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GENERATION OF NEW EXACTLY SOLVABLE POTENTIALS 

OF A NONSTATIONARY SCHRODINGER EQUATION 

V. G. Bagrov, A. V. Shapovalov, 
and I. V. Shirokov 

A method for generating integrable potentials of a nonstationary SchrSdinger 
equation (i.e., with time-dependent potential) is developed on the basis of 
the method of "dressing" of linear differential operators. Potentials that 
admit separation of the variables generate classes of nonseparating potentials 
for which the SchrSdinger equation has nonlocal symmetry operators. 

i. Introduction 

The method of "dressing" of linear differential operators (known in mathematics litera- 
ture as the method of transformation operators [1,2]) has traditionally been used to solve 
scattering problems, realizing a transition from an equation with constant coefficients to 
an equation with variable coefficients. In this respect, it was also found to be effective 
for the construction of nonlinear differential equations integrable by the inverse scattering 
method, giving moreover an explicit indication of a method for calculating exact solutions 
of such equations [3,4]. 

The integration of a linear differential equation is associated with a synnnetry algebra 
formed by symmetry operators. By definition, these carry every solution of the equation to 
some other solution of it. In particular, commutative subalgebras of differential symmetry 
operators of a definite form lead to complete separation of the variables [5]. Extension of 
the classes of the employed symmetry operators permits in principle the finding of new 
approaches to the solution of equations. From this point of view, undoubted interest 
attaches to nonlocal symmetries (generators of one-parameter groups of symmetry operators). 

Nonlocal symmetries of nonlinear differential equations have been considered in 
several studies (see, for example, [6,7]) as a way of extending the jet manifold and, 
accordingly, the domain of application of Lie-B~cklund groups. However, significant pro- 
gress in this direction has not been achieved [8]. 

Nonlocal symmetries of linear equations, in particular the Maxwell and Dirac equations, 
in the absence of external fields (i.e., equations with constant coefficients) were cal- 
culated by means of Fourier transformation in studies by Fushchich and collaborators. A 
bibliography of these studies can be found in the review [9]. However, equations with 
external fields have important applications. A review of studies on the problem of the 
separation of variables in the basic quantum-mechanical equations with an external electro- 
magnetic field and also on the construction of exact solutions can be found in the book [i0]. 
In these studies, differential symmetry operators of not higher than second order are used. 

The "dressing" method makes it possible to integrate new classes of linear differential 
equations with external fields (i.e., with variable coefficients), and for such equations 
one can find an integrodifferential symmetry operator whose structure is consistent with the 
structure of the equation. Such operators give nontrivial examples of nonlocal symmetry 
operators. 

In this paper, we use "dressing" to develop a method of generating exactly solvable 
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potentials and a corresponding complete set of wave functions of the linear and, in the 
general case, nonstationary SchrSdinger equation. Special cases of the proposed transforma- 
tions are the Abraham--Moses method [ii] and the modifications of it in [12,13]. 

2. Method for Generating Potentials 

Following [4], we do not fix in advance the function space on which the operators act, 
emphasizing the algebraic nature of the results. 

The transformations of the operators will be associated with one spatial variable x, 
and therefore we consider the one-dimensional SchrSdinger equation 

~ ( x ,  t)~(iOt--H),(x, t)=0, H=-O=+a(x, t). (2 .1)  

Here, t is the time, O,=O/Ot, O~=O/8x, 0==0~, a(x,t) is the potential, a real scalar function. 
The results can also be repeated in the multidimensional case, as we shall discuss below. 

We give some necessary facts relating to the procedure of "dressing" the operator 
(2ol); they are taken from [3,4]. 

Let F be a Fredholm operator: 

i%(x)= ~ f(x,x')r 

and ~• its Volterra factors, i.e., 

~+~(x)=-- ~ K+(x, x')~(x')dx', 
$: 

t + ~ =  ( t + ~  +) -~ (t + ~-).  

Equation (2 .4)  is  e q u i v a l e n t  to the  c o n d i t i o n s  

K +(x,x)+F(x,x')+ K+(x,s)F(s,x)ds=O, 

F(x,x')+ ~ K+(x,s)F(s,x')ds=K-(x,x'), 
x 

x 

/~-~(x)~ I K-(x,x')~(x')dx', 

r 

X >X~ 

r 

X X .  

The operators (i + ~• are invertible. An operator M of the form (2.1), transformed in 
accordance with the formula 

_,if= (t+~+) ~ (i+~+) -~, 

remains a differential operator if, for example, 

[~ ,  ~1=0. 

