
radius of this core is R. The height of the potential for R = 0.3 F is V 0 = 2m2R ~ 270 MeV~ 
This is an order of magnitude greater than the characteristic depth of the potential well 
that describes the attraction between nucleons at distances of order 2.4 F [I0]; at the 
same time, for the radius of the nucleon core estimates R c = 0.4 F are given, and the core 
is assumed to be absolutely hard. In our case, the core is not absolutely hard but its 
radius is somewhat greater. It can be estimated as 2R = 0.6 F. In any case, repulsion 
is needed to prevent collapse of nuclei. 
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INTEGRABLE INITIAL-BOUNDARY-VALUE PROBLEMS 

I. T. Khabibullin 

Initial-boundary-value problems on a half-axis for integrable equations 
are considered. Solutions of an initial-boundary-value problem for the 
nonlinear SchrSdinger equation and the sine-Gordon equation for definite 
types of boundary conditions are described in terms of scattering data. 

The inverse scattering method is an effective method for investigating nonlinear equa- 
tions of mathematical physics [i]. It enables one to construct particular solutions of an 
equation and also to analyze its general solution, for example, the Cauchy problem, in a 
given class of initial data. However, the investigation of mixed problems on an interval 
and on a half-axis in the framework of the inverse problem has until recently been 
restricted to the case of periodic boundary conditions and variants of them (see [2-4]). 
Interest in mixed problems was sharply increased by [5], in which a class of nontrivial 
boundary conditions compatible with integrabiiity of the equations was found~ The analytic 
aspect of the "impure" generalization of the inverse scattering method proposed by 
Sklyanin and its application to problems of mixed type were considered in [6,7]. 

Alternative approaches to boundary-value problems for integrable equations can be found 
in [8,9]. 

In [I0,Ii], a connection was found between boundary conditions compatible with integra- 
bility of an equation and its B~cklund transformations. An initial-boundary-value problem 
on a half-axis with boundary conditions compatible with complete integrability of the 
equation can be reduced to a Cauchy problem on the complete axis by continuation of the 
initial condition by virtue of a B~cklund transformation. On the other hand, in the 
"general solution" of the equation one can identify a subclass of solutions that certainly 
satisfy the boundary condition. In this paper, we obtain an explicit description of such 
subclasses in terms of scattering data for the nonlinear SchrSdinger equation with linear 
inhomogeneous boundary condition and two different types of mixed problem for the 
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sine-Gordon (SG) equation. One of these three problems can be reduced by a B~cklund trans- 
formation to the problem of evolution of initial data of "step" type (see Sec. 3 below), 
and the other two can be reduced to a Cauchy problem in the class of rapidly decreasing 
functions (Sets. 2 and 4). 

In contrast to [6,7], we use the ordinary version of the inverse scattering method to 
investigate initial-boundary-value problems in this paper. 

I. Bgcklund Transformation and Boundary Condition 

We assume that the partial differential equation 

u~=! (u, u , . . . ,  u~) ( i .  i )  

admits a representation in the form of a zero-curvature condition: 

U~=V~+[V, U], 

where u=u(x , t ) ,  ut=8~u/Sx ~. The matrix-valued functions U=U(u %), V=V(u,:u . . . . .  , u~,~) depend 
rationally on the parameter %EC. Equation (1.2) is a condition for the existence of a 
simultaneous solution of the following system of linear differential equations: 

W ~ = U ~ ,  ~ = V ~ ,  ( i . 3 )  

where ~ = ~(x, t, I). 

Two solutions u(x, t) and u(x, t) of Eq. (i.I) are related by a B~cklund transformation 
if the eigenfunctions �9 and �9 of the linear system (1.3) and the system W~=UW, ~Ft=F~F, 
where U=U(~, %), V=V(K, g~ ..... N~,%), satisfy the condition [12] 

(x, %) =F(%)W (x, ~), (1 .4)  

where F(~) is a matrix polynomial of the parameter k with coefficients that depend on u, u, 
and their derivatives. 

