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For the equation hSu/3t = h2Au/2 -- V(x)u with positive potential V(x), 
global exponential asymptotic behavior of the fundamental solution is 
obtained by the method of the tunnel canonical operator. In the case 
of a potential with degenerate points of global minimum, the 
behavior of the solutions to the Cauchy problem is investigated at 
times of order t=h -(i+• • The developed theory is used to obtain 
exponential asymptotics of the lowest eigenfunctions of the SchrSdinger 
operator --h25/2 -- V(x) and to estimate the tunnel effect. 

1. Introduction 

This paper, which develops ideas of [1-5], is devoted to the h + 0 asymptotic behavior 
of different Cauchy problems for the parabolic equation 

h -- h2Ae-F(x)e, xER ~, (i.I) 
Ot 2 

with smooth potential V(x) and the investigation of tunnel effects for the lowest energy 
states in the spectral problem for the SchrSdinger equation 

- l / 2 h 2 5 ~ + V ( x ) u = E u ,  u+L2(R~). ( 1 . 2 )  

In the second case, it is assumed that V(x) > 0 and that there is a finite number of points 
at which V vanishes. 

In probability theory and quantum mechanics there are interesting problems that are 
based on the same mathematical constructions. These are problems of large deviations and 
tunnel effects for the lowest energy states. From the point of view of specialists on 
differential equations, they are characterized by the presence of a small parameter h and 
exponential smallness with respect to h of the corresponding solutions at almost all points 
of the configuration space. The connection between such problems arises from the following 
elementary and well-known considerations. Consider Eq. (i. i). Suppose the potential V(x) 
is a non-negative function that increases as I xl § ~. Then the spectrum of the operator 
-I/2h2A+V(x) in Z2(R ~) is discrete, and if we denote by {~k} and {Ek} the corresponding 
orthonormalized eigenfunctions and eigenvalues, then for the solution of the Cauchy problem 
(i.i), uI~=o=uo(x), we have the formula 

co 

U= 2 C~e-E]f~/h*~, C~ = (*~, Uo) = I ,~guo d.~. (1.3) 

k=O R n 

If the Fourier coefficient c o ~ 0, then multiplying the expansion for the function u 
by e ~~ and letting t tend to ~, we obtain 

~o = lira ( ueE~ ) / ( Uo, ~ ) . ( 1 . 4  ) 
t - ->~ 

It is on this formula and its analogs that the connection between the Cauchy problem for 
the time-dependent equation (I.i) and the spectral problem (1.2) is based. It is clear 
that the solution of the Cauchy problem for Eq. (i.i), like the solution of the problem 
(1.4), can be found only in exceptional cases, and for arbitrary potential V(x) analytic 
expressions can be obtained only asymptotically. Under the assumption that V(x) _-> 0, the 
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fundamental solution for t > 0 of the Cauchy problem elt=0=6(x-~) for Eq. (i.i) and the 
eigenfunctions of the problem (1.2) corresponding to eigenvalues E(h) ~ 0 as h § 0 are 
exponentially small as h + 0 at almost all points of the configuration space and are given 
almost everywhere by the expressions 

u=h-~ne -s(x, ')/h(~(x, t)+O(h) ), t>6>O,  ( 1 . 5 )  

r +0 (h)), (1.6) 

where  S , ~  a r e  c o n t i n u o u s  f u n c t i o n s ,  S ~ O. 

The a b s e n c e  o f  o s c i l l a t i o n s  in  t h e  a s y m p t o t i c  b e h a v i o r  o f  t h e  f u n d a m e n t a l  s o l u t i o n  
i s  a c h a r a c t e r i s t i c  o f  t h e  t u n n e l - t y p e  e q u a t i o n s  i n t r o d u c e d  and i n v e s t i g a t e d  by one o f  t h e  
a u t h o r s  o f  t h i s  p a p e r  in  [ 1 - 3 ] .  B e s i d e s  t h e  p a r a b o l i c  e q u a t i o n  ( 1 . 1 ) ,  t h e s e  e q u a t i o n s  
also include the Kolmogorov-Feller equation, some equations in the theory of viscoelastic 
media (Voigt model), the system of linearized Navier-Stokes equations, etc. For some of 
them, for example, the parabolic equation and the Kolmogorov-Feller equation, Varadhan [7] 
and Borovkov obtained logarithmic asymptotic behaviors lim hln u (see [8]) or asymptotic 

h~0 

behaviors of the form (1.5); however, this was under the assumption that there are no 
focal points in the asymptotics. 

