classical, quantum, and optimal.
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UNIQUENESS AND HALF-SPACE NONUNIQUENESS OF
GIBBS STATES IN CZECH MODELS

S.B. Shlosman

A study is made of a new class of interactions for which there is uniqueness of a Gibbs
state in a whole space together with nonuniqueness of the state in a half-space. The
method of reflection positivity is used to study these interactions.

1. Introduction

In [1], a new criterion of uniqueness for a Gibbs state was found. In many cases, this criterion
makes it possible to exhaust the entire uniqueness region. Moreover, it is constructive in the following
sense: If in a certain model uniqueness holds at a certain temperature above the critical temperature, then
this circumstance can be verified over a finite number of steps of a certain algorithm. For some time, the
authors of [1] believed that their criterion is also a necessary condition of uniqueness away from the critical
point. Later, however, it became clear that this is not so for models in which there is uniqueness of the
Gibbs state in the complete space but not in a half-space (if such models exist). In the present paper, the
guestion of the existence of such models is answered in the affirmative. We call them Czech models. The
simplest model of such form was found by the Czechoslovak Mathematician J. Navritil and was discussed
at the Paris Seminar on Mathematical Physics,

One of the ways of describing Czech models is that in them there is precisely one ground-state
configuration in the complete space (i.e., configuration with minimal energy) but several ground-state
configurations in the half-space (with the same boundary condition), these possessing a certain stability
property (Peierls condition).

In this paper, we study uniqueness problems for the simplest Czech models. We shall discuss the
reflection of the unusual picture of Gibbs states on their analytic properties in a separate publication, in
which it will be shown that the properties of complete analyticity [2] break down for Czech interactions.

Navritil’s example, contained in his diploma thesis, was constructed initially to prove the existence
of a lacuna in the proof of the uniqueness theorem in [3]. Nevertheless, all the main propositions of [3] are
correct, and the lacuna can be filled; in Sec.4 of the present paper, we prove a "uniqueness theorem with
logarithmic strip," which establishes the uniqueness of the low-temperature Gibbs states for models with
one periodic ground-state configuration satisfying the Peierls condition. The words "ogarithmic strip"
mean that the region of instability in the container V which arises when unstable boundary conditions are
imposed has width of order ln | V|, Note that by uniqueness we here understand uniqueness in the class of
all (and not only translationally invariant) Gibbs states. A similar uniqueness assertion has been announced
by D. Martirosyan.

All-Union Scientific-Research Institute of the Organization, Control, and Economics of the Oil and
Gas Industry. Translated from Teoreticheskaya i Matematicheskaya Fizika, Vol.66, No.3, pp.430-444,
March, 1986, Original article submitted December 14, 1984,
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The paper is arranged as follows. In Sec.2, we describe the simplest Czech model. In the following
section we prove for it half-space nonuniqueness in the low-temperature region.

The proof is based on

the use of a variant of the method of reflection positivity, In the fifth section, we discuss the problem of the
existence of phase transitions in Czech models.

In the process of writing this paper, the author drew much of value from discussions with R, L. Dob~-

rushin, D. G. Martirosyan, E. A. Pecherskii, and 8. A. Pirogov. In particular, a remark of Dobrushin
permitted a simplification of the original proof of the uniqueness theorem of Sec.4. I should like tc take
this opportunity of expressing my thanks to them.

2. The Simplest Czech Model

Let 7' be a v-dimensional integral lattice, 7 '={t=(:", ..., t), €7 }. Suppose that at each site

té7> there is a spin variable o,, which takes four values, g, € {0,1,2,3} = 8. Let Q be the set of all
configurations o0:7 "S5, and 9% be the usual ¢ algebra generated by cylindrical subsets. For Acy”, the
corresponding objects will be denoted by Q4, ..

functions U(a), U(a, b), a, b&€S. Namely,

Here, |t|=V (™). + (™)

Ual(o)=

U (6y),

A= {t},

U (01, Gs)v

A={s,t},

0 otherwise.

s —t] =1,

In our model, the interaction U={U.(s), A=7", |A|<x} is determined by the specification of two

2.1)

Below, we shall require a different norm: [¢{=max |t*{. The formal Hamil-

tonian is determined by the expression H (¢)= 2 U4 (o). The interaction U is specified by the following

tables:

Ula,b)="U (b, a) =

Acz?
0, a=b,
z, (a,0)=(0,1),(0,2)
X, (a,b)=(0,3),
Y, (Ll, b) = (1: 3)1 (2, 3)1
Y, (a,b)=(1,2);

a=1,2, (2.2)
3

In this way, the interaction is specified by seven numbers, and we assume that X, ¥, Z, z, y, 2z, 2>0; X, ¥,

Z>z, y, 5, 7,. Below, we impose additional restrictions on them.

