the scalar product in #, H®=H®H, and 6 be a bilinear
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skew-symmetric formon H®:0 ((Z) , (:,)) =(a,b')—(b,a’). Let B be a self-adjoint operator in H: we

shall assume that the set .
D= [} D(BY)

T=2.4,~"%—1

0.,%
is dense in H (D{B) is the domain of definition of B}. Let L be an operator in #%: L= <——Bz’ o ) [, -1be

g bilinear form on H®;
’

() (] =) (7)) s

and let Hy be the Hilbert space that is the completion of the domain of definition of the form [-, | with
respect to the metric induced by it. We assume that, as a set, £/:=H®. In H,, we consider the operator

ey (a:) N (;c ) z'=(cos tB)z-+B~'(sin tB) y,
! ¥ y ¥’ =—B(sin tB)z+ (cos tB)y.
By direct calculation we verify
LEMMA 1. The operator Ug is unitary in Ha: [z, U2’} =[z, 7'}, 3, 2/€H,. Let C,(Hp) be the

topological vector space of functions R' - Hy that are continuous in the weak topology of H,; by definition,
the base of neighborhoods of the origin in C,(Hy) consists of sets of the form N(e, {/.}, T)={u; sup| <, w | <e},
16T

where {f} is a finite subset in Hy and T is a compactum in R'. In C%{Hp), we consider a subset of the

form
n(f)

1‘);= {f; f=2 a (T)‘Pf} ;

where «;(7) are arbitrary continuous functions with compact support and 9€D(LycH, Let D be the closure
of the set D in the metric

o.e)=[| fori-pa|| +| L_f V-0l + [ l-gludt.

We set

D=DNC" (H,), A,(u)zexp(i { [f,u]dt), {6D, u€Cx (Hs).

Let % be the algebra of functions on C,(Hg) of the form
n{d)

A (a) =Z aid, (u) o€C

We set

{4, A () =—6 (L f U_of(t)de, L f U_g(t) dt) Ao (u)=— [ j:Uﬂ,”f(t) at, Lf U_0g(®) dt] Ape(n) @)

and extend the definite of the brackets { -, -} to all elements of the algebra % by linearity.
LEMMA 2. The algebra % with bilinear operation {+, -} is a Lie algebra.

Proof. It is sufficient to verify the Jacobi identity on the generators. We set

c(f, g)=—8 ILj: U_2f(t)dt, L?U.,“g(t)dt).

We note that ¢{f, g} =—c{g, f}. From the deﬁnitioﬁ (4}, we obtain
{4, A}, A} +{{Ae A}, A} +{{An 45}, A} = (c(f, @) e, ) +e(f, g)e(g, h)te(g, h)elg, h)+elg, h)e(h, )+

c(h, Pe(h, g)teh, fe(f, 8)) Ariaen=0.
LEMMA 3. The elements of the algebra % satisfy
{4B, C}=A{B, C}+B{A, C}. {5)
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Proof. It is sufficient to prove Eq. (5) on the generators:
{4 Ag A} ={As1s, Ay = (c(f, ) Fc(g, 1) Apsn=Ae{Ar, A} 4, {4;, A},
On the generators A £ We define the automorphism
o't Ay Age-n
and extend this definition to all elements of % by linearity.
LEMMA 4. For the automorphism «af Egs. (2) are satisfied.

Proof. It follows from the definitions that

(@(4)), (49} ={Asmy Aucmo}=—0 (L [ U-2f(e—t)d, L[ U_0g(c—t)dt) Asemprsomn=

-8 (LU_," fv_st(yay, LU | U_;'g(-c)cw)ltiﬂ,_t,m,_i)=

—c -ro

-0 (L I"U—rof(‘li)d't, LJ U-f"g(‘r)d':) Af(-:—t)+g(r—z)= ai({AJ‘y Az})'

We have used the unitarity of the operator Ug . The verification of the remaining conditions is trivial.