One of the main results of this paper is the proof of the fact that the constructed 
asymptotics are valid not only at the "standard" times for asymptotic theory, t ~ O(I) 
(as h § 0) but also at "very large" times t~h -i-~, I>• It is this result that allows us 
to make a rigorous transition from the asymptotic behavior of the fundamental solution of 
Eq. (i.i) to asymptotic behaviors of eigenfunctions of the SchrSdinger operator that enable 
us to pick up the tunnel effects. 

Let us explain this in more detail. Suppose that g is a nondegenerate point of 
minimum of the potential V(x), V(0) = 0. Then, since the potential V in the neighborhood 
of ~ can be approximated by the potential of a harmonic oscillator, V^~ = <x-~, 02V(~)/~x2 
(x-~)>, we can find a series of asymptotic eigenfunctions and eigenvalues of the original 
operator --~/2h2A+V(x), and their leading terms will be identical to the eigenfunctions and 
eigenvalues of the quantum harmonic oscillator. In particular, the lowest eigenvalue and 
corresponding (asymptotic) eigenfunction have the form 

n 

Eo ~ - -  o~, ~o ~ e -s(~)/h, x--~, 2 j=l ( a h ) ~ / ~ T ~ . . . ~  2 ~ ( ~ ) ( x - ~ )  , ( 1 . 7 )  

where  ~1,  " ' ' ,  ~n > 0; ~]  a r e  t h e  e i g e n v a l u e s  o f  t h e  m a t r i x  8 2 V ( ~ ) / S x  2. 

The e x p r e s s i o n s  ( 1 . 7 ) ,  as  a p p r o x i m a t i o n s  f o r  t h e  e i g e n f u n c t i o n s  and e i g e n v a l u e s  o f  t h e  
o p e r a t o r  -~/2h2A§ h a v e  l o n g  and p r o d u c t i v e l y  been  u s e d  in  p h y s i c s  p r o b l e m s ,  b u t  a c c u r a t e  
a r g u m e n t s  t h a t  b r i n g  o u t  t h e  c o n n e c t i o n  be tween  t h e  e i g e n f u n c t i o n s  and e i g e n v a l u e s  o f  t h e  
quantum h a r m o n i c  o s c i l l a t o r  and t h e  o p e r a t o r  --~/2h~A+V(x) were  g i v e n  in  a r e c e n t  s t u d y  by 
Simon [ 9 ] .  Fo r  c o m p l e t e n e s s ,  we a l s o  g i v e  h e r e  t h e  c o r r e s p o n d i n g  i n v e s t i g a t i o n s  ( S e c .  7) 
t h a t  d i f f e r  somewhat  f rom [9] and a r e  b a s e d  on t h e  v a r i a t i o n a l  p r i n c i p l e .  Note  t h a t  
d e s p i t e  t h e  e x p o n e n t i a l  d e c r e a s e  o f  t h e  f u n c t i o n  $0 ( 1 . 7 )  t h i s  f o r m u l a  h a s  o n l y  a power -  
law a s y m p t o t i c  b e h a v i o r  w i t h  r e s p e c t  t o  h f o r  t h e  g e n u i n e  e i g e n f u n c t i o n s  o f  t h e  o p e r a t o r  
-~/2h2A+V(x), and t h i s  i s  q u i t e  i n s u f f i c i e n t  i f  we want  t o  o b t a i n  t h e  t u n n e l  e f f e c t s .  

Suppose  t h e  p o t e n t i a l  V(x)  i s  s y m m e t r i c  ( e i t h e r  w i t h  r e s p e c t  t o  t h e  p o i n t  x = 0, o r  
w i t h  r e s p e c t  t o  some p l a n e )  and h a s  two p o i n t s  o f  g l o b a l  minimum ~• Then n e a r  t h e  m i n i m a l  
e i g e n v a l u e  E 0 o f  t h e  o p e r a t o r  -~/2h2A+V(x) t h e r e  i s  an e i g e n v a l u e  E~ t h a t  d i f f e r s  f rom E 0 by 
an amount  e x p o n e n t i a l l y  s m a l l  in  t h e  p a r a m e t e r  h.  We h a v e  t h e  e x p r e s s i o n s  

n n ~+ 

Eo= ~+O(h~), E~= ~j+O(ha), E2-E~=A exp - - - f f  pdx . ( 1 . 8 )  