A specific feature of the model is the following. It has a unique ground-state configuration, i.e.,

a configuration o that minimizes the Hamiltonian H(c), namely ¢ = 0. The values o, = 1 and 2 are

energetically less advantageous, and the value o,

= 3 even more so. However, if the event ¢, =3 occurs

along a certain contour I' = {t i} as a result of thermal fluctuations, the energetically most advantageous
method of returning to zero values within T' consists of transition through the strip of intermediate values

0,

., € {1,2} (see Fig.1). Two possibilities ¢, and 9, are the best. The unusual properties of the Czech

models are due to the fact that the number of such best possibilities is greater than one. More precisely,
in accordance with the picture we have given there is in our model a "phase transition along a boundary."”
Of course, if such a phase transition is to take place the boundary must be at least two dimensional, and
therefore the unusual properties of Czech models appear only if the dimension is at least three. Therefore,
we obtain the natural hypothesis: the criterion of uniqueness mentioned above (the criterion of [1], see
also Sec.4 of the present paper) is a necessary and sufficient condition of uniqueness away from the critical

temperature if the dimension is two.

3. Half-Space Nonuniqueness

The ground-state configuration of our model being unique, uniqueness of the low-temperature Gibbs

states is a perfectly natural proposition. We shall consider it in the following section, The question of the
unigueness of Gibbs states at all temperatures is not so simple.
in which instead of two intermediate spin values (¢ = 1, 2) there are 2q, and we shall show that at large g
a phase transition of the first kind with respect to the temperature takes place in the system. In particular,
at a certain critical value Tcr(q, v) of the temperature there exist in this model at least two Gibbs states,

The case with ¢ = 1 remains open.

In Sec.5, we shall discuss a Czech model

We now turn to a new property of the models — the half-space nonuniqueness. We begin with some
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Fig.1

definitions. Let
P={Q:L (1), A=z”, |A|<=}
be the Gibbs specification for the interaction U and reciprocal temperature 8 (see [4]):
Q4" (0a|8) =Z"(A, B, 6) exp {—BHa(04]5)}, 0a8Qs, TEQ,
with relative Hamiltonian

HaoalD)= Y UalealUTyh A =TNA, Z(A,8,6)= Yexp{~BH.(0s]0)}.

AANAED cAGRA
Let Z,={t€Z", t">0}, Q,=Q 7Y, B, =BZY, Li=1"\Z+", Q=177 and 56,£Q, be a fixed configuration boundary
condition in the half-space). We define the Gibbs specification in the half-space, QEB‘, = {Qg,, A C1) A=
[Al<e}, as follows: for AcZY 0,6Q,, 6,€Q, we set QghA(0A16+)=QA“(0A[6+06’0).

An arbitrary probability measure # on (2,98) is called a state. We shall denote averaging with
respect to this measure by <> (or simply ()). The state # is called a Gibbs state with interaction U
and reciprocal temperature § (or (U, 8) Gibbs state, see [5]) if its conditional distributions satisfy

{o€Q 1 64=08,} | »=0,"(64]5), ©TEQ, A= Z".

Similarly, the probability measure %, on (Q,, 8,) is called a state in the half-space Z+". The
state #, is called a Gibbs state with interaction U, reciprocal temperature 3, and boundary condition 5.€Q,
if for its conditional distributions we have

o €Q, 1 04 =084)|T, 0, =05, 4(64]F,), T,€ Q.ACZ).

We define similarly Gibbs states in the strip Zp y; ={t€ Z*, 1 <t"<N} with boundary conditions c,€Qq, Gx..€
Quyr, Where Quy=Q7%,,, Z§%,, ={€Z 1 t1V=N+1}.

To formulate our theorem, we introduce indicators P;f(cr) of events {0€Q; o,=i}, 1€ 7, i=0, 1, 2, 3.