At the  same t ime,  Eq. (2 .1)  goes over in to  the  equa t ion  

~ ( x ,  t)=(i0~+O=-~(x, t))~(x, t)=0, 

in which 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

u(x, t)=a(x, t)--20,K+(x, x; t), (2 .8)  

T(x, t )=( l+R+)r  t). (2 .9)  

The c o n d i t i o n  (2 .5)  leads  to  the  equa t ion  

(iOt--H(x, t) )F(x, y; t ) = - B ( g ,  t)F(x, g; t). (2.10)  

Here, i~l+(x, t )  is  the  ope ra to r  t h a t  i s  the  formal a d j o i n t  of ~(x, t )  (of  the  form (2 .1 ) ;  
in our case fl + = n). 

Remark. Here and in what follows we consider transformations with participation of 
the operator K+. One can construct in exactly the same way a theory with the operator ~-. 
For this, it is sufficient in all the expressions to make the substitution 
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oo ~ 

K+(x, g; t )~  -K-(x ,  y; t). 

We turn to a description of the method for generating potentials of Eq. (2.1). The 
basis of it is formula (2.8), and the problem consists of effective calculation of the 
kernel K+(x, y; t). First, we write the formulas for inverting the operators (i + ~• as 
follows. We introduce K(x, y; t) such that K(x, y; t) = K+(x, y; t) for y > x and 
K(x, y; t) = --K,(x, y; t) for x > y. Then K(x, y; t) is determined by Eq. (2.5) without 
the restriction x" > x, and by means of it one can readily invert the operators (i + ~• 
For example, if 

re(x, t )=  (I+K+)~ (x, t )=r  t)+~ K(x, y; t)r t)dy, 

then the kernel R(x, y; t) of the inverse transformation 

r t )=~  (x, t ) -  f B(x, g; t)~(g, t)dg 
0 

(2.11) 

satisfies the condition 
Y 

K(x, g; t ) -R(x,  y; t)-- f K(x,s; t)R(s, g; t)ds=O. 
x 

(2 .12)  

Let ~(x, t) be a column (finite or infinite) whose elements are linearly independent 
solutions of the SchrSdinger equation (2.1); ~+(x, t) is the row with the complex conjugate 
elements. Then it can be shown that functions K(x, y; t) and F(x, y; t) satisfying 
Eqs. (2.5) and (2.10) and ensuring reality of the potential (2.8) have the form 

F(x,y;t)=W+(g,t)q- 'W(x,t) ,  q+=q, K(x,y; t )=-W+(g, t)D-~(x, t )W(x, t ) ,  (2.13) 

where q is an arbitrary nonsingular constant matrix. The matrix D(x, t) is determined by 
the relation 

D (x, t) =q + ~ W (s, t) W+ (s, t)ds, (2 .14)  

and the unique restriction imposed on q is that D(x, t) be nonsingular for all x. We note 
here that the validity of Eqs. (2.7)-(2.9), in which K(x, y; t) has the form (2.13), can 
be verified directly in the general case. At the same time, the functions ~(x, t) must 
ensure convergence of the integrals (2.14) at the upper limit, but there is no requirement 
at all of decrease of ~(x, t) as x + -= and still less that P(x, t) be elements of L 2. 
Thus, we base our method on the expressions (2.13) and (2.14). From (2.12), taking into 
account (2.13) and (2.14), we find the kernel of the inversetransformation (2.11): 

R(x, y; t)=--W+(g, t)D-~(y, t)W(x, t). 

In t he  s p e c i a l  case  when ~(x,  t )  c o n s i s t s  of  a s i n g l e  e lement  @(x, t ) ,  we ob ta in  

K(x,g; t )=  ~(x,t)~*(g,t) (2 .15)  

q + ~ ~*(s,t)#(s,t)ds 

Here, ~* is the complex conjugate of ~. 