In terms of the solutions u and u, the B~cklund transformation takes the form of a 
system of differential constraints: 

~ = p ( ~ ,  u, u~ . . . .  , u , ) ,  ~ ,=q (~ ,  u, u~, . . . ,  u~). ( 1 . 5 )  

Suppose the system of constraints (1.5) withstands the reduction u(x) = h(u(--x)); it is 
then obvious that n = i. Imposing this reduction on the relations (1.5) and then setting 
x = 0, we obtain a boundary condition of the form (see [i0]) 

which is compatible with integrability of Eq. (I.i). 

2_= Nonlinear SchrSdinger Equation 

It is known [i] that the following system of nonlinear partial differential equations, 
which generalizes the nonlinear SchrSdinger equation: 

--v~+v==2v2w, wt+w==2vw z, (2.1) 

admits representation in the form of the zero-curvature condition (1.2) with potentials 

W 

v ' = v~-2%v -vw+2U 

The system of equations (2.1) withstands an even reduction of the form u(x) = u(--x), where 
u = (v, w). A Bgcklund transformation that admits the reduction u(x) = u(--x) is determined 
by a polynomial of first degree in % (see (1.4)): 

F(%)=[2%+k(c,u,~) w--~ ] ( 2 . 3 )  
~ - v  2%--k(c, a, ~) 

where  k(c, u, ~ ) = ( c Z + ( ~ - - w ) ( ~ - - v ) )  ~, and i t  h a s  t h e  f o r m  o f  t h e  d i f f e r e n t i a l  c o n s t r a i n t  

~ = ~ + ( ~ + u ) k ( c ,  u, ~). ( 2 . 4 )  

The e v e n  r e d u c t i o n  o f  t y p e  u ( x )  = u ( - - x )  i n  ( 2 . 4 )  l e a d s  t o  t h e  l i n e a r  b o u n d a r y  c o n d i t i o n  

(1 .2 )  
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(see also [5]) 

u~ (0, t) + c u  (0, t) =0. (2.5) 

We shall describe this reduction in terms of scattering data of the system of linear 
equations ~x = U~. We shall assume that the solution u(x, t) decreases sufficiently 
rapidly as |x[ § ~. (It will be shown below that for a self-conjugate reduction w* = --v, 
where the asterisk denotes the complex conjugate, decrease at • is ensured by decrease at 
one of the infinite limits and by the reduction condition u(x) = u(--x) (see Proposition i).) 
By virtue of the reduction condition, the function k(c, u, u) has the same limit as x § • 
and therefore the limit 

exists. 

Fo(x,~,)= lim F(x,t,X)=2[~+~'~ 0 ] __ c a 
I~,~ 0 ~, - )~o ' ~~ 4 ' 

We recall necessary results from general scattering theory (see [i]). For all I, 
Re I = 0, we determine matrix solutions of the system of linear differential equations 

w=U v (2 .6)  

that satisfy the asymptotic conditions 

g• ~)-*exp (o~x~), x - , - ~ ,  (2 .7)  

where the potential U has the form (2.2). Here and below, we denote by o i the Paul• 
matrices. It is well known that the first column of the matrix y_(x, l)exp(--o~xl) and the 
second column of the matrix y+(x, l(exp(--oaxl) can be continued analytically with respect 
to I into the half-plane Re I > 0. The remaining col~unns of these matrices admit analytic 
continuation into the left half-plane Re I < 0 of the complex plane. The diagonal elements 
slz(1) and s22(I) of the S matrix s(1) = y$1(x, l)y_(x, I) can also be analytically con- 
tinued into the half-planes Re I > 0 and Re I < 0, respectively. At the zeros ~k and ~ik 
of the functions st1(1) and s22(i), repsectively, which are situated in the indicated 
regions of analyticity, the columns of the solutions y• I) satisfy the conditions of 
proportionality y_~(x, ~)=?i~g+2(x, ~), g+i(x, ~h)=]2~g-Z(x, Ni~), where ~,72~0. 

Suppose that in the analyticity regions Re I > 0 and Re I < 0 the functions sii(1) 
and s22(I) have only simple zeros and do not have zeros on the line Re I = 0. Then the 
S matrix s(1) and the coefficients ~ij corresponding to the zeros ~ij form a complete set 
of scattering data of the linear system (2.6) and uniquely determine its potential U(x, I). 