H e r e ,  p ( t )  = X, x = X ( t )  i s  t h e  t r a j e c t o r y  o f  t h e  Newton ian  s y s t e m  

2=V~ ( 1 . 9 )  

t h a t  c o n n e c t s  t h e  p o i n t s  ~_ and 6+: x ( ~ )  = r ( i f  t h e r e  a r e  s e v e r a l  such  t r a j e c t o r i e s ,  
t h e n  on t h e  r i g h t - h a n d  s i d e  we t a k e  t h e  minimum o v e r  a l l  t r a j e c t o r i e s ) .  The f u n c t i o n  A(h)  
can also be found in terms of the solutions X(t) and variational systems with respect to 
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(1.9). The trajectory X(t) is called an instanton. Note that it is determined from a 
Newtonian system that differs from the ordinary classical system corresponding to the 
quantum problem (1.2), i = --Vx, by reversal in the sign of the potential V or transition 
from the real time t to the "imaginary" time it. Formula (1.8) first appeared in the book 
[5] and in [i0-Ii] (in these last, only the argument of the exponential was calculated) and 
was then actively used in quantum field theory. The bulk of this work related either to the 
one-dimensional case x ~ R  l (see [11-16]) or the infinite-dimensional (continuum) case (see 
the review in [17]). An accurate justification in the n-dimensional case appeared in [2,18] 
and then in a somewhat more general situation in [19]. A stimulating role in the appearance 
of the studies [18,19] was played by Witten's elegant paper [20], which uncovered deep 
connections between certain problems of physics and mathematics. 

Our first aim in this paper is to expound in more detail, sometimes differently and 
in a more general situation, the results of [2]; in particular, we derive (1.8), including 
an expression for A (absent in [18]). Our derivation, which is based on the asymptotics 
"at large times" of the fundamental solution of Eq. (i.i), is quite different from the 
methods of [18], which are based on Feynman integrals and the Agmon metric. 

We describe the key points of the paper and the main heuristic arguments. 

i. In Sec. 2, we give the asymptotic behavior of the fundamental solution of the 
parabolic equation for small t. Generalizing the construction of the WKB solutions and 
the exact fundamental solution V=exp [--(x-~)2/2th]/(~ht) ~/z of the parabolic equation V t = h&V, 
we seek a solution of (i.i) in the form 

I 
u = (nh)  ~/-------~ e-s(~'t)/h (~o (x, t) + h %  (x, t) + . . . ) .  

The standard procedure of the WKB method (or zeroth method) leads to the Hamilton-Jacobi 
equations S t + (VS)2/2 -- V(x) = 0 (but, by virtue of the purely imaginary action --iS 
they have "inverted" potential V) and the transport equation ~o~+VSV~o+AS~o/2=O. The 
initial conditions for S and ~0 are chosen from the condition u + 6(x -- $) as t § 0 and 
with allowance for the formula for V have the form Slt=o~(x-~)2/2t, ~01~=0~t -n/2. The correspon- 
ding solutions S and ~ can be expressed in terms of the solutions of the variational problem 
and trajectories of the Newtonian system (1.9). For the difference between the exact 
solution and the asymptotic behavior Uli n = e-s/h~/(~h) '~/2 we obtain an estimate that is 
important for what follows: 

[U--~lin I =e-s/n~ 0 ( ht3 ) �9 

2. The global asymptotic behavior of the fundamental solution of Eq. (i.i) (with 
allowance for focal points) is given by means of the tunnel canonical operator, which is 
constructed in Sec. 3. Here, we give a geometric approach to the studied asymptotics 
(Lagrangian manifolds). There is the well-known difficulty in constructing the asymptotic 
behavior of u at large t due to the appearance of focal points, this leading, in particular, 
to the appearance of regions in the configuration space in which the function S becomes 
multiply valued. One of the important considerations in "tunnel" problems is that, in 
contrast to "ordinary" semiclassical asymptotics, only one term contributes to the result. 
It is the one corresponding to the branch of the function S(x, t) that at the given point x 
takes minimal value compared with the other branches of S. 

