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U N I Q U E N E S S  A N D  H A L F - S P A C E  N O N U N I Q U E N E S S  O F  

G I B B S  S T A T E S  I N  C Z E C H  M O D E L S  

S . B .  S h l o s m a n  

A study is made of a new c l a s s  of in te rac t ions  for  which there  is uniqueness of a Gibbs 
s ta te  in a whole space  toge ther  with nonunlqueness of the s ta te  in a ha l f - space .  The 
method of ref lect ion posi t iv i ty  is used to study these  in te rac t ions .  

1 .  I n t r o d u c t i o n  

In [1], a new c r i t e r ion  of uniqueness for  a Gibbs s ta te  was found. In many  c a s e s ,  this c r i t e r ion  
makes  it poss ib le  to exhaust  the en t i re  uniqueness region.  Moreove r ,  it is cons t ruc t ive  in the following 
sense :  If in a ce r ta in  model uniqueness holds at a ce r t a in  t e m p e r a t u r e  above the c r i t i ca l  t e m p e r a t u r e ,  then 
this c i r cums tance  can be ver i f ied  o v e r  a finite number  of s teps  of a ce r t a in  a lgor i thm.  F o r  some t ime,  the 
authors  of [1] bel ieved that t he i r  c r i t e r i on  is also a n e c e s s a r y  condition of uniqueness away f rom the cr i t ica l  
point.  La te r ,  however ,  it b ecam e  c l e a r  that this is not so for  models  in which there  is uniqueness of the 
Gibbs s ta te  in the comple te  space  but not in a ha l f - space  (if such models  exist) .  In the p re sen t  paper ,  the 
question of the exis tence  of such models  is answered  in the a f f i rma t ive .  We call  them Czech mode l s .  The 
s imples t  model of such fo rm was  found by the Czechoslovak Mathemat ic ian  J .  Navr~ti l  and was d iscussed  
at the P a r i s  Seminar  on Mathemat ica l  P hys i c s .  

One of the ways  of descr ib ing  Czech models  is that in them there  is p r ec i s e ly  one g round-s ta te  
configurat ion in the comple te  space  (i. e . ,  configurat ion with minimal  ermrgy) but seve ra l  g round-s ta te  
configurat ions in the ha l f - space  {with the s ame  boundary condition), these  possess ing  a ce r ta in  s tabi l i ty  
p rope r ty  (Peier l s  condition). 

In this pape r ,  we study uniqueness p rob l ems  for  the s imples t  Czech mode l s .  We shall d i scuss  the 
ref lect ion of the unusual p ic ture  of Gibbs s ta tes  on the i r  analytic p r o p e r t i e s  in a s epa ra t e  publicat ion,  in 
which it will be shown that the p r o p e r t i e s  of comple te  analyt ic i ty  [2] b reak  down for  Czech in te rac t ions .  

Navr f i t i l ' s  example ,  contained in his d iploma thes i s ,  was cons t ruc ted  init ially to prove  the exis tence  
of a lacuna in the proof  of the uniqueness t heo rem in [3]. Never the le s s ,  all the main  proposi t ions  of [3] a r e  
c o r r e c t ,  and the lacuna can be filled; in Sec .4  of the p r e sen t  paper ,  we p rove  a "uniqueness theorem with 
logar i thmic  s t r i p , "  which es t ab l i shes  the uniqueness of the l o w - t e m p e r a t u r e  Gibbs s t a t e s  for  models  with 
one per iodic  g round-s t a t e  configurat ion sat is fying the P e i e r l s  condition. The words  " logar i thmic s t r i p "  
mean  that the region of instabi l i ty  in the con ta iner  V which a r i s e s  when unstable boundary conditions a re  
imposed  has  width of o r d e r  In I V]. Note that by uniqueness we he re  understand uniqueness in the c l a s s  of 
all (and not only t rans la t iona l ly  invariant)  Gibbs s t a t e s .  A s i m i l a r  uniqueness a s se r t i on  has  been announced 
by D. Mar t i ro syan .  
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The p a p e r  is a r r a n g e d  as  fol lows.  In See .2 ,  we d e s c r i b e  the s i m p l e s t  Czech  model .  In the fol lowing 
sec t ion  we p rove  fo r  it h a l f - s p a c e  nonuniqueness  in the l o w - t e m p e r a t u r e  reg ion .  The p roo f  is  based  on 
the use  of  a va r i an t  of  the method of  r e f l ec t ion  pos i t iv i ty .  In the fifth sec t ion ,  we d i s cus s  the p r o b l e m  of the 
ex i s t ence  of  phase  t r a n s i t i ons  in Czech  m o d e l s .  

in the p r o c e s s  of  wr i t i ng  this p a p e r ,  the au tho r  d rew much  of  value f r o m  d i s c u s s i o n s  with R.  L .  Dob-  
rush tn ,  D. G. M a r t i r o s y a n ,  E.  A. P e c h e r s k i i ,  and S. A.  P i r o g o v .  In p a r t i c u I a r ,  a r e m a r k  of  Dobrush in  
p e r m i t t e d  a s impl i f i ca t ion  of  the o r ig ina l  p r o o f  of  the un iqueness  t h e o r e m  of  Sec.  4. I should l ike to take 
this  oppor tun i ty  of  e x p r e s s i n g  m y  thanks to t hem.  

2 .  T h e  S i m p i e s t  C z e c h  M o d e l  

Le t  Z" be a v - d i m e n s i o n a l  in t eg ra l  l a t t i ce ,  Z~={ t=( t  (~) . . . .  , t(~), t(~)~ Z }. Suppose that  at  each si te  
t~Z ~ t he re  is a spin va r i ab l e  at ,  which takes  four  va lues ,  a t E {0,  1, 2, 3} -= S. Le t  ft be the se t  of  all 
conf igu ra t ions  ~ :Z "-~S, and ~ be the usual  o- a l geb ra  gene ra t ed  by cy l ind r i ca l  subse t s .  F o r  A c  Z ~, the 
c o r r e s p o n d i n g  ob jec t s  will  be denoted by 9.~, ~gA. 