THEQREM 1. We assume that v = 3 and that the following restrictions hold: z,=z,=z X>=z,
Y=y, 222,

X>2-1(2Y+z), Z>2[(2v—1)Y+z], Y>22(2z+y+z). (3.1)
I. Let 5, = 3. There exists 8, = B8.(U, ») such that for all 8 = B, there exist at least two

[
Gibbs states <)% i=1, 2, in the half-space with interaction U, reciprocal temperature S, and boundary
condition EO. Moreover,
<Piz>ﬂ, i>i/z’ (3, 2)

PHh > as Brw, V=1 (3.3)

II. Let N22 =3, 6x..=0. There exists p,=p.(U, v) such that for all 3=p. there exist at least
two Gibbs states <->&*, i = 1,2, inthe strip Z}, y; with interaction U, reciprocal temperature 8, and
boundary conditions &.€Q,, 6x.,6Qy,,, Moreover,

s

Piyyi=>1/2, (3.4)
PHZ'~1 as Pp-ow  for V=l (3.5)
The convergence in (3, 5) is uniform in N,

Remark 1. Theorem 1 is based on the following simple observation. We consider the conditional

ground-state configurations of our model in the half-space 7 .° with boundary condition 6"0 =3, 1i.e.,
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configurations that minimize the formal relative Hamiltonian H7Y ({5,). It is easy to see that there are

precisely two such configurations, namely, ¢ and of”:

) i, V=1, (
= 3.6
(G+ ) { 0’ > )

It is only necessary to prove their stability, i.e., that there are Gibbs states near them.

Remark 2. The configurations ¢ differ only at the points €7, with 1®=1. Nevertheless, the
states (% ¢ differ. Moreover, for all teZY

PP, e = 2, 3.7
PHYS@EIN =12, N=3,4,.... (3.8)
However, we shall not prove this.

Proof. We note first of all that the studied interaction has the property of reflection positivity
with respect to reflections in the coordinate hyperplanes of the lattice Z¥ (the method of reflection positivity
is presented in [6-9]). We recall that a state {-) in A<Z’, |A]<<e, is said to be a reflection-positive state
with respect to the reflection ¢ in the hyperplane Z<=RY if A=A and <F-0/>=0 for any B ~measurable
function F=F(a,). Here, AT C A is one of the halves of the container A cut off from it by the plane L,
A=A*UBA*, (OF) (0x)=F (B0s), and (80a)=(ca)s:. Now let H,(o,) be the relative Hamiltonian corresponding
to the interaction U and certain J-symmetric boundary conditions. These could be periodic boundary
conditions, if A is a parallelepiped, or any boundary conditions & ¢ & such that &,=G,. for all t. Then
the relative Hamiltonian can be represented in the form

Hy(04) =B (04) +0B (04), (3.9

where B is a certain B, -measurable function, if, of course, A = SA. From (3.9) it follows (see [8]) that
the corresponding state in A is reflection positive.

An important consequence of reflection positivity for us will be a chess-board estimate, which we
shall describe in the form in which we need it. Let A be a cylindrical container, the product of a discrete
torus T*' and a ray Z.={t€Z, #=0}. On the boundary of A we specify the boundary condition & and
denote the corresponding Gibbs state by (... We assume that all periods of the torus 7™ are even.

Then the corresponding Gibbs state in A is reflection positive with respect to all reflections of the group

@*-', which is generated by the reflections in the hyperplanes orthogonal to the hyperplane {f::'=0}. We

shall give the name elementary cube »<=T*~' to a subset of 2" different points of the torus I, n={t;, 15, .. J,
such that for any two of them [fn—1l=1, i#j. Suppose that for every cube x=7""' there is defined a function
F.(0,) that depends only on the restriction 6a|.x7,. For any two cubes %, ' we choose an element §€0"!
such that »'=0x. We define the functions

Frp (05)=F,(07'0s), F.° (UA)V=}]_—_[ Fow (04).
®'cT

It is easy to see that these definitions are correct. The chess-board estimate is now the inequality
<HF (o) > <H IR P (3.10)
% per,d w

The estimate (3.10) follows from the fact that U is a reflection-positive interaction. Its derivation from
reflection positivity can be found in [8]. With obvious modifications, all that has been said above can be
extended to the case of states in the container 7"!'X[1, N].