We define the state « on the generators by

o (4;) =exp (-—21—5[ j: U-f(v)dx, fU-?j(r) dT])

and extend this definition to all elements of the algebra % by linearity. Equation (7) really does define a

state, since the function f—~w(4,) is positive definite:

2 o0 ® (A’i —jj) =0.

LEMMA 5. The state « satisfies the KMS conditions.

Proof. The invariance of the state is a consequence of the unitarity of the operator U(z. We check

the fulfillment of the second condition, We have

o((o(4, 4 == [0 2te=as, L] U-26)n] @ (s,

o (“t (Af) 'Az) =:eXp ( — 515-
gt— o (a'(4)) 45 = —;-[L-i U.f(x—t)dr, _jm U_2g(x)dx |0 (Asrsomn) =80 ({0 (4), 4D).

From this our assertion follows. Thus, we have proved

THEQOREM. The algebra %, automorphism «f and state « constructed above satisfy the KMS

conditions.

4. Let us elucidate the origin of our system. Let 9% be an algebra of functions of the form

(¢ 3] (3
Z(u) = 2 YJ' Du.x.az,...,usAcuh+aa!:+...+as ¥ +1 (u) la s=0e

|Rl=m i

[ fU—rg (fz—t)+g(v))dr, f UL (f(xv—t)+ g(1))dv ]) =0 (4ei-0),

Clearly %Y. We extend the definition of the Poisson brackets {-, -}, the automorphism !, and the state w

to the algebra % ‘by linearity. It is easily seen that

o avet ({4, ([ o) ) =3[  o-tte-00s, 2 fu_sona |
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| [ vttt te)an, | U-pt—tdr]oupsemn). ®)

Let {zl)].} be a complete orthonormalized system in Hy, Setting ¢(7)=¢,6(t) in (8) and summing over j, we
obtain formally

o 1
Y5 0 eat (4 [0 219) = -0 (Arat({d), [3,21)) =

107¢ T .
_15_ [_J;U._,Df(’[——t) dt, L_J; U_’g(1) dT] @ (Ag(1)+!(t—t)) = (d/dt) o (A (4,))

(only the first of these equations has not been proved). Thus, for all elements 4;, 4,54
(d/dt) o (4,0 (4,)) =0 (Ag-a' ({4, Vo, u1})),
i.e., the state « is concentrated on orbits of the group of automorphisms o that satisfies the equation
(d/dt) et (A;)=a' ({4, #(1)}), H (u)="/2u, u]. (9)
This equation describes a Hamiltonian system [6] with Hamiltonian 56(z) and is equivalent to the wave
equation d,p=n, d,.n=—B¢.
5. We note an interesting connection between our problem and quantum field theory. First, we
recall some well-known facts [7, 8].

We transform the set D,®D,=H® into a linear space over C', setting by definition {zDy)=(—RB'y)®
(Bx) and on D.®D, we define a form that is complex-linear with respect to the second argument: {(z,z")=(B"z,
B*%z')+ (B~"y, B~"y}y+ib(z, 7'}, 2=z®y. Let H be the Hilbert space obtained by completing the set D,®D, with
respect to the scalar product {(-,-). It is readily verlfled that the operator Ug is unitary with respect to
the form < ‘Y. Let ¥ bea Hllbert space over ¢! with scalar product <., g z—+W(z) be a mapplng of
the space A into the group of unitary operators on & that is continuous in the weak topology of B and the
weak operator topology of #. and

W(2)W(2') = exp (ZL Im (5,22 ) W (+2). (10)

It follows from the relation (10) that the mapping t — W(tz) for any z € fisa group of unitary operators
in . Let ¢¥(z) be an infinitesimal operator of this group. For x, v € H, we set