In ou r  mode l ,  the i n t e r ac t i on  U={UA((~), A c  Z ~, IAI<~}  is de t e rmined  by the spec i f i ca t ion  of  two 
funct ions  U(a), U(a, b), a, b~S. Namely ,  

( U((~t), A =  (t}, 

Ux (~) = U (a,, ~),  A = (s, t}, 
0 o t h e r w i s e .  

l ~ - t l = l ,  

Below,  we shal l  r e q u i r e  a d i f fe ren t  n o r m :  ) l l=max Itc')l. The fo rma l  H a m i l -  H e r e ,  I t [=g (t(~)):+. . .  +(t( '))  ~. 

tonian is d e t e r m i n e d  by the e x p r e s s i o n  H ( ~ ) =  ~ ,  
A ~ Z  ~ 

tables  : {0 
X~ 

U (a, b) = U (b, a) ---- X, 
Y, 
Y, 

UA (e). The in t e rac t ion  U is speci f ied  by the following 

(2.1) 

a~b,  
(a, b) = (0, t), (0,2). [ 0, a=0, 
(a, b) = (0, ~), ~U(~)= ~zo, ~=1,2, 
(a, b) = (l, 3), (2, 3), [ Z  a=3. 
(a, b) = (t, 2); 

(2.2) 

In this  way,  the in t e rac t ion  is spec i f ied  by seven  n u m b e r s ,  and we a s s u m e  that  X, Y, Z, x, y, z ,  z~>0; X, Y, 
Z>>x, y, z~, z2. Below,  we i m p o s e  addi t ional  r e s t r i c t i o n s  on t hem.  

A spec i f ic  fea tu re  of  the model  is the fol lowing.  It has  a unique g r o u n d - s t a t e  conf igura t ion ,  i . e .  ~ 
a conf igura t ion  (r that  m i n i m i z e s  the Hami t ton ian  H ( a ) ,  namely  a - 0. The va lues  a t = 1 and 2 a r e  
e n e r g e t i c a l l y  l e s s  advan tageous ,  and the value cr t = 3 even m o r e  so .  However ,  if  the event  ~ =3  o c c u r s  
a long a c e r t a i n  con t ou r  F = { t ~  as  a r e su l t  of  t h e r m a l  f luc tua t ions ,  the ene rge t i c a l l y  m o s t  advantageous  
method  of  r e tu rn ing  to z e r o  va lues  within F c o n s i s t s  of  t r ans i t i on  th rough  the s t r ip  of  i n t e rmed ia t e  va lues  
a t E {1,  2} (see F ig .  l ) .  Two poss ib i l i t i e s  o- 2 and (r 2 a r e  the bes t .  The unusual  p r o p e r t i e s  of  the Czech  
mode l s  a r e  due to the fact  that  the n u m b e r  of  such  bes t  poss ib i l i t i e s  is g r e a t e r  than one.  More  p r e c i s e l y ,  
in a c c o r d a n c e  with the p i c tu re  we have g iven  t h e r e  is in o u r  model  a "phase t r ans i t i on  along a bounda ry . "  
Of c o u r s e ,  if such  a phase  t r ans i t i on  is to take p lace  the boundary  m u s t  be at  l e a s t  two d imens iona l ,  and 
t h e r e f o r e  the unusual  p r o p e r t i e s  of  Czech  m o d e l s  a p p e a r  only if  the d imens ion  is at l e a s t  t h r ee .  T h e r e f o r e ,  
we obtain  the na tura l  h y p o t h e  s i s :  the c r i t e r i o n  of  un iqueness  ment ioned  above (the c r i t e r i o n  of  [1], see  
a l so  Sec.  4 of  the p r e s e n t  paper)  is a necessary ,  and suff ic ient  condi t ion of  uniqueness  away f r o m  the c r i t i c a l  
t e m p e r a t u r e  i f  the d imens ion  is two. 

3 .  H a l f - S p a c e  N o n u n i q u e n e s s  

The g r o u n d - s t a t e  conf igura t ion  of  ou r  model  being unique,  un iqueness  of  the l o w - t e m p e r a t u r e  Gibbs 
s t a t e s  is a p e r f e c t l y  na tura l  p ropos i t ion .  We shal l  c o n s i d e r  it in the fol lowing sec t ion .  The ques t ion  of  the 
un iqueness  of Gibbs s t a t e s  at all t e m p e r a t u r e s  is not so s imple .  In Sec.  5, we shal l  d i s cus s  a Czech  mode l  
in which ins tead of  two i n t e rm e d i a t e  spin va lues  (a  = 1, 2) t he re  a r e  2q, and we shal l  show that  at l a r g e  q 
a phase  t r ans i t i on  of  the f i r s t  kind with r e s p e c t  to the t e m p e r a t u r e  t akes  p lace  in the s y s t e m .  In p a r t i c u l a r ,  
at a c e r t a i n  c r i t i c a l  value Tc r (q ,  v ) of the t e m p e r a t u r e  t he re  ex i s t  in this  model  at l eas t  two Gibbs s t a t e s .  
The case  with q = 1 r e m a i n s  open.  