We consider in more detail the case when the original SchrSdinger equation (2.1) has 
a time-independent potential: a(x, t) = a(x). Choosing as elements of the column ~(x, t) 
linearly independent solutions (even time-independent ones), we obtain in the general case 
the nonstationary equation (2.7). In the case when the column ~(x, t) consists of a single 
nonvanishing element 

~(x,  t)=exp (--iE~t)r 

where ~s(X) i s  a s t a t i o n a r y  ( co r r e spond ing  to  energy  E s)  s o l u t i o n  of  Eq. ( 2 . 1 ) ,  we ob ta in  
f o r  K(x, y; t )  
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r162 (y) 
K(x ,  y; t) = K  ~) (x, y ) =  - ~ 

q+ j Ir 
x 

Equat ion (2 .7)  i s  then  a l s o  s t a t i o n a r y ,  and i t s  s o l u t i o n s  have the  form 

f ( 8 )  q)~ (x)=r  K(')(x,y)~(y)dy, a(~)(x)=a(x)-2a~Kt~)(x, x) 
x 

(2 .16)  

and correspond to the energy levels E n. Since the system of functions {~n(X)} is complete 
and orthogonal, it is easy to show that {~(~l(x)} is also a complete and orthogonal (with 
respect to the index n) system. Thus, the transformed SchrSdinger equation (2.7) has the 
same spectrum. Applying our procedure repeatedly, and also choosing different s, we obtain 
classes of isospectral potentials. But if the energy E ~ E s, i.e., does not belong to the 
spectrum of Eq. (2.1), but for the energy E there exists a solution of Eq. (2.1) that 
decreases as x § =, then the transformed equation (2.7) can have for this E a solution in 
L2, but the potential (2.8) of the transformed equation (2.7) is not equal to any of the 
potentials u(~)(x), and its spectrum cannot be determined in advance from Eq. (2.1). 

Transformations with the kernel (2.16) were considered in [11-13] (see also the 
literature cited there). A more detailed exposition of the method of generating stationary 
potentials on the basis of the "dressing" procedure can be found in our [14,15], which also 
give appropriate examples. 

For the multidimensional SchrSdinger equation 

~ ( x ,  t)=(ia~-It)~;(z, t)=O, 
n 

where x=(x~, . . . ,  x,~), I:t=-A+a(x,t), A = L G ~  ~, wi th  p o t e n t i a l  a (x ,  t )  of  t he  form 

(2.17) 

n 

a(x, t ) = ~ ,  a, (x,, t) 
i = t  

(2.18) 

the scheme described above can be applied with respect to each variable x i independently. 
As a r e s u l t ,  f o r  Eq. (2 .17)  we ob t a in  e x p r e s s i o n s  analogous  to ( 2 . 7 ) - ( 2 . 9 ) :  

zl~fp(x, t)=QiITQ-i(p(x, t)=(io~+A-u(x, t ) ) r  t)=O, 

u (x, t)= 2 {a~ (x~, t)-2Ox~K~ (x. x~; t) }, 
i 

n 

r 0 = I I  (!+~,+). 

(2 .19)  

(2 .20)  

(2.21) 

Here, the kernel K~(x, y; t) of the Volterra operator K~ of the form (2.3) and Ki(x, y; t) 
of the form (2.13) are specified by the column Pi(x, t), which is composed of linearly 
independent solutions of the one-dimensional SchrSdinger equation (2.1) with a(x, t) 
replaced by the potential ai(x, t) from the expansion (2.18) and corresponding to the 
spatial variable x i. Note also that [K~, K~] = 0. 

The potential (2.20) is not trivial. The fact is that the standard method for solving 
the SchrSdinger equation is separation of variables. A complete classification of potentials 
for a nonstationary SchrSdinger equation is given in [16]. In accordance with the theorem 
on the necessary and sufficient conditions for complete separation of the variables [5], 
the variables are separated by means of a complete set of commuting differential symmetry 
operators of not higher than the second order. Note that the potential (2.18) does not 
admit complete Separation, since the time t is not separated with the variables x i 
due to the fact that the functions ai(t , xi) are arbitrary. If as "bare" operators we now 
take the operator (2.17) with separating potential (2.18) together with the symmetry 
operators of the corresponding complete set, then the "dressed" symmetry operators become 
integrodifferential operators, and in the Schr6dinger equation (2.19) the transformed 
potential (2.20) does not admit separation of the variables. Nevertheless, a solution of 
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Eq. (2.19) can be constructed in accordance with (2.21), where ~(x, t) is taken to be a 
solution of Eq. (2.17) in separated variables. Thus, we have presented for the first time 
classes of integrable potentials of a SchrSdinger equation that in the general case do not 
admit separation of the variables. These considerations are also valid in the case of a 
single spatial variable. 

. Examples 

We illustrate the general propositions by characteristic examples that have independent 
value. 