3. In Sec. 4, we give a global construction of the asymptotics of the fundamental 
solution of Eq. (i.i). In Sec. 5, we prove one of the central propositions of the paper -- 
a theorem which establishes the validity of the obtained asymptotics at "very large" times 
tNh -(~+~), I>~>0. This proof is based on repeated application of Laplace's method and makes 
essential use of (1.10). Here, we give solutions of special Cauchy problems for Eq. (I.i) 
(large deviation problems), which are then used in the spectral problem (1.2). 

4. The transition from the solutions of the Cauchy problem for the time-dependent 
equation (i.i) to the solutions (1.2) is based (Set. 6), as we have already noted, on 
formula (1.4), in which we take in place of infinitely large times values of the time 
t=h -<~+~). This is sufficient for, on the one hand, to omit from the eigenfunction expansion 
all the functions except those corresponding to eigenvalues in a neighborhood O(h 2) of the 

n 

lowest energy value of the harmonic oscillator, E0 =~- ~j, and, on the other, to go to the 
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limit t + ~ in the leading term of the asymptotic behavior e-S(~,t)/h~(x,t) of the fundamental 
solution. This procedure, which takes into account the existence in the problem of the 
two large parameters t and i/h, leads to determination of the asymptotic behaviors of the 
necessary eigenfunctions of the operator --~/2h=A+V(x). The use of these functions in the 
expressions for the splitting of the lowest energy values, which are analogous to those in 
Chap. 8 of [21], gives formula (1.8) and analogous expressions for a large number of wells. 

In Sec. 7, analogous results are obtained for the case when the configuration space is 
a torus, in particular, a circle. In Sec. 8, we analyze some examples, and in Sec. 9, as 
already noted, we justify the use of the oscillator approximation. Finally, since in our 
arguments we use very special estimates of the Laplace method, which are not found in 
standard treatises, we give in Sec. i0 the Laplace method with corresponding estimates. 

2. Asymptotics in the Small of the Fundamental 

Solution of the Cauchy Problem for the Heat 

Conduction Equation with Potential 

We consider the equation 

0~ h 2 
h - - = - - A u - V ( x ) u ,  x~R ~, t~O, (2.1) 

Ot 2 

where h is a positive parameter, A is the Laplacian, and the potential V(x) is a suffi- 
ciently smooth non-negative function with bounded matrix of second derivatives: 

ii~x ] ~C for all xER ~ and fixed C. 

We construct the h § 0 asymptotics of the fundamental solution of the Cauchy problem 
for this equation, i.e., a solution u(t, x) = u(t, x, g, h) that satisfies the initial 
condition 

u(t,x, ~, h) = 5 ( x - ~ ) .  ( 2 . 2 )  

We first find this asymptotic behavior at small times t. For this, we need some estimates 
and identities satisfied by the solutions of the variational system for the Newtonian 
equations. 

We define the Hamiltonian H(x, p) = p2/2 -- V(x) and denote by X(t, x, p), P(t, x, p) 
the solutions of the Hamiltonian system 

0V 
&=p, > = - - -  ( 2 . 3 )  

~x 

with initial condition X(0, x, p) = x, P(0, x, p) = p. By virtue of the conditions given 
on V, these solutions are defined, as is well known [3,13], for all t. 

We shall need the following well-known (see, for example, [6]) proposition. There 
exists a t o sufficiently small that det 8X/3p ~ 0 for all t ~ t o , and for all x,~6R ~ there 
exists and is unique a solution of the Hamiltonian system (2.3) with boundary conditions 
X(0) = $, X(t) = x. At the same time, on this curve there is realized a minimal value of 
the functional 

t 

0 

which  i s  d e f i n e d  on c o n t i n u o u s  p i e c e w i s e  smooth c u r v e s  w i t h  f i x e d  ends  y ( 0 )  = ~, y ( t )  = x.  
We d e n o t e  t h e  min imal  v a l u e  o f  t h e  f u n c t i o n a l  ( 2 . 4 )  by S ( t ,  x ,  ~ ) .  

We i n t r o d u c e  p 0 ( t ,  x ,  ~ ) ,  a momentum such  t h a t  X ( t ,  ~, p 0 ( t ,  x ,  ~ ) )  = x ,  and J a c o b i a n  

OX 
](t, x, ~)=  de t -~p  (t, g, p0 (t, x, ~)). 

We f o r m u l a t e  t h e  main r e s u l t  o f  t h i s  s e c t i o n  ( s e e  a l s o  [ 2 3 - 2 5 ] ) .  