We now prove proposition II of the theorem. We consider the container
Vaus={t€ 7°: — U<tV <M, i=1, ..., v—1, 1<tV<N}
and denote the set of configurations Qy,, by Qu.~. We consider the configuration *€Q7Z":

e { 3, £<0,
! 0, £>0.

In V,, we consider a periodic boundary condition along the first v — 1 directions and a boundary condition
independent of them and corresponding to the configuration 50 along the last direction. Our container is
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thereby identified with the product 7V* X[1, N] of a (v — 1)-dimensional torus with periods 2M and the
segment [1, N]. We shall denote the corresponding Gibbs state ¢ Yhe.m by Ouaf. Let <34* be some
limiting point of the family of states <>um»" It is clear that <>,* is a Gibbs state in the strip Z}, y,. We
show first that this state is not ergodic for p=p. and some B.<e (we mean ergodicity with respect to the
group 7). This is a consequence of the two following assertions: for all s, t € V,,, with s®=t™=1

(PP (P P —~0 as B—oo uniformly in M, N, s, @.10
(PAP»ux*—~0 as p—co uniformly in M, N, s, t. (3.12)

Indeed, by virtue of the symmetry <P,/ ux’=<Pyx", hence, (PDus", <Py, a8 8 — « uniformly in M,
N by virtue of (3.11), Therefore, <P,V (P> =, (PP >0 as 8 — «, as follows from (3.11), (3.12)
for s, t with s"=¢"=1, and this proves the state <->,* is nonergodic.

The proofs of the assertions (3.11) and (3.12) consist of the usual application of the estimate (3.10)

(see [6-9]). We prove (8.11). Let s = (0, ..., 0,1). Then by virtue of (3.10),

(P2 s S[(Py > a0V, (8.13)
where Pi(c) is the indicator of the event {06Qux:0,=i for all t of the form t =(2k™,...,2k"", 1)EVyy},
i=0,...,3. For any configuration o € @, with P?,(o) = 1, we consider the configuration II,c€Q,:

o, 1M>1,
(Mho)e= { 1, to=t.

The number of different o with the same configuration 0o is 4V, The relative Hamiltonian H3er (-]5%)
corresponding to the considered cylindrical boundary conditions satisfies the estimate

Hy (0]6%) —HY " (Ii6]5%) =M X~ (2M) "'z —2 (2M)*—* Y= (2M) - (X/2"~*~2Y —z) = (2M)"'c,,
since Y = y. By virtue of 3.1), ¢, > 0. Therefore
(PO senP <[4~ exp{ —Pe, (2M) =1} ]/ @30V =212V oxp{_Be, ). 3.14)
Similarly (Puy'<<Py»Y®0"* For ¢ with Pj{o) = 1
HY (0]6%) —Hy (ILo|5%) = (2M) = (Z/2~*—2—2Y ) = (2M)*'c,,
where ¢, > 0 by virtue of (3.1), and therefore
(P a4 exp{—PBe, (2M)*=*} ]/ @Y =247 exp{—Bc, ). (3.15)
We obtain (3.11) from (3.14) and (8.15). To prove (3.12), we must define contours. Consider the indicators:
P #(:) of the event {08Quy :0,=i, 6,:€{0,3}}, i=1, 2, {s—t|=1,
P,2(-) of the event {06Qyy:0,=1, 0,=2}, |s—i|=1.

We shall say that the edge I={a, y}<Vu~ is a boundary edge for the configuration ¢ if P.'*(0)+Py'*(c)=1
and a™=y"=1, We ghall denote the set of boundary edges of the configuration ¢ by B(vs). We shall say
that the subset A C B(o) is connected if the set A* of dual (v — 1)-cells is connected. The connected
components of B(g) are called the supports of contours and are denoted by supp I', and the restrictions
|sapp r are called contours of the configuration o, T" = I'(c). Now suppose s, t6Vay, s™=t"=1 and for
6€Qury, P! (0) P (0)=1. Then it is easy to show that there exists a contour I of the configuration o such that
the surface T'* separates the points s and t {(of course, only in the torus 7};' ). The edges of the contour
T are divided into two subsets A, and A, 80 that

II Pa1izko> Hpm;*(o)=1, (3.16)