Let u(x, t) and u(x, t) be two solutions of the system of equations (2.1) related by 
the B~cklund transformations (2.4). Then the corresponding Jost solutions determined by 
asymptotic behaviors of the form (2.7) satisfy the conditions ~• 
From this, it obvious follows that the scattering data of the two solutions u and u are 
related by 

_ ~ - - s  ~(~)=Fo(~)s(~)~o-'(~), ~,~=~,~, ~,~= ~,~+~~ ~,~. (2.8) 

We now find how the scattering data change under the substitution x ~ --x. All 
notation relating to the potential 5(x) = u(--x) will be identified by a tilde. It is 

def 
obvious that ~=U(g(x), %) =-o~U (u (-x) , -%)~, and therefore the Jost solutions of the two 
linear systems of equations are related by the conditions ~(x, %) =o~g~ (-x, --~) o> Therefore, 
we have 

~(~)=o~s-~(--%)o~ ~ = - - ~ ,  ~ = - - ~ ,  ~=--?~,  ~ = - - ~ .  (2 .9)  

Returning to the original problem of describing the reduction u(x) = u(--x), we note 
that the condition of identity of the scattering data s(1) = g(1), 7ij = 7ij and formulas 
(2.8) and (2.9) immediately show that the scattering data of the solution u(x, t) = u(--x, t) 
satisfy the simple involution* 

N~--%~ 
s(~)=F~176176 ~z~ ~+%o ?~' (2 .10)  

*Equations (2.10) were obtained in collaboration with R, F. Bikbaev. 
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where the matrix Fo(%)=2diag(%+%0, %-%0) is determined explicitly up to the choice of the 
root 2~ 0 = /cg. 

As an example, we consider the soliton solution of the system (2.1) with the 
following scattering data (here %0=c/2): sli(%)=s22(-%)=(%-~l)i/(%q-~l), Re ~1>0, s~=s2~=0, 72~= 
_ ? .  (2~l_c) / (2~l§ ' 

w(x, t)=4~lexp(4ivl2t)/r(x), v(x, t)=?,?2~w(x, --t), r(x)=?2~exp(2~lX)--?~exp(--21]x). ( 2 . 1 1 )  

By direct calculation we readily verify that this solution satisfies the boundary condition 
(2.5) for any q ~ 0. 

The involution (2.10) is completely consistent with self-conjugate reductions of the 
system of equations (2.1) of the type w=• *, ~=-+I, which lead to the nonlinear SchrSdinger 
equat ion 

iv~=v=--2• ( 2 . 1 2 )  

where ~ = it. The scattering data corresponding to these reductions satisfy the condi- 
tions s~* (--%*) =s22(%), s~2*(--%*) =us21()Q, N2J=--N~*, 72j--• i~. The involution (2. I0) for the 
self-conjugate case has the form 

( %) %+%0 -~* ~,j-%0 
S2I(%)~-~-S21 -- ~ ' ~lJ=~] th*' Sli(%)=SlI*(%*), ~1]~ = - - ~ - - ~ i j "  ( 2 .  13)  

Thus ,  f o r  any  %0~R t h e  s c a t t e r i n g  d a t a  ( 2 . 1 3 )  c o r r e s p o n d  t o  a c e r t a i n  s o l u t i o n  o f  t h e  
boundary-value problem with a condition of the form (2.5), where c = 2~ 0 or c = --2)~ 0. 

It should be noted that the involution (2.13) describes the "general" solution of 
Eq. (2.12) with the boundary condition 

v~(O, T)+cv(O, ~)=0, cER. ( 2 . 1 4 )  

More precisely, for Eq. (2.12) with • the following proposition is proved in the 
Appendix. 

PROPOSITION i. For any smooth rapidly decreasing initial condition 

~(x, o)=vo(x), (2.15) 

defined for x _-> 0 and consistent at the origin with the boundary condition (2.14), the 
solution of the half-axis problem (2.12), (2.14), (2.15), ~=-I is the restriction to the 
half-axis of the solution of the Cauchy problem for (2.12) with some smooth rapidly 
decreasing initial condition. 

Thus, the considered initial-boundary-value problem reduces to the well-investigated 
Cauchy problem on the complete line. An alternative, possibly more laborious method of 
integrating the problem (2.12), (2.14) is developed in [6]. 