THEORN 1. I f  V(x)  has  bounded ,  in  R~ d e r i v a t i v e s  o f  f o u r t h  o r d e r ,  t h e n  f o r  t~(O, to) 
t h e  s o l u t i o n  t o t h e  p rob l em ( 2 . 1 ) - ( 2 . 2 )  has  t h e  form 
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u(t,x, ~, h)=(2nh)-"nJ (t,x, ~)-'l' exp{ - -~  S (t,x, ~) }( t+O(ht~) ), ( 2 . 5 )  

where 0 ( h t  3) u n i f o r m l y  wi th  r e s p e c t  to  a l l  x, ~R".  

I f  V p o s s e s s e s  d e r i v a t i v e s  of  o rde r  h ighe r  than the  f o u r t h ,  then  the  f u n c t i o n  0 ( h t  3) 
in (2 .5 )  s t i l l  remains  a f u n c t i o n  of  the  form 0 ( h t  3) a f t e r  d i f f e r e n t i a t i o n  wi th  r e s p e c t  to  
x or g. 

If V(x) is infinitely differentiable, then for every M6N 

~ ~)}.X u(t, x, ~, h )=  (2nh)-~/~J(t, x, ~)-'f' exp{ - -h-S(t, x, 

(t +h~)i+h2~2+... +hZ~z~+O ( h~+~t ~+3) ), ( 2.6 ) 

where the functions ~j are defined by the recursion relations 
t 

~ (t, x, ~) = ! ~ r (~_is-"0 d~ 
2 o  

(2.7)  

(here ~0 - i, the integral is taken along the trajectory X(x, ~, p0(t, x, ~)), and the 
Laplacian is applied to the argument x) and satisfies the estimates ~=O(tJ+2), ]~I. 

We first prove some helpful auxiliary propositions. In the space of continuous matrix- 
valued functions on the interval [0, t] we define linear operators G l, G 2 by the formulas 

0 0 0 0 

LEMMA i. The norms of the operators GI, G 2 are bounded above by t2C/2 and for small 
t 5 t o do not exceed unity. For these t, the derivatives of the solutions of the system 
(2.3) with respect to the initial data are given by 

OX 
- - -  (t, x, p) = (Id-G,)-'E--= (Id+Gi+Gl2+.. .)E, Ox 

OP O_X_Xop (t'x'P)=(Id-G~)-~tE' ~p (t,x,p)=fld-G~)-'E, 
1 

O_P_P 
(t, x, p) = (Id-G~) -~ j V=" (~)d~. c)x 

o 

Here, E is the unit n x n matrix, and Id is the identity operator. In particular, 

OP O Xop (t'x'p)=t(E+O(t2))' ~p (t'x'p)=E+O(tZ)' 

where O(t 2) uniformly with respect to all t~to;x,p~R'L 

The proof follows from the standard [26] representation of the solution of the 
variational system 

( o ( ) 
A= V='(X(T,x,p)) 0 A. A(O)= E 0 

�9 0 E 

(2 .8 )  

which is satisfied by the 2n x 2n matrix A(t)--. 
a(z,p) 

ordered exponential. 

We recall that the functions S, P, X satisfy the following well-known identities 
[3,27]: 

025 , OP ( OX ) 
Ox 2 ( t , x , ~ ) = ~ - p  (t,~,po(t,x,~)) -~p (t,~,po(t,x,~)) - '  , 

o~s (O~p )-'ox 
OT-(t,x,~)= (t,~,po(t,x,~)) -~x (t,~,po(t,x,~)). 

o(x,p) 
in the form of a series of a time- 

(2 .9 )  

(2.1o) 
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Let t~ + t 2 ~ t 0. 

LEMMA 2. 

In particular, 

We introduce the function f(~])=S(t~, x, q)+S(t,., q, ~). We denote 

~I=X(t~, ~, po(t,+tz, x, ~)), fi,=P(t~, ~, po(t~+ti, x, ~)), po=po(t,+t~, x, ~) =p0(t~, ~, ~). 

The following matrix equation holds: 

OX (t~+t=, ~, Po) = ~ (t~, ~1, - ) " OX op (t, (2.11) 

detf"=](t~+t~, x, ~)]-'(t~, x, ~)]-'(ti, TI, ~). 