We now turn  to a new p r o p e r t y  of  the mode l s  - the h a l f - s p a c e  nonuniqueness .  We begin with some  
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definitions. Let  

# 8 ,..g 

3 J 3 

Fig. 1 

Q~=(QA,(.I.), A~Z v, IAI<~} 

be the Gibbs specif icat ion for  the in terac t ion  U and rec iproca l  t empera tu re  ti (see [4]): 

QA"((~AI~)=Z-'(A, ~, 6") exp {-bH~(~Ale)}, o~e~A, ~ a ,  

with re la t ive  Hamiltonian 

HA((~AIB)-~ Z UA(~176 A ~  Z(A,~,6)-----~-~,exp{-~H~(o.io)}. 
A : A ["I A =r ff) e A ~O A 

Let Z+'---{t ~ Z ~, t(~)>0}, ~+=~? Z~, ~+=~Z~, Z ~ = - Z ~ Z .  ", f]0=i2Z~ and e0~0 be a fixed configuration (boundary 

condition in the hal f -space) .  We define the Gibbs specif icat ion in the ha l f -space ,  Q~0 = {Q~0, ~t ('[ "); A~ +~, 

IA[<o~}, as follows: for  A~Z~, OA~g~A, 6+~fl+ we set  Q~- (o~te+)=Q.~~ le+~). 
~0, A 

An a r b i t r a r y  probabil i ty measure  5~ on (~,~) is called a s tate .  We shall denote averaging with 
respec t  to this measure  by < )~ (or s imply ( ) ) .  The state 5~ is called a Gibbs state with interact ion U 
and rec iproca l  t empera tu re  /3 (or (U, ti) Gibbs s tate ,  see [5]) if its conditional distr ibutions sat isfy 

<{o~f~ : a~=~A}I~>~=Q~(0~Io), ~6~, Ac 7/.'. 

S imilar ly ,  the probabil i ty  measu re  ~+ on (~+, ~+) is called a state in the ha l f - space  Z J .  The 
state  ~+ is called a Gibbs state with in teract ion U, rec iproca l  t empera tu re  ~, and boundary condition ~fi~0 
if for  its conditional distr ibutions we have 

We define s imi la r ly  Gibbs s tates  in the s t r ip  Z~,r~] ={tfi Z ~, i <.t(~)<.N} with boundary conditions o0e~0, o~,+~e 

~+~, where  ~2~+~=~ Z~+~, Z ~+t --- (to Z ~ : t(')>~N+i}. 

TO formulate  our  theorem,  we introduce indicators  P~(~r) of events {o6~; re=i}, t~ Z ~, i=0, 1, 2, 3. 

THEOREM 1. We assume that u >- 3 and that the following res t r i c t ions  hold: z~=z~=z, X>~x, 
Y~y, Z~z, 

X>2 ~-~(2Y+z), Z>2 ~-~[ (2v- t )  Y+z], Y>2 *-~ (2x+y+z). (3.1) 

I. Let  ~0 ~ 3. The re  exists  ~c = tic (U, v) such that for  all ti >- Bc there  exist  at least  two 
Gibbs s ta tes  <.>~. ~, i=i ,  2, in the ha l f -space  with interact ion U, rec iproca l  t empera tu re  ti, and boundary 
condition ~0" Moreover ,  

<pt'>~, ~>~/~, (3.2) 

<P~>~"~t as ~ o o ,  t(,)=t. (3.3) 

II. Let  N~2, e~ ex+~0.  There  exis ts  ~:=~o(U, v) such that for  all ~>~o there  exist  at leas t  
two Gibbs s ta tes  <.>}~, i = 1, 2, in the s t r ip  ZION ] with interact ion U, rec iproca l  t empera tu re  ti, and 
boundary conditions otiS0, ~+~6~+~. Moreover ,  

<P~'>~'*-~ t 

The convergence in (3.5) is uniform in N. 

<Pi >~' >t /2,  (3.4) 

as ~-.oo for  t(v)=t. (3.5) 

Remark  1. Theorem 1 is based on the following simple observat ion.  We cons ider  the conditional 
ground-s ta te  configurations of ou r  model in the ha l f -space  Z +~ with boundary condition ~0 = 3, i . e . ,  
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configurations that minimize the formal relative Hamiltonian HZ~ (Iv0). It is easy to see tha~ there are  
(2) 

prec ise ly  two such configurations,  namely,  ~+(~) and o+ " 

(o+")), ( O, t( ')>i. 

It is only necessa ry  to prove their  stabili ty,  i . e . ,  that there are  Gibbs states near  them. 

Remark  2. The configurations o~ ) differ only at the points teZ+ ~ with t(~)=l. Nevertheless ,  
states (.>~.' differ.  Moreover ,  for  all teZ~ 

(pr ~=1, 2, 

(P,~)~'*>(P,(~-~))~*, i=i ,  2; 

However,  we shall not prove this. 

N-----3, 4 . . . . .  

(3. ~) 

the 

(3.7) 

(3. s) 

Proof .  We note f i rs t  of all that the studied interaction has the proper ty  of reflection positivity 
with respect  to reflections in the coordinate hyperplanes of the latt ice Z v (the method of reflection positivity 
is presented in [6-9]). We recall  that a state ( .  } in A ~ Z  ~, ]A]<r162 is said to be a ref lect ion-posi t ive state 
with respec t  to the reflection ~ in the hyperplane L ~  v if ffA=A and <F-ffF>~>0 for any ~A.-measurable  
function F=F(o~,). Here,  A + C A is one of the halves of the container  A cut off f rom it by the plane L, 
A=A+U~A, +, (~F) (oA) =F(boA), and (~oA) t= (oh)~. Now let H A(~A) be the relative Hamiltonian corresponding 
to the interaction U and cer ta in  ,~-symmetric boundary conditions. These could be periodic boundary 
conditions, if A is a parallelepiped,  o r  any boundary conditions �9 ~ ~ such that e~=v~ for  atl t. Then 
the relative Hamiltonian can be represented in the form 

HA (oA) =B (oA) +0B (o~), (3.9) 

where B is a cer ta in  ~A*-measurable function, if, of course ,  A = ,gA. F r o m  (3.9) it follows (see [8]) that 
the corresponding state in A is reflection positive. 