3. The Sine-Gordon Equation in Light Cone Coordinates 

The classical SG equation Uxt = sin u admits a representation in the form of a zero- 
curvature condition (see [i]), where 

oo  ,.io  ! 
iux/4 --% ' --4% -- is ina cosu " 

A Bficklund transformation for this equation is determined by the polynomial 

2 u-a ~--a 
F (%) =- -- %~+o0 cos --~-- + io~ sin -- 

a 2 ' 

where o 0 is the unit matrix, and it has the form [13] 

~ = 2 a  sin --~-- -- a~, g~=ut--2a- '  sin ---~-- ( 3 . 1 )  

I m p o s i n g  on t h e  s o l u t i o n  u ( x ,  t )  o f  t h e  SG e q u a t i o n  t h e  r e d u c t i o n  ~ ( x ,  t )  -- ~ -- u ( - - x ,  t ) ,  
we arrive at a certain local condition along the characteristic x = 0 of this equation 
(see [i0]): 

a~(O, t) + a  cos u(O, t) =0 .  ( 3 . 2 )  
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We describe in terms of scattering data the class of solutions of the SG equation 
that satisfy the condition (3.2). Suppose the initial function u(x, 0) is smooth every- 
where on the half-axis x _-> 0, decreases rapidly at infinity, and is consistent with (3.2). 
Solving the first of Eqs. (3.1), we construct a function u(x) such that u(0) = w -- u(0, 0). 
We continue u(x, 0) to the entire axis by means of the equation u(--x, 0) = v - u(x). 
Arguments similar to those in the Appendix show that the obtained function will be smooth 
for all x, and u(--~) = w. Thus, the initial-boundary-value problem is reduced to the 
Cauchy problem of the evolution of an initial condition of "step" type: 

U(X, O) "-~1/2~'~-~1/2~'~, X "-~-[-00 , (3 .3)  

where the limiting values are attained by the function u(x, 0) quite rapidly. Many studies 
(see, for example, [14]) have been devoted to analysis of solutions of such type and also 
their physical interpretation. 

Since the equation with respect to x for the ~ function in the case of the SG equation 
has exactly the same form as (2.6), we can use the definition of the scattering data from 
the previous sections. The main difference between the "step" problem (3.3) and the 
rapidly decreasing case is in the unusual time dynamics of the scattering data: 

s~(~,t)=s~(~,O)exp ----~ , s~(~,t)=sl~(~,O), 'l~j(x,t)=~(O,O), n,AO=n,~(0). (3 .4 )  

Completely  r e p e a t i n g  the  arguments of  the  p rev ious  s e c t i o n ,  we can show t h a t  the  
r e d u c t i o n  u(x ,  t )  = Tr -- ~( - -x ,  t )  cor responds  to  the  f o l l o w i n g  a d d i t i o n a l  i n v o l u t i o n  of  
the  s c a t t e r i n g  da t a  of  t he  s o l u t i o n :  

2)~+a 
s,~(~)=s~(-~)-_2~+-- ~ ,  s.(~l=s~(-~O, n.=-n~,  

h~ = [--2~bj+a 0 ]h2j, h~7= (i, --'~,~). 
0 -2~12~-a 

4. The Sine--Gordon Equation in Laboratory Coordinates 

When reduced to the form 

u,-u=+sin u=0, (4.1) 

the sine-Gordon equation has various physical applications (see, for example, [13]). The 
linear system of equations associated with this equation has the following form in the 
framework of the inverse scattering method (see [5]): 

gx = ~-t u~o3+k001 sin ~2  + kio2 cos T g' g~ = ~ u~oa+kio~ s i n - ~  + 002 cos-~  g, ( 4 . 2 )  

where k0=h+%-~, kl=~--% -!, ~ i s  a complex paramete r .  A B~cklund t r a n s f o r m a t i o n  fo r  Eq. ( 4 . 1 )  
is specified by the differential relations 

~+~ N-u 
�9 ~+u ~--a ~t=a~+csin__~___c_isin (4.3) ~x=a,+c sin ~ + c-' sin --~=, 9 

In a formula  of  the  type  ( 1 . 4 ) ,  t h i s  t r a n s f o r m a t i o n  cor responds  to  a polynomial of the  
form 