Proof. We represent the mapping X(t I + t2, ~, p) as a composition of mappings: 
(~,p)-+Ol=X(ti ,~,p),  p~=P(ti, ~,p)) and (~],p~)-+X(t~, q,p~). Then 

OX (t~+t~, ~, p) = OX OX OX OP 

For p = P0 we have ~ = ~, po = po. S u b s t i t u t i n g  in the  l a s t  exp re s s ion  the  va lues  o f  8X/Sx 
02S . 

and 3P/Sp expressed  in terms of  O~Sox ~ (t~,x,~l) and, r e s p e c t i v e l y ,  - ~ ( t ~ , ~ , ~ )  by means o f  the  

i d e n t i t i e s  (2 .9 )  and (2 .10 ) ,  we o b t a i n  (2 .11 ) ,  which i s  what we needed to  prove.  

LEMMA 3. 

(2 .12)  

~ (t,x, ~)--- ~ Ox-- q- - ~  (E+O (ti) ), (2 .13)  

](t, x, ~) =tn( 1+O (t 2) ), (2 .14)  

where O(t) uniformly with respect to all t~to, x, ~ER"; 

0"V 
- -  =O(t"+2), m=m,+rni, (2 .15)  
Oxm, O~ m~- 

~m+~) 
Ox,,+a S(t ,x,  ~) =O(t) (2 .16)  

f o r  the  m => 1 f o r  which t h e r e  e x i s t  con t inuous  d e r i v a t i v e s  of  V of  order  m + 2, and O(t ~+2) 
and O(t) uniformly with respect to x, ~ in any compact set (and uniformly with respect to 
all x, ~ER" if the corresponding derivatives of the function V are bounded in R~). 

The proof follows from the formulas of Lemma 1 and the identity (2.9). 

Note that from (2.13) we obtain the equation 

__(x-~) 2 ( OSax ) S( t , x .~ )= (t+O(t~))+S(t ,~,~)+ -:--- (t, ~, ~), x-~ 
�9 2t 

and therefore 

(x-~) ~ 
S(t, x, ~)=- (l+O(#) )+O(t) (l+l]x--~H), (2 .17)  

2t 

where O(t)  u n i f o r m l y  wi th  r e s p e c t  to  ~ in any compact s e t  and a l l  x6RL 

Proof  of  Theorem 1. Consider  the  f u n c t i o n  

G(t, x, ~, h)=  (2~h)-~/~(t, x, ~)exp - -s x, ~) , (2 .18)  

where qD=] -v'. We o b t a i n  d i r e c t l y  from the  e s t i m a t e s  (2 .14)  and (2 .17)  t h a t  limG(t, x, ~, h )=  
t ~ 0  

5(x--~), i . e . ,  G s a t i s f i e s  the  i n i t i a l  c o n d i t i o n  ( 2 . 2 ) .  I t  i s  wel l  known [27] t h a t  
S ( t ,  x, g) s a t i s f i e s  the  H a m i l t o n - J a c o b i  equa t ion  

a S +  1 0S12 
at 7 ( 7 7 . ,  -V(x)=~ 

and the  f u n c t i o n  ~=g-v= s a t i s f i e s  the  t r a n s p o r t  equa t i on  

Ot Ox Ox 2 
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where 

Substituting G in (2.1) and differentiating, we obtain 

0 h ~ 

~/2 I 
F=-~- i  ( f a h ) -  A ~ e x p { - ~ - S ( t ,  x, ~)}. ( 2 . 1 9 )  

It follows from the estimates (2.15) that A~=O(tf)% and hence 

F(t, x, ~, h)=O(tf)G. ( 2 . 2 0 )  

Thus ,  G i s  a f o r m a l  a s y m p t o t i c  s o l u t i o n  o f  t h e  p ro b l em  ( 2 . 1 ) - ( 2 . 2 ) .  

We show t h a t  t h e  e x a c t  s o l u t i o n  o f  t h e  p rob lem ( 2 . 1 ) - ( 2 . 2 )  can be r e p r e s e n t e d  in  t h e  
form of the convergent series 

t 

u(t'x'~'h)~-G(t'x'~'h)+ Zh~+l l I G(t--T'x'n'h)F~(T'~]'~'h)d~d~' (2.21) 
~ = 0  0 R n 

where  F h i s  t h e  k - t h  power o f  t h e  i n t e g r a l  o p e r a t o r  F, which  i s  d e f i n e d  by t h e  k e r n e l  F 
in  a c c o r d a n c e  w i t h  