(O (&, 1)64

- . 5
(T gy = < H Pafiz II Pa71*> . (3.17)
‘MN

(@, 7)€4¢ (o, 1)648,

and at the same time

We go over from the sets A,, A, to their subsets A,, A,, which satisfy the following additional property: For
every edge [6A,UA; oune can find a cube »x(!)=T}! such that lox(l) and x(L)#x (L) for L=*LEAUA,. It is
easy to see that the subsets A,, A, can be chosen in such a way that

[ Ao]+ A =v"[supp T} (3.18)
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(for example, in A,UA, we can include edges of only one direction). It is clear that

Ol < I 11 PR (3.19)

(0, V)ER, (@, VIEA, i

Further, we can take a subset A,=A,(I')<A, such that

I rre< I P I Pl (3.20)

(@, VEA, (@, V)ER, (¢ VIEBNA,
It is easy to see that for the edge («, v) €A,
Puy?(0)=Pur*(0) [P’:MJ.S (o) +Px?:nsﬂ,3 (0) ] S<Poy* (0)Px?;31),3 (a) +P:(a7),3 {0), (3.21)

where for the cube »<Th we denote by PL; the indicator of the event {0€Qux, 0,73 for all r=(t, 3)€Vuy, tEx},
and P..=1-P%,. Substitution of (3.20) and (3.21) in (3.19) gives a sum of not more than 2°***" terms of
the form

CHope TTope T P2P%s I Plansus (3.22)

(aV)EA, (OV)ER, \Aq (@Y)Ehs (o) €A\ A,

each of which corresponds to a certain subset A,=A, The chess-board estimate makes it possible to bound
the expression (3.22) above by

[(PyOSIR/2 ¢ Pyay BNl 2 ( Pi2 PEESIEL Py SIBN Bl /@iy, (3.23)

where PV is the indicator of the event {0€Qux:0.,=2 for r=(2k™,..., 2", 1); o,=1 for r=(2kW+12k7,.. |
2k, 1)}, P% , is the indicator of the event {o € Qpy: in every cube x<=IY; there exists a point 7 =
7(0) € % such that 6., =3}, P#% is the indicator of {06Quv:0,#3 for all r=(1, 3), w€Ty"}. The estimate of
the mean value <P3 Sun® is identical to the estimate of <(Py*,,* above, and we shall not repeat the details.
It remains to estimate (PyP33 dyy'. We assume that Py"(0)P 35 (0)=1. We define the configuration II, ;(g)
by

1, r= (7, 1),

(H]-U(a))i‘: 07 r= (Ty 2)1
o, for the remaining

We have
HY (6]6%) —Hy " (ILo(0) |6%) = (2M) " [ Y/2~—z—y—2z] = (2M)*~'¢s, (8.24)

where c, > 0. Therefore

Py 2P 3) i <16 exp{—PBcs}.

From what was said above there follows the existence of a positive constant ¢ such that for any set of edges
R<Ty:t the probability that R is the support of a contour of a configuration is bounded above by exp{—cB|R|}.
The assertion (3.12) then follows in the standard manner.

We now explain briefly how to construct the states <-> &%, i=1,2. For the details of the construction,
see [10]. Consider the limits

lim Z Py (0)=a?(0), i=1,2.

e (2R )v i

One can show that (R®+a®d =1, {<nWr®>P—>0 as § — o, It follows from this by symmetry considerations
that for sufficiently large values of 8 the events 4,={o:n”(¢)=v>/,} have nonzero probabilities, We now
assume

(BN =(BNAD/<ADV, BEDB,, i=1,2.

Since the events A, are translationally mvarlant the states (.> ' are Gibbs states in the strip Z3 ;,. The
relation (3.4) follows from the fact that <P} —<n“’>N =y>, The relation (3.5) is as readily proved.

This completes part I of the theorem. The proof of part I follows from the fact that all our estimates were
uniform in N. Therefore, as states <->*‘ we can take the limit points of the states <->%' as N — =,

4, Uniqueness and Logarithmic Strip Theorem

In this section, we prove a theorem on uniqueness of the Gibbs states in the low-temperature region
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for a general class of interactions including Czech interactions. In this section, U is an arbitrary finite-
range interaction with finite values, S is a finite set, and we shall assume that S = {0, 1, ... n}.