F(~,c)=exp(o3u/4i) [ _ ~ ~]exp(--o~fi/4i). (4.4) 

It is shown in [5] that the boundary condition 

ux(O,t)=posin a(O't------~) , poGB, (4.. 5) 
2 

is compatible with integrability of Eq. (4.1). This boundary condition has a remarkably 
simple connection to the B~cklund transformation (4.3) (see [Ii]). Suppose the solution 
u(x, t) of Eq. (4.1) is odd in the sense that u(x, t) = 2m~ -- u(--x, t). Then for x = 0 
we have u = ~m, u t = 0, and therefore the new solution u(x, t) of this equation obtained 
by applying to u(x, t) the B~cklund transformation (4.3) will satisfy either the boundary 
condition (4.5) or the boundary condition 
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(0, t) 
~x(0, t) =q0 c o s - - ,  ( 4 . 5 ' )  

2 

t he  cho i ce  depending on the  p a r i t y  of  t he  number m ( t h e  c o n d i t i o n  ( 4 . 5 ' )  was a l s o  found 
independently by V. O. Tarasov). For example, setting u = 0 in (4.3), we obtain the single- 
soliton solution of Eq. (4.1) 

(x, t) =4 arctg exp i/2 (pox+qot+xo), 

po=+--(c§177 qo=• which, as is readily verified, satisfies the boundary condition 
( 4 . 5 ) .  

Thus, among a l l  s o l u t i o n s  of  t he  SG equa t i on  t h e r e  a r e  s u b c l a s s e s  of  s o l u t i o n s  t h a t  
withstand the condition (4.5) or (4.5'). We describe these two subclasses in terms of the 
scattering data of the linear system (4.2). On the initial functions u(x, 0) and ut(x, 0) 
we impose the usual requirements of smoothness and rapid tending to the limiting values 
at infinity, which are assumed to be multiples of 2~. A simple analysis of the system of 
differential equations (4.3) analogous to the one given in the Appendix shows that u(x, t) 
2~m+_ as x ~ _+~, where m_+ are certain integers. Therefore, the polynomial (4.4) will have 
the following limiting values as x + +=: 

:imo F0 (~, c) exp i i ~ m + ) ,  

lira F(k, e)=Fo(~.,c)exp ~e~m_ , Fo(%,c)= - . 

Following the monograph [15], we determine solutions of the first of Eqs. (4.2) for 
Im X = 0 by means of the asymptotic conditions 

g+(x,~)----)-exP(2 a~m,)E(x,~.) , g_(x,)~)----+E(x,~.), 
~+ . . . .  ~ (4.6) 

i] [ ~-~-~ x~) E(x ,~)=  ~ [  : l jexp[  ~ i  

The r a t i o  of  t h e s e  two s o l u t i o n s  of  t h e  problem (4 .2 )  de t e rmines  i t s  S m a t r i x :  S(h) = 
y$~y_. The e lements  of  t h e  S m a t r i x  s a t i s f y  t h e  i n v o l u t i o n  c o n d i t i o n s  s~2(~)=s,~*(~,)=s~(-~), 
s~2(~,)=-s~*(~,)=-s~(-~). The zeros  k.3 of  t h e  f u n c t i o n  s l l ( h )  in t he  upper h a l f - p l a n e  form 
the  d i s c r e t e  spec t rum of  t h e  problem ( 4 . 2 ) .  At t he  p o i n t s  ~j t h e  f o l l o w i n g  c o n d i t i o n s  
hold :  

y_~(x, ~)=Tjg+~(x, )~), ] = L . . . ,  N. 

We assume that all the zeros X i are simple and that Sl l (X)  X 0 for Im )~ = 0. Then 
the S matrix and the coefficients o~ proportionality yj form a complete set of scattering 
data. 