t 

d~. 
0 R n 

I t  i s  e a s y  t o  show t h a t  t h e  s e r i e s  i s  w e l l  d e f i n e d  f o r  s m a l l  h and g i v e s  a f u n c t i o n  o f  t h e  
form G ( t ,  x ,  ~, h ) ( 1  + O ( h t 3 ) ) ,  where  O(h t  3) u n i f o r m l y  w i t h  r e s p e c t  t o  a l l  x ,  ~ in  any  
compact  s e t  and a l l  t ~ t o . For  t h i s ,  i t  i s  n e c e s s a r y  t o  e s t i m a t e  s u c c e s s i v e l y  t h e  r e s u l t s  
o f  a p p l y i n g  t h e  o p e r a t o r s  F by means o f  Lemma 10 ( f ro m  Sec .  10) ,  u s i n g  a t  t h e  same t i m e  t h e  
i d e n t i t y  ( 2 . 1 2 ) ,  t h e  e s t i m a t e s  f rom Lemma 3 ,  and t h e  e s t i m a t e  

i exp {-- S (t - -  T, x, q) - -  S (T, N, $) + S (t, x, ~)} dq ~-- 0 (l) ( ~T (t -- ~) ,,~/21 
t ] ' 

which follows from the fact that the expression in the curly brackets does not exceed 

o + ') T t--~ (~--~,)% The required asymptotic properties of the derivatives of the function 

u can be verified in the same way. To verify that (2.21) determines a solution of 
Eq. (2.1), we note that 

and therefore 

[h• h2 Eh +fF F 

Thus, the representation (2.21) has been proved. 

To obtain the expression (2.6), we first find a formal asymptotic WKB solution to 
the problem (2.1)-(2.2) of the necessary accuracy. This is done in the usual manner (as, 
for example, for the SchrSdinger equation in [27]), and this gives formulas (2.7). The 
further demonstration is exactly as before. 

3. Tunnel Canonical Operator 

The global exponential asymptotic behavior of the Green's function of Eq. (2.1) is 
determined by the tunnel canonical operator introduced below. We use facts from symplectic 
geometry and the theory of Lagrangian manifolds; these can be found, for example, in [27]. 

We recall that the simply connected manifold A in a 2n-dimensional phase space R ~n= 
R~XRp~:A={r(~)=(p(r(~)), x(r(~)))}, a~r(~), is a smooth mapping R~R 2~, is said to be 
Lagrangian if on it the Lagrange brackets vanish or, which is the same thing, if on A there 
is defined a function 
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S(r)= ~pdx, r~A, 
ro 

where the integral is taken along any curve lying on A (r 0 is a fixed point of A). Suppose 
the function S(r) is non-negative. Then we shall call S(r) the entropy of the manifold A. 

there is defined a measure d~ = D(~)da. We call the function $=det~X~(a) Suppose on A 

the Jacobian on A. We recall that the point r on A is called a focal (singular) point if 
J = 0; otherwise it is nonsingular. In what follows, we shall assume that if the focal 
point ~ is a zero of the entropy S then P is an isolated zero of S. 

We call r an inessential point of A if there exists another point r'6A with the same 
projection onto R~ ~ and such that the entropy at it is less than at r. 

We construct an operator K, which carries functions on A to functions defined on R~ ~. 
It is this operator that will determine the global asymptotic behavior of the fundamental 
solution of Eq. (2.1) and some other solutions of it. 

We first define the action of the tunnel operator in the neighborhood of nonsingular 
points of A. 

Suppose ~ is a nonsingular chart on A, i.e., a chart such that the Jacobian J is 
nonvanishing for all points of ~. We denote by D~I~ ~ the set ~x(~C), where ~x is the 
natural projection from R 2~ to R~ ~, ~= is the closure of the set of essential points of 
the region ~, and by DT~R~ ~ the y neighborhood of the set D, i.e., the neighborhood such 
that Ix -- x' I ~ u for all xER~\D T, x'ED. We introduce a smooth function 0(x, u that is 
equal to unity for xED T and zero for xE~\D 2~. Let ~(r, h)ECo~(~) Vh~0 (smooth function 
of compact support). We define the operator K(~) by 

( K ( ~ ) ~ )  ( x ) =  I]~l -'~ exp - -h-S T ~(r(x), h)O (x, ?), ( 3 . 1 )  

where  r(x)EA s o l v e s  t h e  s y s t e m  x = x ( r ) ,  and J~ and SY a r e  smooth  f u n c t i o n s  e q u a l  t o  J and 
S on D. Of c o u r s e ,  t h e  f u n c t i o n  K ( ~ ) ~  depends  on ~, 0 ( x ,  y ) ,  and t h e  ways in  which  J 
and S a r e  e x t e n d e d  t o  J~ and SY. 