Let d=1, Vo={t€ 7", |t|<d}, and 0 € Q. We denote by D.(5)<=Qy, the set of relative ground-state
configurations in V;: for all 0€D,(5), 0'€Qy, Hv.(0|5)<Hv.(0’|G). The interaction U is called a B(d) interac-
tion if for all 6€Q, ¢€D,(5) we have g, 0y=0.

This property was introduced in [3], in which a theorem was proved which showed that low-
temperature uniqueness follows from fulfillment of the condition B(d) for the interaction U, However,
the proof contained an error, Proposition 1 being incorrect. Navritil’s example was constructed as a
counterexample to this proposition (it is easy to see that the interaction 2.1)-(2.2) possesses the B(1)
property). Important here is the following property of Czech interactions, which we describe for the
example of the model obtained by replacing in 2.1) the norm |-| by li-ll. All the results of the previous
section remain valid in this case too. Thus, we consider a container V, and suppose that €V, dist(¢, V)=1.
We determine a pair of boundary conditions 5, 5* by the formula

i, s=i,

L M

Then both sets D,;(6”) consist of one configuration ¢?, and
) { i, dist(s,Vy")=1,
@®=10 for the remaining s=V.

We see that change of the boundary condition at one point leads to a change along the complete boundary \Z
however large the value of d.

This same feature makes it impossible to obtain a uniqueness proposition for Czech models as a
consequence of the general criterion of [1]. In accordance with it, for given U and 8, one must consider
the pair of conditional Gibbs distributions g¢+*(-|5’), ¢+*(-|7”) determined by a pair of boundary conditions
—t =l

o, o that differ at a single point t€7Z°, - calculate the Kantorovich—Rubinstein—Ornstein— Wasserstein
distance R(gv*(-|9'), ¢v*(-]6”)) between them, and consider the function &~ =sup - R(g+"(-|5"), ¢+*(-|6")), where

sup is taken over all pairs &, o that are identical outside the point ¢€7". Then for the interaction U and
reciprocal temperature S there is uniqueness if for some finite container V7

PRARELAT 4.1)
tezv

But as we have just seen in the given example, for points t € V¢ with dist(z, V)=1, k.V~|dV|, and therefore
D kY ~|0V P, “4.2)
ez’

and for v = 3 this contradicts (4.1). The relation (4.2) also holds for the original Czech model (2.1), but
only for containers having the shape of a parallelepiped. Moreover, for it one can choose the container in
such a way that the relation (4.1) holds at a sufficiently low temperature. Namely, as V one must consider
a polyhedron having all of its faces parallel to one of the planes {t+i®+...=0}. In this way, we see that
for some Czech models low-temperature uniqueness follows from the given criterion, but for others it does
not. Fortunately, uniqueness follows directly from B(d).

~

THEOREM 2. Let U be a B(d) interaction, d = 1. There exists a § = B(U) such that for 8 = §
there exists precisely one (U, ) Gibbs state.

We assume that the reader is familiar with the condition of stability of periodic ground-state con-
figurations — the Peierls condition, also called the Gertsik—Pirogov—Sinai condition (see [11,12]).

PROPOSITION 1. The following two conditions are equivalent: 1) the interaction U is a B{(d)
interaction with a certain d = 1; 2) the interaction U has precisely one periodic ground-state configuration.
For it, the Peierls condition is satisfied.

Proof of the Proposition, The implication 2=1 is the content of Proposition 2.1II of [3]. To prove
the opposite assertion, we define the "gap" éd( U) by

84(U)= inf min  min_(Ay, (0’| G)— Hv,{c"| ).
Geg O'€Qy & 6"€D 4(0) )

()70

290



By virtue of the condition B(d), the configuration o'€D,(5) for any o, and therefore 5,{U) > 0. For any
configuration ¢’€Q, o, #0 , we now set

s 01/, 1@ Vd,
(6"):=
nt! teVd,
where 7, is an arbitrary configuration in D ( ¢'). By definition,

H(o')~H (5")>6:(U)>0.

Therefore, if o is a ground-state configuration, o = 7’ = 0. Moreover, if for ¢'€Q, [{t€Z">, o./#0}|=k, then
it can be proved by induction that

H(c')—H (&) =k|V,|~164(U).
But this is the Peierls condition in our case.

COROLLARY. In the Czech models considered above there is precisely one low~temperature
Gibbs state.