We establish how the scattering data change under Bficklund transformation. By direct 
calculation we verify the formula F0(~ , c)E(x, %)=E(x, %)Fd(%, c), where Fd(%, c)=diag(~+ic, )~--ic) 
is a diagonal matrix. Solutions Yi(X, ~) of a linear problem of the form (4.2) correspon- 
ding to the function u(x, t) are related to y_+ by the conditions: ~• ~)I=F(%, c)g~(x %) 
F~-i(%, • where • -m, u_=(-i) ~-. It immediately follows from this that the 
scattering data transform as follows: 

~(~) =Fa(s •163163 • ~,,=?~()~--i•215 (4 .7 )  

In addition, a) an additional eigenvalue %~+~--ic• appears for c• c• b) the eigen- 
value %~=-ic• is removed for c• c• c) the discrete spectrum is not changed for 
~--=~+. 

We reformulate the odd reduction of the form u(x, t) = 2~m -- n(--x, t) in the language 
of scattering data. We first find the connection of scattering data of the two potentials 
u and 5 such that 5(x, t) = 2~m -- n(--x, t). All variables relating to the potential fi 
will be identified by the tilde. It is easy to verify fulfillment of the condition 
U(ff(x), ~,)=--U(a(--x), (--t)=%-~), where 

U (u,%)=-7-(a~o~+koo~ sin ~ k~o2 cos-~-). 
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Therefore, the matrix solutions of the two linear systems of equations Yx = Uy and Yx = ~JY 
determined by the asymptotic behaviors (4.6) satisfy the condition 9_+(x, %)=y~(-x, (-1)~-~)ov, 
where o_+ = 1 for even m and o+ = +_io 2 for odd m. From this we obtain the following 
connection between the two S matrices: ~(%)=o_-~(s(~-~(-i)'~))-~o+ and also a connection 
between the two sets of proportlonallty coefflclents: ?h=?j for even m and ?k = u for 
odd m. Therefore, the scattering data of the potential u(x, t) = 2~m -- u(--x, t) satisfy 
for Im ~ = 0, ~ ~ 0 the involution 

-i@ - t~  s . (~)=s .*(~-~) ,  s~ (~ )= - s~ ( z - ' ) ,  v]  ~k ~ j = ~  ~ ~=~,~ ( 4 . 8 )  

for even m and involutions of the form 

s . ( ~ ) = - s . ( - ) ~ - ~ ) ,  s~(~)=s~*(-~-~),  Vj ~k )~j=-~-~, ~=~-~ 

for odd m. 

Thus, suppose we are given an arbitrary set of scattering data that satisfy the 
involution (4.8) (or (4.8')). Using the rule (4.7), we construct a new set of scattering 
data. The parameters n~, whose possible values are 1 or --i, are chosen such that the 
function 5~(~)=(~.~ic• is bounded in the upper half-plane Im ~ > 0. Then the 
solution of Eq. (4.1) corresponding to this new set of scattering data will satisfy the 
boundary condition (4.5) (the condition (4.5')). For example, the S matrix s(k) ~ 1 of the 
zeroth solution of Eq. (4.1) obviously satisfies the conditions (4.8). Setting ~• 
and choosing an arbitrary real y ~ 0, we construct in accordance with (4.7) a complete set 
of scattering data s~(~)--=(%--ilc[)/()~q-i[c[) , )~=i[c], ?~=?, which determines a single-soliton 
solution of the SG equation satisfying the condition (4.5). 

On the other hand, any solution of the boundary-value problem (4.1), (4.5) (or (4.5')) 
is the restriction to the half-plane of some solution of the Cauchy problem with 
scattering data constructed in accordance with the above rule. 

(4.8') 

A_p_pendix 

The algorithm for reducing the initial-boundary-value problem (2.12), (2.14), (2.15) 
to a Cauchy problem on the complete axis is as follows. The initial condition v0(x), 
specified on the half-axis x k 0, is extended to the entire axis by virtue of the condition 
v0(x) = v(--x), where v is the solution of the equation 

~=vo~+(~+vo)~c2+• 2, ~(0)=~0(0), c~R, (A .1 )  

which  r e a l i z e s  a B~cklund  t r a n s f o r m a t i o n  f o r  Eq. ( 2 . 1 2 ) .  

LEMMA. Suppose  vo(z)~C2(O,~); t h e n  f o r  •  t h e r e  e x i s t s  a s o l u t i o n  ~ ( x )  o f  t h e  p rob lem 
(A .1 )  t h a t  a l s o  b e l o n g s  t o  t h e  c l a s s  C2(0,  ~ ) .  I f  a t  t h e  same t i m e  v 0 ( x )  d e c r e a s e s  
e x p o n e n t i a l l y ,  [ v 0 ( x )  [ 5 c e x p ( - - a x ) ,  g, x > 0, t h e n  t h e  f u n c t i o n  ~ ( x )  s a t i s f i e s  t h e  same 
condition (possibly, with different ~). 