An important  consequence of reflection positivity for us will be a chess -board  est imate ,  which we 
shall descr ibe  in the form in which we need it. Let A be a cylindrical  container,  the product of a discrete  
torus T ~-~ and a ray Z+={tcZ,  t>~0}~ On the boundary of A we specify the boundary condition ~ and 
denote the corresponding Gibbs state by ( ),.~,v. We assume that all periods of the torus T ' - '  are  even. 
Then the corresponding Gibbs state in A is reflection positive with respect  to all reflections of the group 
~ ' - ' ,  which is generated by the reflect ions in the hyperplanes orthogonal to the hyperplane {t" t(')=0}. We 
shall give the name e lementary  cube • ~-~ to a subset of 2 ~-~ different points of the torus T "-', •  ~2 . . . .  ], 
such that for any two of them N~-~jN=I, i#j. Suppose that for every  cube • ~-~ there is defined a function 
F~(o~) that depends only on the res t r ic t ion  (~],• F o r  any two cubes ~t, n '  we choose an element {}EO ~-~ 
such that •215 We define the functions 

F~,~, (oA =F~ (~-'oA), F~ ~ (o~) = I I  F~ ~, (,~,0. 

It is easy to see that these definitions are  co r rec t .  The chess -board  est imate  is now the inequality 

(HF~ (CyA) >. ~,~ H (,FxG (OA) > ~/e]r:~ , (3, I0) 
p e r , :  n 

The es t imate  (3.10) follows from the fact that U is a ref lect ion-posi t ive interaction.  Its derivation from 
reflection positivity can be found in [8]. With obvious modifications,  all that has been said above can be 
extended to the case of states in the container  T~-~• [i, N]. 

We now prove proposit ion II of the theorem.  We consider  the container 

V~.,.={t~ Z ~ :-M<~t(~<M, i= t  . . . . .  v - t ,  l<t( ')<N} 

and denote the set of configurations r by ~,~. We consider  the configuration ~~ 

6~ ~ = I 
3, t~O, 

O, t>0. 

In VM~ we cons ider  a periodic boundary condition along the f i rs t  ~ - 1 directions and a boundary condition 
independent of them and corresponding to the configuration K0a along the last  direction.  Our container  is 
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t he reby  ident if ied with the p roduc t  T ~  t X it, N] of  a (v - 1 ) - d i m e n s i o n a l  to rus  with pe r iods  2M and the 
s egmen t  [1,  N] .  We shal l  denote  the C o r r e s p o n d i n g  Gibbs s ta te  < )p,~.~, by <5.~. Let  < ~ be some  
l imi t ing  point  of  the fami ly  of  s t a t e s  < 5 ~ .  It is c l e a r  that  < 5~-' is a Gibbs s ta te  in the s t r ip  ~[~.~1. We 
show f i r s t  that  this s ta te  is not  e rgod ic  f o r  ~>~+ and s o m e  ~<oo (we mean  e rgod ic i ty  with r e s p e c t  to the 
g roup  ~'-~).  This  is a consequence  of  the two fol lowing a s s e r t i o n s :  fo r  all s ,  t ~ VM~ with s(">=t(')=t 

<P+~ as ~+oo u n i f o r m l y  in M, N, s, (3.11} 

<P)P+~>,~,,r as ~+oo u n i f o r m l y  in M, N, s, t. (3.12) 

Indeed,  by v i r tue  of  the s y m m e t r y  <P+Du,+~=<P,'),~ -~, hence ,  <P,D,,x ~, (P+~),~N~-+~/~ as /3 --9 ~ un i fo rmly  in M, 
N by v i r tue  of  (3.11).  T h e r e f o r e ,  <P)>~P', <p25,~,/~, <P+'P+~>~--*O as /3 ~ oo, as  follows f r o m  (3.11), (3.12) 
fo r  s ,  t with s+*~=tr and this  p r o v e s  the s ta te  (.5~- ~ is none rgod ic .  

The p roo f s  of  the a s s e r t i o n s  (3.11) and (3.12) cons i s t  of  the usual  appl ica t ion of  the e s t ima te  (3.10) 
(see [6-9]). We p rove  (3.11). Let  s = (0, . . . ,  0 , 1 ) .  Then  by v i r tue  of  (3.10), 

<p o>~ ~ [ <pv0>~ ~] ,/(~)v-,, (3.13) 

w h e r e  P~(cr) is the i nd i ca to r  of  the event  { ~ , + ~  :ai=i fo r  all t of the f o r m  t = (2k (~) . . . . .  2k (~-l~, t)~V,+~}, 
i=-O . . . . .  3. F o r  any conf igura t ion  cr ~ ~MN with P ~ ( ~ )  = 1, we c o n s i d e r  the conf igura t ion  Hloe~,~:  

( ILc)+= {c~, tr 

The n u m b e r  of  d i f fe ren t  ~ with the s a m e  conf igura t ion  g ~  is 4 ~v-'. The re la t ive  Hami l ton ian  H~ e~ (. I~ ~ 
c o r r e s p o n d i n g  to the c o n s i d e r e d  cy l ind r i ca l  boundary  condi t ions  sa t i s f i e s  the e s t ima te  

Hv ~'' (~le ~ -H~. ~' (IL'~ I e ~ >~M~-iX - (2M) ~ - ' z -2  (2M) ~-'Y---- (2M) ~-t (X/2~-~_2y_z) =__ (2M)~-'c~, 

s ince  Y >- y.  By v i r tue  of  (3.1), c~ > 0. T h e r e f o r e  

<p 0>~ ~< [ 4~v-, exp{ -~ct  (2M) ~-l} ]i/c~>v-,=2inv-, exp{-~ct}. (3.14) 

S imi l a r l y  <pj>~<~<p+~>~/(~,~>v-,. F o r  ~ with P~(~)  = 1 

~~ 0~ ~ '  ~o~) Hv ( o 1 ~ ) - / I v  (Iliol ~(2M)~-i(Z/2~-i-z-2Y)~(2M)~-'c~, 

w h e r e  e 2 > 0 by v i r tue  of  (3.1), and t h e r e f o r e  

<P,"> ~ <  [4 My-' exp {-~c~ (2M) ~-t } ] ~/(~)v-, =2,nv-~ exp {-~c~ }. (3.15) 

We obtain (3.11) f r o m  (3.14) and (3.15). To p r o v e  (3.12), we m u s t  define c o n t o u r s .  Cons ide r  the i nd i c a to r s :  

P , /* ( . )  o f  the event  { o ~ , ~ : o , : i , ~ { 0 , 3 } } + i = 1 , 2 ,  I s - t l : l ,  

p,+i2(.) of  the event  {oef]Ms :o+=i,  ~+=2}, Is-t l=1. 