The assertion of Theorem 2 can be augmented by a "logarithmic strip” assertion, which means
the following. For any configuration ¢€Q,, we call the union of the connected components of the set
{t€V.; 0,0} adjacent to the boundary 8V, the strip Rio). We set &./(0)=maxdist(z,0V,). Let f(n)=0 be

) aR (o)
some function. We shall say that the interaction U has the property of an f strip at the reciprocal tempera-
ture B if the probability gv.({0€Qv,:%/(0)>/(n)}|6)—=0 as n — « uniformly with respect to ¢ € Q.

THEOREM 3. Under the assumptions of Theorem 2, the interaction U has the log-strip property
for g = B.

Proofs of Theorems 2 and 3. It is easy to see that for any container We | |W|<<w the functions
gw® (0w [6) are uniformly continuous with respect to g € [0, «]. Therefore, for any & > 0 we can find a
B(e) < o« such that for all g = B(&)

gvf ({06Qy, 1 0, %01]6) <e uniformly w.r.t. 5eQ. 4.3

We shall say that the point t € W is irregular for the configuration oy, if o, # 0. Let R(o) be the set of
irregular points of the configuration 0€Qy,, R*(c)={t€7", dist(t, R(o))<d/2+1}, and R(o) be the maximal
connected component of the union A*(c)U[V.\V,_s] that contains the second term. We shall study the random

variable £.(c)= max dist(z,dV,). Suppose we are given an increasing function f(r)—= as n —> «=. The
16R(a)

connected component T of the set R(0)\[V.\V.-.] is called a tongue if maxdist(z,0V,)=f(n). If T1 and T2
16T

are two tongues of the configuration o and t, and t, are irregular points, t; € T,, i = 1,2, then

ll’c1 ~t Il >d +1. Every tongue has a nonempty intersection with the layer F,=V .-4\Vin-s-1,. We label
its points and call the point of intersection of T 1 F, with the minimal number the root of the tongue T.

We denote the tongue T with root at the point s € T ] F, by T_. If the point s is not a root of the tongue,
we shall assume that 7.=9. We obtain in this manner an ensemble of tongues 7 ={T,, s€F,} with probability
distribution <.> 8-> on it; if by T (o) we denote the set of tongues of the configuration o, then

(Drna=gv, ({06Qy : T(c")=T}|5).

We estimate the probability of the configuration of tongues T = {Ts}. If r is the number of
irregular points in the tongue T, then |7.|<r(d+2)". On the other hand, for any set of v points one can
find a subset of at least [r(2d+1)-"] points for which the distances pairwise between them are greater than d.
Therefore, in the tongue T, there are |T,|[2d(d+2)]™ irregular points separated pairwise by not less than
d + 1. Hence and from (4.3) it follows that

(Drps< exp{ —c” E | T,] }, @.4)
where ¢ —o as g — « (ike the constants cf’, which are introduced below). Indeed, let &, &,...€V, be
a sequence of points, [ti—t|=d for i+j, dist(t;, 6V,)>d. Then for 3=p(e)

&, (o, #0,i=1,2,.. }|[®) =0}, ({0,,%0,i=2,3,.. .} D) gV, ({0, 7 0} | T, {0y, 0,
_ : “4.5)
1=2,.. )< gy, (0,7 0,i=2,3,...}|F) sup ¢f, ({0 € Uy, 0 7= 0}| )< e, ({0, 0,i=2,3,.. }| 5.
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Iterating (4.5), we obtain (4.4). We can now estimate the probability of the event &.(a)>f(n). By definition,
if £.(0)>f(n), then for at least one point s€F,, I',=9. Therefore

Ho: E,,(o)>f(n)}>m\2exp{ —c ZlTl}——i 4.8

{Ts}

where the summation is extended to all sets of tongues, including the empty one; it corresponds to the
subtracted unity. The last expression does not, in its turn, exceed

[max(l-}- 2 exp{—c;“[TSI})]wan -1 4.7)

SEFy, el Tol>F(n)

On the other hand, the number of (d + 2)-connected sets of irregular points to which a tongue with fixed
root and with N pomts corresponds does not exceed | (2d+4) 1?*, Therefore