Proof. By the substitution y(x) = v(x) -- v0(x) we reduce the problem (A.I) to the 
more convenient form y~=(y+2vo)?c2-[g(x)12, g(O)=O. It is clear that this problem satisfies all 
the conditions of the Cauchy theorem outside the surface IYl = c, where the condition of 
uniqueness of the solution breaks down. From the original equation, we readily deduce the 
relation 

d 
_ _  ly(x ) ]~=2(ly(x ) i+g(x))ig(x ) 1~2_ly(x)[2, g(x)=2BeY (x)v*(x) . (A .2 )  
dx I ~ (x) I 

In the neighborhood of the point x = x', where the equality [y(x') I = c is attained, we go 
over by means of the substitution ly(x)[ = c sin h from Eq. (A.2) to an equation of the 
form 

h~=csinhSg(x), (A .3 )  

which satisfies the conditions of Cauchy's theorem on the complete plane. It is clear that 
for the x for which c sin h(x) > 0 the solution h(x) of this equation corresponds to a 
certain smooth solution of Eq. (A.2). Therefore, for such x the function y(x) can be 
constructed as the solution of a linear equation, since ly(x)[ is already determined by 
virtue of Eq. (A.2). In the neighborhood of the line y = 0 the solution can be extended by 
virtue of the original equation to y(x). Thus, the function y(x) can be continued to the 
entire half-axis x > 0. 
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We now show that v(x) decreases exponentially. We choose an arbitrary positive 
E < Icl. We assume first that the inequality ly(x)I ~ ~ holds for all sufficiently large x. 

Then in Eq. (A.2) the factor k(x)=fc~-[y(x)I ~ is bounded, nonzero, and, therefore, has 
unchanged sign. If k(x) > 0, then, comparing (A.2) with the model equation 

z'=2gcZ-~(z-8[g(z) l), 

we can show that the inequality ]y(x) I ~ z is violated as x § ~. Therefore, the function 

k(x) is negative, and it is obvious that k(x)<-Ifc2-e21 In this case, using the majorizing 
equation 

z'=-2 fc2-e21z+exp(-~x)const, 

we can readily obtain the estimate required in the lemma. 

It remains to show that there do not exist arbitrarily large x for which the inequality 
ly(x)| > s holds. Suppose otherwise. We choose x 0 >> 0 on the basis of the condition 
l)y(x0 1 > s and such that for all x > x 0 the inequality Ig(x0)l < ~/4 holds. Suppose for 
definiteness c > 0. If now k(x 0) = c cos h(x 0) > 0 (since sin h > 0, this is equivalent 
to 0 < b < ~/2), then the function ly(x)l will increase until k(x) changes sign. Indeed, 
in the interval 0 < h < 2~/3 the estimate sin h > h/2 holds. Therefore, comparing (A.3) 
with the equation z' = z/2 -- s/2, we can show that the function h(x) increases and passes 
through the point h = ~/2, i.e., the function c cos h(x) = k(x) changes sign to become 
negative. Therefore, without loss of generality, we can directly assume that k(x 0) < 0. 
But then the function ly(x) l will decrease with nonzero rate until the inequality ly(x)[ > 
~/2 is violated. Suppose that the inequality holds for all x~(xo, x~), and y(x~) = g/2. We 
denote by X a neighborhood of the point x I such that for Vx~X the estimate !y(x) I < ~ holds. 
Directly from the relation (A.2) we find 

([y(x)[2)x~-21r (A.4) 

We show that the least upper bound x 2 of the set X is equal to infinity. Suppose 
otherwise, x 2 < ~. Bearing in mind that [y(x~) I = s/2, we find from the relation (A.4) 
that ly(x)l satisfies the inequality ly(x)| < ~/2 for all x~X But then y(x 2) ~ s/2, which 
contradicts the condition of the least upper bound. Therefore, ly(x)! < s for all z~(z~, ~) 
But this contradicts the assumption that there exists an arbitrarily large x for which 
ly(x)I > e. The lemma is proved. 