We shall  say  that  the edge l={a, ~}~V~,r is  a boundary  edge fo r  the conf igura t ion  a if  P~t*(o)+P~T~2(o)=I 
and cz(~>=~>=l. We shall  denote  the se t  of  boundary  edges  of the conf igura t ion  cr by 13(cr). We shal l  s ay  
that  the subse t  A C B(cr) is connec ted  if  the se t  A* of  dual (v - 1 ) - c e l l s  is connec ted .  The connec ted  
componen t s  of  13 (~) a r e  ca l led  the suppor t s  of  c o n t o u r s  and a r e  denoted by supp F, and the r e s t r i c t i o n s  
t~l+~,, r a r e  ca l led  c o n t o u r s  of the conf igura t ion  ~, F = F ( a ) .  Now suppose  s, t~V,+,,, s(~=t(~>=i and fo r  
~ 2 ~ ,  P ) ( o ) P t ~ ( c ) = t .  Then it is  ea sy  to show that  the re  ex i s t s  a con tou r  F of  the conf igura t ion  ~ such  that  
the s u r f a c e  F* s e p a r a t e s  the points  s and t (of c o u r s e ,  only  ia the t o r u s  T ~  t ). The edges  of  the co n to u r  
F a r e  divided into two subse t s  A 0 and At, so that  

and at the s a m e  t ime 

(3.16) 

(3.17) 

We go o v e r  f r o m  the se t s  A0, At to t he i r  subse t s  2io, ~ii, which sa t i s fy  the fol lowing addit ional  p r o p e r t y :  
e v e r y  edge IG/XoU2i~ one can  find a cube •  t such  that  l~• and •215 fo r  l~4:l~5oUA, It is 
ea sy  to see  that  the subse t s  5~ 5i can be chosen  in such  a way  that  

l&]+lS, l~>, - ' l supp rl  

For 

(3. is) 
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(for example ,  in h0UA, we can include edges  of  only one d i rec t ion) .  It is c l e a r  that  

~Y ~ a Y / M N .  
(~, ~)E,xo (a, V ) ~  

(3. ~9) 

F u r t h e r ,  we can take a subse t  A ~ = ~ ( P ) c A ,  such  that  

1[I P~#(~)<  1-[ P:(~)  I~ P}(is). (a.2o~ 

It is easy  to see  that  f o r  the edge (a, ~)~A0 

s + r a l p~,~2 (is) = p ~ 2  (is) [p~r (is) p~r (is) ] ~<P~v '2 (is)p(-~a,a (is) +p~(<>~ ,is), (3.21) 

w h e r e  fo r  the cube •  -~ we denote by P ~  the i nd i ca to r  of  the event  {o~3,x, is,#3 fo r  all r=(~,  3)~V_~, ~ x } ,  
P"  I ~§176 and ~,a= - / % .  Subst i tut ion of  (3.20) and (3.21) in (3.19) g ives  a sum of not m o r e  than 2 ~ ' '  rt t e r m s  of  

the f o r m  

~M~,  (3.22) < I I p r  II ' 1I _ [ ~-a~/z- z(c~V), 3 / 

each  of  which c o r r e s p o n d s  to a c e r t a i n  subse t  A0c)~0. The c h e s s - b o a r d  e s t ima te  makes  it poss ib le  to bound 
the e x p r e s s i o n  (3.22) above by 

[ < PvO)l~d/~ < Pva>la,Na.V~ < PvZ~ p~,~)lad <p},a}la \ a.i]z/(~M~ v ~, (3.23) 

w h e r e  P~ is the i nd i ca to r  of  the event  {o~, ,~  :is,=2 fo r  r= (2k  "~, ., 2k ~'-~), 1)~ o , = l  fo r  r=(2k('~+t,2k ~,  
2k ~ - ' ,  1)} p3 i8 the i nd i ca to r  of  the event  {o- ~ fame: in e v e r y  cube •  the re  ex i s t s  a point r = 

' V,3 
r (o-) ~ ~ such that is(~. ~=3}, p~By, a is the indicator of { i s ~  :is~#3 for all r= (% 3), X~*M~TV-I'~' The estimate of 
the mean value <P~,a > ~  is identical to the estimate of <Pv~>~ above, and we shall not repeat the details. 
It remains to estimate <P~'~P~a~ >~.  We assume that P~'~(a)P~,~3 (is)=i. We define the configuration II,,0(is) 

by 

1, r =  (~, 1), 

(g~.o (~))~ = o, r = (~, 2), 
is~ fo r  the r emain ing  

We have 
H~v er (ol6 ~ - H ~  er (n,.0 (is) 16~ ~> (2M) ~-~[ Y/2 . . . .  z - y - 2 x  ] ~ (2M) ~-~c,, (3.24) 

w h e r e  c 3 > 0. T h e r e f o r e  
<v~2p~~ e~p{-,~3}. 

F r o m  what  was  said above the re  follows the ex i s t ence  of  a pos i t ive  cons tan t  e such that  f o r  any se t  of edges  
R < T ~  l the probabi l i ty  that  R is the suppor t  of  a con tou r  of a conf igura t ion  is bounded above by exp{-c} tRI  }. 
The a s s e r t i o n  (3.12) then fol lows in the s t anda rd  m a n n e r .  