1 . 1 )
Q(z)=9(z®0), P(y) =¢(0%y), a*(z)= = (Q(z)+iP(x)), a(y)=ﬁ @) —iP(y)),
Then
Q@)P(y)—P(y)Q(z) =i(z, y), a"(z)aly)—a(y)a(z)=(z, ¥).
Let QO be a vector in # such that QO is eyclic for W(z), [Q.l=1, a(z)Q:=0. Then
(Do, W (2) Q) r=exp (— Yz, ). 11
Let dI'(L) be an operator which is self-adjoint in & and satisfies
exp (itdl' (L)) W (z)exp (—itdT' (L)) =W (U.’z)

(dT' (L) is the "second-quantized Hamiltonian"; if the operator B is the operator of multiplication by the
function v(k), then dT'(L) has the standard form dI‘(L)=I v(k)e* (k)a(k)dk).

We consider the algebra %, of functions on an Hp whose generators are functions of the form
A0 (z) =exp(ilf, z1), 1, 26ANH5 We transform the algebra ¥, into a pre-Hilbert space, setting by definition
€AP(z), AS(2))=0(4f.) “Asw). Let % be the Hilbert space obtained by completing %, with respect to the

scalar product -, »; we do not know if the state « is faithful, and therefore the elements of W arein
general equivalence classes with respect to the relation A~B: m(]A B|*)=0). We define the operator

Ut: ((Afo, UtAgo))=G) (A;{;(t) 'Agb(‘t-t)) .
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From the definition of the state « we readily verify directly the equation €4,, ﬁ,Ag>>=((A,, Apo,pd. Let & be
the operator of multiplication by the function A, actingon %. Comparing (7) and (11), we obtain
B‘lzl 0)

P (12)

2
€1, AAY=(Qy, W (K,) 0, K=.VF(
On the left-hand side of (12) we have essentially the characteristic functional of the measure that is
the projection onto the set of functions which depend only on the values of these functions at the point 7 = 0
of the measure concentrated on the trajectories of the system (9). On the right we have the characteristic
functional of the Fock representation of commutation relations.
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UNIFIED FORMALISM FOR QUANTUM AND
CLASSICAL SCATTERING THEORIES

Yu. M. Shirokov

Nonrelativistic scattering theory is formulated solely in terms of physical and mathematical
concepts which have meaning in both classical and quantum mechanics. An integral equation
is obtained whose iterations give the quantum corrections to classical scattering.

1. In the standard formulations of classical and quantum scattering theory, one uses completely
different concepts, which do not "survive" the transition from one theory to the other. In classical theory,
there is no analog of the S matrix or the scattering amplitude, whereas in the quantum theory there is no
impact parameter., This hinders the development of systematic semiclassical methods, In [1-4], I developed
a unified formalism for quantum and classical theories, called the combined quantum-—classical algebra. In
this formalism, one uses only physical and mathematical concepts which have meaning in both forms of
mechanics. I show here that in this manner one can formulate naturally a theory that may be called
Hamiltonian scattering theory. It too uses only concepts that have meaning in both classical and quantum
mechanics. The theory is therefore suitable for both forms of mechanics.

For simplicity, we restrict ourselves to elastic potential scattering of nonrelativistic spinless
particles. We consider Weyl quantization, which is distinguished by the fact that in it free monrelativistic)
motion occurs in the same way in both the quantum and the classical cases.

Notation introduced without explanation is the same as in [2].

2. TFollowing [2], we shall describe observables by c-number functions A(p, q) of the coordinates
and the momenta and states by linear functionals p(p, q). The corresponding topological vector spaces and
their topologies are described in [2,3]. Specific mathematical objects of the combined algebra are the quantum
and classical operations of multiplication of observables. In the combined algebra, there are four operations
of multiplication of observables: the ordinary classical multiplication Ty the classical Poisson multiplica~
tion Oy and, respectively, the ordinary quantum multiplication T} and quantum Poisson multiplication oy .
These operations are defined in [2], in which it is shown that the operations of multiplication are the only
objects that change on transitions from the one theory to the other. The Hamiltonian of scattering theory will
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