Proof of Prgposition i. The initial condition v0(x) is extended to the entire axis 
in such a way that the condition v0(x) = v(--x) is satisfied. It remains to verify the 
smoothness at the origin of the obtained potential. Continuity is contained in the 
requirement v(0) = v0(0). Indeed, we have v(0+) = v0(0+) , but, on the other hand, from 
the condition v(x) = v0(--x) we find v(0+) = v0(0--). Continuity of the derivative follows 
from formula (A.I): Vx(0+) = V0x(0+) + 2cv0(0), and the boundary condition Vox(0+) + 
cv0(0+) = 0. Bearing in mind that Vx(0+) = --V0x(0--) , we find from this V0x(0+) = V0x(0--). 
The continuity of the second derivative can be verified similarly. The proposition is 
proved. 
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INFRARED SINGULARITIES OF GLUON GREEN'S FUNCTIONS AND 

TWO-QUARK INTERACTION QUASIPOTENTIAL IN 

QUANTUM CHROMODYNAMICS 

A. A. Arkhipov 

A study is made of the influence of the infrared singularities of the 
gluon Green's functions on the behavior of the interaction quasipoten- 
tial of two quarks in quantum chromodynamics. 

Introduction 

Many studies now exist in which one can find fairly weighty arguments for the singular 
infrared behavior M2/(k2) 2 for the gluon Green's functions in quantum chromodynamics (QCD) 
(see, for example, the review [i] and the bibliography given there). In particular, it is 
well known that a linearly rising quark-antiquark interaction potential, which is consis- 
tent with the experimental data on quarkonium spectroscopy, corresponds to the static limit 
of the diagram of exchange of one dressed gluon, the propagator of which has that infrared 
asymptotic behavior. Essentially, this correspondence was the first and main argument for 
introducing the assumption of such singular infrared behavior for the total single- 
particle gluon Green's function. Further investigations of the structure of QCD made it 
possible to draw the very important conclusion that the infrared behavior M2/k # of the 
gluon propagator gives a self-consistent description of the infrared region of QCD. This 
result, and also the successes of the potential model in describing the spectroscopy of 
heavy quarkonium with an interaction potential between the quarks in the form of a sum of 
a Coulomb term and a term that rises linearly with the distance suggests that we shall 
obtain a fairly good approximation for the total single-particle gluon Green's function if 
we represent it in the form 

O ~ ( k ) = D  (~ ( k ) ~  (~) . ~ _ ~  ( k ) ,  ( i )  

~:r~ r 2 ~ $ g ~ e ~ : : ~ : s f ~ : ~ a : ~ i : t D b ( ~ ] ~ i ~ : o  t s :~ i ~: theglU~176176 equal to 

behavior, so that 

- - ~  (k) k ~ - ~ ,  D.~(k) (*' , =Du~ (k),  k2~O. 

On the  o t h e r  hand, the  accumula t ion  of  many expe r imen ta l  da ta  on the  spec t ro scopy  and 
decays of  quarkonium systems and c a r e f u l  a n a l y s i s  of  t h e s e  da ta  show t h a t  the  na ive  non- 
relativistic potential model is not fully adequate to describe the physical picture 
observed experimentally. The problem of describing the properties of quarkonium systems 
in the framework of the fundamental original QCD Lagrangian is still an important 
unresolved problem of QCD. Great hopes are here placed on calculations that use lattice 
methods, and great efforts are being made in this direction [2,3]. 

In our papers [4,5], we made an attempt to show that there exists a simpler and more 
consistent way of solving this problem based on the method of single-time reduction in 
quantum field theory. Using the method of single-time reduction of the Bethe-Salpeter 
formalism developed in [4] for two-fermion systems, we calculated the interaction potential 
of two quarks in QCD in the approximation of one-gluon exchange. We showed that a systematic 
relativistic treatment of the quark interaction problem leads to a nontrivial dependence of 
the quark interaction potential on the energy, this energy dependence giving the interaction 
potential very specific properties characterizing its behavior in the region of large and 
small distances; these properties would have been difficult to imagine on the basis of 
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