We now explain br ie f ly  how to c o n s t r u c t  the s t a t es  <.> ~4 ~ , i= t ,  2. F o r  the deta i l s  of  the cons t ruc t ion ,  
see  [10]. Cons ide r  the l imi t s  

l s P},,,, ( o ) = a  (~ (is), i= t ,  2. lira (2n)~_ , 

One can show that  <n"~+a(=~>,~+l, <awn~2~>~-+0 as  B + co. It fol lows f r o m  this by s y m m e t r y  cons ide ra t i ons  
that  fo r  suff ic ient ly  l a r g e  va lues  of  ~ the events  A~={is:a <~(is)~>~>'/0} have nonzero  p robab i l i t i e s .  We now 

a s s u m e  
<B>~: i =<BNA~>#/<A~>v ~, B~9+, i=1, 2. 

Since the events  A i a r e  t r ans l a t i ona l ly  inva r i an t ,  the s t a t e s  < . > ~  a r e  Gibbs s t a t e s  in the s t r ip  Zt'i.N]. The 
re l a t ion  (3.4) fol lows f r o m  the fact  that  <P/>~'~=<a(o>~'~>~>'/~. The re la t ion  (3.5) is as  read i ly  p roved .  
This  c o m p l e t e s  p a r t  II of  the t h e o r e m .  The p roo f  of  p a r t  I fol lows f r o m  the fact  that  all ou r  e s t i m a t e s  w e r e  
un i fo rm in N. T h e r e f o r e ,  as  s t a t e s  <.>',~ we can take the l imi t  points  of  the s t a t es  < ->~  as  N --* ~ .  

4. U n i q u e n e s s  and L o g a r i t h m i c  S t r i p  T h e o r e m  

In this section, we prove a theorem on uniqueness of the Gibbs states in the low-temperature region 
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for  a general  c lass  of interact ions including Czech interact ions .  In this section, U is an a rb i t r a ry  finite- 
range interact ion with finite values,  S is a finite set,  and we shall assume that S = {0, 1, . . . ,  n}.  

Let d~i ,  Vd={t~7, ~, Iltil~d}, and ~" E ~2. We denote by D~(~)~k2v~ the set of relative ground-s ta te  
configurations in Vd: for  all o6D,(~), o'6Qv~ H,~((JI~)~Hv,((~'I~). The interaction U is called a B(d)  in te rac -  
tion if for  all ~ 2 ,  o~Dd(e) we have ~(0 ..... 0)=0. 

This proper ty  was introduced in [3], in which a theorem was proved which showed that low- 
tempera ture  uniqueness follows f rom fulfillment of the condition B(d)  for  the interaction U. However,  
the proof contained an e r r o r ,  Propos i t ion  1 being incor rec t .  Navr~t i l ' s  example was constructed as a 
counterexample to this proposit ion (it is easy to see that the interact ion (2.1)-(2.2) posses ses  the B (1) 
proper ty) .  Important  here  is the following proper ty  of Czech interact ions,  which we descr ibe  for  the 
example of the model obtained by replacing in (2.1) the norm I �9 ] by ]1 �9 H. All the resul ts  of the previous 
section remain valid in this case  too. Thus, we consider  a container  V d and suppose that tiiVd, dist(t, V)=l .  
We determine a pa i r  of boundary conditions ~('), ~(2) by the formula  

=~ i, s=t, (~) ( 3, s--/=t. 

Then both sets Dd(~ ")) consis t  of one configuration ~"), and 

i, dist(s, Vd ~)-- l, 

((~I~))~ _-- 0 for  the remaining s ~ V. 

We see that change of the boundary condition at one point leads to a change along the complete boundary V d 
however  large  the value of d. 

This same feature makes it impossible  to obtain a uniqueness proposit ion for Czech models as a 
consequence of the general  c r i t e r ion  of [1]. In accordance with it, for  given U and ~, one must  cons ider  
the pa i r  of conditional Gibbs distributions qv~( - [~'), qv~( �9 [~") determined by a pa i r  of boundary conditions 
~', ~" that differ  at a single point t ~ Z L  calculate the K a n t o r o v i c h - R u b i n s t e i n - O r n s t e i n - W a s s e r s t e i n  
distance R(qv~( . ]~'), qv~( �9 I~H)) between them, and cons ider  the function k, v = sus -R(q~( . ]e ' ) ,  qv~(.t~")), where 

sup is taken over  all pairs  ~ ' ,  ~" that are  identical outside the point t~TL.L Then for  the interaction U and 
reciprocal  t empera ture  fi there is uniqueness if for some finite container  V ~ Z  ~ 

k? < l v  I. (4.~) 
t6~ v 

But as we have just seen in the given example,  for  points t E V c with dist(t, V) =t ,  k ~ l O V ] ,  and therefore  

~, kt v ~ 10V I ~, (4.2) 
te~ v 

and for  ~ >- 3 this contradicts  (4.1). The relation (4.2) also holds for  the original Czech model (2.1), but 
only for  containers  having the shape of a paral lelepiped.  Moreover ,  for  it one can choose the container  in 
such a way that the relation (4.1) holds at a sufficiently low tempera ture .  Namely, as V one must cons ider  
a polyhedron having all of its faces parallel  to one of the planes {t( ' )•  ~0}. In this way, we see that 
for  some Czech models low- tempera tu re  uniqueness follows from the given cr i te r ion ,  but for  others  it does 
not. Fortunately,  uniqueness follows direct ly  f rom 13(d)i 

THEOREM 2. Let U be a B(d)  interact ion,  d >- 1. There  exists a fl = fi(U) such that for  f~ >- 
there exists p rec i se ly  one (U, fi) Gibbs state.  

We assume that the r eade r  is fami l ia r  with the condition of stability of periodic ground-s ta te  con-  
figurations - t h e  Pe ie r l s  condition, also called the G e r t s i k - P i r o g o v - S i n a i  condition (see [11,12]). 