We consider the harmonic oscillator 

a(x)  = ~ - x  ~ 

As " b a r e "  s o l u t i o n s  we t a k e  a l i n e a r  c o m b i n a t i o n  o f  t h e  c o h e r e n t  s t a t e s  f i r s t  found  by 
S c h r S d i n g e r  [17] ( s e e  a l s o  [ 1 8 ] ) :  

- sin 2ot 2(o 

H e r e ,  )~ i s  a r e a l  p a r a m e t e r .  The s t a t e  ( 3 . 1 )  i s  d e t e r m i n e d  by t h e  s y s t e m  

where 

X=isin2otO~+(o) cos2~t)x 

i s  a symmet ry  o p e r a t o r  o f  Eq. ( 2 . 1 ) ,  [M, X] = 0,. and i s  a s o l u t i o n  in  t h e  s e p a r a t e d  
variables. 

We construct the kernel (2.15) from the function ~(x, t), which is a Gaussian wave 
packet of the functions (3.1): 

r  ~ e x p ( - o % : ) ~ ( x ,  t)dZ, 

(3. i )  

(3.2) 

where o is a real parameter. 
the form 

The transformed potential (2.8) is nonstationary and takes 

a n~ exp (--2a-Q~x2) ~ (cos ~ 2~ot+4r 2 sin 2 2o)t) -,/~ U(X, t)=~ ~'i. __ 
t + __ erfc(~2o_Qx) 

Y2o 

Here, erfc(z) -~ 2_ [exp(--t2)dt i s  the error function. 

Any solution ~(x, t) of Eq. (2.1) for the harmonic oscillator can be transformed to 
a solution ~0(x, t) of Eq. (2.1) with potential (3.3) in accordance with (2.9) by means of 
the formula 

cp(x,t)----@(x,t)-- 2~Q exp ( -Axe)  j" exp(-A*z2)O(z,t)dz. 

t + __ erfc(]/2oQx) 

---~ ctg(2~t)  t - ~ -  Here A=c f~ - i  2 

( 3 . 3 )  

(3.4) 

For o = l/u, ~ = m the potential (3.3) becomes stationary: 

0 nm exp ( - -ox  2) 
u (x) = ~ x 2 + 4  

We e m p h a s i z e  t h a t  t h e  s o l u t i o n  ( 3 . 4 )  i s  n o t  a s o l u t i o n  in  t h e  s e p a r a t e d  v a r i a b l e s ,  and t h e  
" d r e s s e d "  symm et ry  o p e r a t o r  ( 3 . 2 )  i s  an i n t e g r o d i f f e r e n t i a l  o p e r a t o r .  

h s i m p l e  e x a m p l e  o f  a S c h r S d i n g e r  e q u a t i o n  w i t h  n o n s t a t i o n a r y  i n t e g r a b l e  p o t e n t i a l  and 
max ima l  symmet r y  g r o u p  can  be o b t a i n e d  by " d r e s s i n g "  t h e  f r e e  ( a ( x ,  t )  = 0) S c h r S d i n g e r  
e q u a t i o n  ( 2 . 1 ) .  As a r e s u l t  o f  " d r e s s i n g , "  t h e  g e n e r a t o r s  o f  t h e  g r o u p  o f  t h e  f r e e  
S c h r S d i n g e r  e q u a t i o n  become i n t e g r o d i f f e r e n t i a l  o p e r a t o r s .  I n  ( 2 . 1 5 )  we s e t  
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~(x,t)=t-V=exp ~(x2--i)--x , and then  the  p o t e n t i a l  ( 2 . 8 )  w i l l  have the  form 

l ~ / x \  

with, for example, the displacement operator 8/8x becoming the integrodifferential operator 

~_ Ip(x,y;t)q~(y,t)dg, p~(x,t)=--(l+R) -~x ( l + R ) - ' r  O~(x,t)ax 
x 

where 

p(x, g; t)=r t)~* (g, t) { ~ c ( x ,  t) + ix--t }/ 2 "c(u't)+@(x'y't)+i tc(x,t)c(g,t); 
x 

t ~ iz-i c(x, t ) = t §  (--x/t), @(x,y,t)~-~- j ~ d z .  

The remain ing  g e n e r a t o r s  of  t he  group have a s i m i l a r  form. 

In c l a s s i c a l  mechanics ,  such n o n l o c a l  symmetr ies  a p p a r e n t l y  co r r e spond  t o  i n t e g r a l s  of  
the  motion t h a t  a r e  r a t i o n a l  (nonpolynomia l )  in the  momenta. However, t h i s  q u e s t i o n  
r e q u i r e s  f u r t h e r  s tudy .  
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