Z exp{— cﬂ”lT[}< Z(2d+4)2’”exp{ e k}< exp{— CB f(n)},

T:|Ti=f(n) h=f(n)

and, hence,
&> ()8 5 < (1 + exp {(— P F (np)en™v — 1,
For example, setting f(n) = ln n, we have
IS) _c(z) N, V-1 . V~1-—c<2)
G >lnnp, s <A+ 078 2™ — 4 Cexp (2”78 } — 10

as n —> = for sufficiently large B. Thus, the logarithmic strip theorem is proved. Similarly, for
f(n)=hn, A<<1, we have for large n

<§">}»n>:,a< exp {'—Cp('”n},

where C§(3)=Cﬁ(3) (M) as B — « forany A. In conjunction with the standard assertion of the exponentially

weak dependence of the correlation functions on the shape of the container at low temperatures we can con-
clude from this that
<0'A>1?,3:
<0A>27§2

“
— 1| < Capexp{—cs )n}, Cap<oo,

uniformly with respect to &, 5,€Q. With this we corhplete the proof.

Remarks. 1. From Theorem 2 and Proposition 1 there follows low-~temperature uniqueness for
models with unique periodic ground-state configuration. This result has been independently announced by
D. Martirosyan. 2. Similar ideas have already been applied to different situations, in [13,14], 3. Outside
the low-temperature region, the assertion of uniqueness for models with unique ground state is no longer
true {see [10] for the case of continuous spins, and the following section for discrete spins). 4. In the case
of continuous spins, uniqueness of the ground-state configuration does not entail uniqueness of the Gibbs
state even in the low-temperature region. A corresponding example is constructed in [15],

5. Phase Transitions in Czech Models

We do not know whether phase transitions take place in the examples of the Czech models described
above. Therefore, in the present section we consider one further Czech model, in which the existence of a
phase transition can be proved.

In the new model, the phase space is S ={0,1, ...,2q + 1} (in the original model, q = 1), As
before, the interaction U is given by two functions U (a), U(a, b), the relation @.1) holds, and the table
(2.2) must be replaced by

0, a=b,
0, 1<a,b<g ¢+1<<a, b 2, 0 a=0
z, a=0,b=1,...,2q, - ’ s
U(a,0)=Ud,a)= { x, =0, b=2g 1, U(a)= lz, a=1,...,2q, (5.1)
y, a=1,...,29,b=29+ 14, Z, a=2q+i.

Y, a=1,...,9,b=q9+1,...,2q,

It is clear that in the model considered all the above properties of the Czech models still remain. However,
it also. has new features.

292



THEOREM 4. Suppose v = 2 and that the parameters of the interaction (5.1) satisfy the conditions
of Theorem 1. Then one can find a function x(q, v) and a number q_ = qo(v) such that for all g = 9
x = x(q, v) there exists a value B(g) of the reciprocal temperature for which there exist at least two
different translationally invariant Gibbs states <->°, <.>'. At the same time, <P,)°>'), <P >'<*/, and § — =
as q —> oo,

The proof of the theorem is based on the technique of [10,16], and we therefore limit ourselves
to sketching it. It is necessary to consider a state in the volume V with pericdic boundary conditions,
(- }S, and prove for it the validity of the three following propositions:

(PS>1 as B—oo; (P,0,h<!, for some B,<oco;  (P(1—PS)>SB<'/, for all =B, and s+t 5.2)

These propositions must hold uniformly in n. From this one deduces that the limit point (-)8 of the
sequence (-)5 is nonergodic for a certain 8 = g(q) > Bys and the theorem is established by applying to
¢.>*@ the analog of the ergodic expansion (see [10]).

We show only that <P,°>,*~0 as q — = uniformly in n, this being equivalent to (5.2). For this,
we note first that the partition function can be estimated below as follows:

Z(Va, ) =" exp{—Bz| Vul}. (5.3)
By virtue of the chess-board estimate,

(PO AP, P11V,

where P! is the indicator of {0€Qy,:0,=0 for ¢=(2k®,...,2k™)}. Therefore
4
[ @g (T TR
Py 5&[( < 3@~y L exp {2Vfa},
< l>n = qIVn.! exp{ ﬁzlvnl} = q P{ [3 }

and this proves our assertion. The remaining assertions are verified as in [16]. With this we complete
the outline of the proof of Theorem 4.

It would be very interesting to understand the behavior of the original Czech model at the point T_..
where half-space nonuniqueness commences: What is the rate of decrease of the correlations, does the
free energy have a singularity, and so forth? However, we are not yet able to answer these questions.
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