PROPOSITION 1. The following two conditions are  equivalent: 1) the interaction U is a ]3(d) 
interact ion with a cer ta in  d >- 1; 2) the interact ion U has p rec i se ly  one periodic ground-s ta te  configuration. 
F o r  it, the Pe ie r l s  condition is satisfied.  

P roo f  of the Proposi t ion.  The implication 2=~1 is the content of Proposi t ion 2.III  of [8]. To prove 
the opposite asser t ion ,  we define the "gap" 5d(U) by 

~d (U)---- inf rain m i n  (Hvd (0'] 0--') ~ Hvd ((i"[ ~)). 
~E~ a'6~V d" o"6Dd(~ 

a(o)~:o 
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By virtue of the condition B(d) ,  the configuration ~'~Dd(0) for any K, and therefore  5d(U ) > 0. For  any 
configuration ~'~Q, o(0 ) ~:0,  we now set 

(~,) _ {  o~', tCVd, 
~1 t, t o Vd, 

D ~ where ~t is an a rb i t r a ry  configuration in ~(~ ). By definition, 

H (o') - ~ ( o  ~) ~>~i U) >0. 
--0 Therefore ,  if ~ is a ground-s ta te  configuration, a = ~ = 0. Moreover ,  if for o'~Q, [{tEZ ~, o/r then 

it can be proved by induction that 

H (o') - H ( ~  ~ ~k  I Vd[-~hd (U). 

But this is the Pe ie r l s  condition in our  case .  

COROLLARY. In the Czech models considered above there is p rec ise ly  one low- tempera ture  
Gibbs state.  

The asser t ion  of Theorem 2 can be augmented by a "logarithmic s t r ip"  asser t ion ,  which means 
the following. F o r  any configuration ~cf~v, we call the union of the connected components of the set 

' G (teV~; ~ 0 }  adjacent to the boundary 8V n the s tr ip R(cr). We set ~ ( )=ma~dist(t ,  0V.). Let f(n)>~O be 

Some function. We shaI1 say that the interact ion U has the proper ty  of an f s t r ip at the reciprocal  t empera -  
ture f~ if the.probi~i l i ty  qv,~({o~Q,~ : ~ ' (o )> / (n )}[o) -~0  as n -~ ~ uniformly with respect  to ~ E f~. 

THEOREM 3. Under the assumptions of Theorem 2, the interaction U has the log-s t r ip  proper ty  
fo r  ~ >- ~. 

Proofs  of Theorems  2 and 3. It is easy to see that for  any container  W~ , [WI< oo the functions 
q~(o~[e)  are  uniformly continuous with respect  to fl ~ [0, ~].  Therefore ,  for any s > 0 we can find a 
fi(s) < ~ such that for  all fi >- fi(s) 

q ~ ( { o ~ , ~  :~0>~0}[e)<e uniformly w . r . t .  ~Q.  (4.3) 

We shall say that the point t E W is i r r egu l a r  for  the configuration a w if a t r 0. Let l~(a) be the set of 
i r r egu l a r  points of the configuration ooQ~.,/{~(~)={te~ *, dist(t, /{(o))~<d/2+i}, and R((~) be the maximal 
connected component of the union ~(a)~[V,\V,_~] that contains the second te rm.  We shaI1 study the random 
variable ~,(~)~- max dist(t, OV,). Suppose we are  given an increas ing function / ( n ) ~  as n ---> ~. The 

t6]~(o) 

connected component T of the set R(a)\[V~\V,-~] is called a tongue if maxdist(t, OV~)~/(n)~ If Tt and T 2 
t6T 

are two tongues of the configuration a and t~ and t 2 are  i r r egu l a r  points,  t i ~ Ti,  i = 1, 2, then 
H t t -  t 2 H > d + 1. Every  tongue has a nonempty intersect ion with the l aye r  F,=V(,_~)\V(,-~_,, We label 

its points and call the point of intersect ion of T [1 F n with the minimal number the root of the tongue T. 
We denote the tongue T with root at the point s ~ T [1 F~ by T s. If the point s is not a root of the tongue, 
we shall assume that T~=~. We obtain in this manner  an ensemble of tongues ~J-={T~, sOF,,} with probabili ty 
distribution <.> ~.~> on it; if by T ( a )  we denote the set of tongues of the configuration ~, then 

We est imate  the probabil i ty of the configuration of tongues T = [Ts~. If r is the number of 
i r r e g u l a r  points in the tongue Ts, then ]T~l<~r(d+2) ~. On the other  hand, for  any set of r points one can 
find a subset of at least  [r(2d+l)-~] points for  which the distances pairwise between them are  g r ea t e r  than d. 
Therefore ,  in the tongue T s there are  ]T~] [2d(d+2) ]-" i r r egu l a r  points separated pairwise by not less  than 
d + 1. Hence and f rom (4.3) it follows that 

$ 

where c~ ~) ~ as fi --~ ~ (like the constants c~ ~), which are  introduced below). Indeed, let t~, t~,...~V~ be 
a sequence of points,  !lt,-t~II~d for  i~/, dist(t,, OV~)>d: Then for  ~>~(e) 

(4.5) 
---- 2 . . . .  }) <~: qv~ ( ( ~  r 0, ~ = 2, 3 . . . .  } I-~) sup q ~  ({o E ~,~, (~(0) ~: 0} I ~) < ~q~ ( ( ~  r 0, ~ = 2, 3, . . .}  t-~). 
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I te ra t ing  (4.5), we obtain (4.4). We can now es t ima te  the probabi l i ty  of the event 
if ~=((~)>/(n), then for  at l e a s t  one point s6F=, T J=;~ T h e r e f o r e  

J "'~'  }-2, <{~: ;~(o)>](n)}>2,~<~ Zexp[-c ,  A..~IT, I 
{Ts} s 

~ ( ~ ) > / ( n ) .  By definition, 

(4.6) 

where  the summat ion  is extended to all se t s  of tongues,  including the empty  one; 
subtracted unity. The l a s t  express ion  does not, in i ts  turn,  exceed 

2 
Ts:]T~l~'](n) 

it co r re sponds  to the 

(4.7) 

On the o ther  hand, the number  of (d + 2 )-connected se t s  of i r r e g u l a r  points to which a tongue with fixed 
root and with N points c o r r e s p o n d s  does not exceed [(2d+4)~] ~. The re fo re  

T: iTI~I (n)  h ~ f ( n )  

and, hence,  

For example, setting f(n) = In n, we have 
c (2) v - �9 <~. > l ~  n>~,~<(l  + n- ~ )~ ~ ' - ' - -  2 ~exp  {2~.*-1-~ ~)} - 2-~ 0 

as  n ---> co for  sufficiently l a rge  [3. Thus ,  the logar i thmic  s t r ip  t heo rem is proved.  S imi la r ly ,  for  
/(n)=)~n, )~<2, we have for  l a rge  n 

<~>)~n>~ ~--~ exp{-c~ n}, 

where  c~)=c~ ~) ()~)-+oo as /3 --> co for  any X. In conjunction with the s tandard  a s se r t i on  of the exponential ly 
weak dependence of the co r re l a t ion  functions on the shape of the conta iner  at low t e m p e r a t u r e s  we can con-  
elude f rom this that 

21 <&,~exp{-cP)@ &,~<% 
<c~>~,.~ 

uni formly  with r e spec t  t o  ~,, e26~: With this we comple te  the proof .  

R e m a r k s .  1. F r o m  T h e o r e m  2 and Propos i t ion  1 there  follows l o w - t e m p e r a t u r e  uniqueness for  
models  with unique per iodic  g round-s t a t e  configurat ion.  This  resu l t  has  been independently announced by 
D. Mar t i ro syan .  2. S imi la r  ideas have a l ready  been applied to different  s i tuat ions,  in [13,14]. 3. Outside 
the l o w - t e m p e r a t u r e  region,  the a s s e r t i o n  of uniqueness for  models  with unique ground state  is no longer  
t rue  (see [10] for  the case  of continuous spins ,  and the following sect ion for  d i s c r e t e  spins) .  4. In the case  
of continuous spins ,  uniqueness of the g round-s t a t e  configurat ion does not entail  uniqueness of the Gibbs 
s ta te  even in the l o w - t e m p e r a t u r e  region.  A cor responding  example  is const ructed in [15]. 

5.  P h a s e  T r a n s i t i o n s  i n  C z e c h  M o d e l s  

We do not know whe ther  phase  t rans i t ions  take place  in the examples  of the Czech models  descr ibed  
above.  T h e r e f o r e ,  in the p re sen t  sect ion we cons ide r  one fu r the r  Czech model ,  in which the exis tence  of a 
phase  t rans i t ion  can be proved.  

In the new model ,  the phase  space is S = {0, 1, . . . ,  2q + 1} (in the original  model ,  q = 1) .  As 
before ,  the in te rac t ion  U is given by two functions U(a),  U(a, b), t h e  re la t ion  (2.1) holds,  and the table 
(2.2) mus t  be replaced  by 

0, a-~-~ b, 
O, t~<a ,b~<q ,  q §  
x, a ---- O, b -~ t,  . . ., 2q, 
X ,  a -~ O, b ~ 2q § 1, 
y, a ~ - 2 , . . . , 2 q ,  b ~ - 2 q §  1, 

Y ,  a ~ l , . . . , q , b ~ - - - q §  t . . . .  ,2q, 

i 0, a=0, 
U(a)---- z, a = t  . . . . .  2q, 

[Z, a=2q+l .  

G(a,b)--~G(b,  a ) :  

It is c l e a r  that in the model cons idered  all the above p r o p e r t i e s  of the Czech models  stil l  r ema in .  
i t  also. has  new fea tu res .  

(5.1) 

However ,  
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THEOREM 4. 
of Theorem i. Then one can find a function x(q, v) and a number q0 = q0 (v) such that for all q >- q0, 
x -> x(q, v ) there exists a value ~(q) of the reciprocal temperature for which there exist at least two 

different translationally invariant Gibbs states <.>0, <.)~. At the same time, <Pt~176 <p 0)i<~/~ and r -~ ~ 

as q-~ ~. 

The ~ of the theorem is based on the technique of [I0,16], and we therefore limit ourselves 
to sketching it. It is necessary to consider a state in the volume V with periodic boundary conditions, 
(. }~, and prove for it the validity of the three following propositions: 

(P,~ as ~ - ~ ;  <P,~ fo r  some ~0<~; <P,~176 : for  all ~ 0  and s~t. 

These  proposi t ions must  hold uniformly in n. F r o m  this one deduces that the l imit  point ( . )~  of the 
sequence (.}~ is nonergodic for  a ce r ta in  ~ = r ( q )  > rio' and the theorem is established by applying to 
(.>~(q) the analog of the ergodic expansion (see [10]). 

We show only that <P,~ as q -* ~ uniformly in n, this being equivalent to (5.2). F o r  this, 
we note f i rs t  that the par t i t ion function can be es t imated below as follows: 

By vir tue of the chess -board  es t imate ,  

where  p c  is the indicator  of {e~Qv~ "e,=0 for  t=(2k ") . . . . .  2kC~))). Th e re fo r e  

and this proves  our  a s se r t ion .  The remaining asse r t ions  are  ver i f ied as in [16]. With this we complete 
the outline of the proof  of Theorem 4. 

It would be very  in teres t ing  to understand the behavior  of the original  Czech model at the point T , 
where  ha l f -space  nonuniqueness commences :  What is the rate  of dec rease  of the cor re la t ions ,  does the 
f ree  energy have a s ingular i ty ,  and so fo r th?  However,  we a re  not yet able to answer  these quest ions.  

Suppose v -> 2 and that the p a r a m e t e r s  of the interact ion (5.1) sat isfy the conditions 

(5.2) 

(5.3) 
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