At t h e  s i n g u l a r  p o i n t s ,  t h e  e x p r e s s i o n  ( 3 . 1 )  has  s i n g u l a r i t i e s ,  and i t  c a n n o t  be u s e d  
in  c a l c u l a t i n g  t h e  a s y m p t o t i c  s o l u t i o n s .  I n  t h e  n e i g h b o r h o o d  o f  s i n g u l a r  p o i n t s ,  we s h a l l  
u s e  o t h e r  e x p r e s s i o n s  b a s e d  on a c h o i c e  o f  c o o r d i n a t e s  d i f f e r e n t  f rom ( p ,  x)  in  t h e  p h a s e  
s p a c e .  

Namely ,  l e t  I be  a c e r t a i n  s e t  o f  i n d i c e s  in {! . . . . .  n}, H~=~-- p~,g~7 ~ i s  t h e  p h a s e -  
2EX 

s p a c e  s h i f t  d u r i n g  t i m e  ~ a l o n g  t h e  t r a j e c t o r y  o f  t h e  H a m i l t o n i a n  f l o w  w i t h  H a m i l t o n i a n  
- - H I '  L e t  o > 0 be so  s m a l l  t h a t  t h e  r e g i o n  g ~  i s  s t i l l  p r o j e c t e d  in  a s i n g l e - v a l u e d  
manner  o n t o  R~ ~, so  t h a t  a s  c o o r d i n a t e s  on gH~ ~, whose p o i n t s  we s h a l l  d e n o t e  by r ~  we can  
t a k e  t h e  p r o j e c t i o n s  x ( r  e )  o f  i t s  p o i n t s  on R~: xz(~)=x~(r)-~p~,xT(r~)=xT(r). Here  x~=(x~ .. . . . .  
@~),]~EI;x~=(x~+~,...,x~),]~+~Ef; / = { t , . . . ,  n}\I,x=(x~, xi) d e t e r m i n e  t h e  p r o j e c t i o n s  o f  t h e  p o i n t s  
o f  a o n t o  R~ ~, (p~, pT) a r e  t h e  p r o j e c t i o n s  o f  t h e  p o i n t s  o f  ~ o n t o  R, ~. As t h e  L a g r a n g i a n  
manifold is displaced along the trajectories of the Hamiltonian flow its entropy and 
Jacobian are transformed in a natural (from the point of view of Hamiltonian mechanics) 
manner: 

S(r ~) = S ( r ) §  ~ (p dx+H~ dt), 
o 

where the integral is taken along trajectories that connect the initial point r on ~ and 
the displaced r~ 

] (r~(r) )=~t(a)det O~(~) . 

I n  t h e  g i v e n  c a s e  

Ox(ro) ](r)det [ ~ " 02Sz \ S ( r ~ ( r ) ) = S ( r ) - ~  p'2(r)' ](r~ Ox(r) - -  I 
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since in nonsingular charts, as is well known, the coordinates p and x are connected by 
the equation p = 8S/3x. 

In the new coordinates x,(r=), ~(r ~ we can again write down the expression (3.1), but 
this formula will give a new function. To "compensate" the transition to the new coordinates 
in the phase space, we correct this new function, by applying to it the resolving operator 
exp{-ol{i} of the Cauchy problem for the k-dimensional heat conduction equations. This 
operation leads to definition of the "inverted" local operator I~(~): 

I ex, { } (K (g~f2) r l~l=~ d~ ( 3 . 2 )  
R k 

( the  f u n c t i o n  ~ on g ~ Q  i s  de te rmined  by i t s  v a l u e s  on ~Q: (9(W(r))=q)(r), t he  e s s e n t i a l  p o i n t s  
on gntO. a re  assmned to  be the  images of  the  e s s e n t i a l  p o i n t s  in ~) .  

LEHHA 4. Let  T and Ep be smooth f u n c t i o n s  of  compact suppor t  on ~ such t h a t  a t  t he  
e s s e n t i a l  p o i n t s  o f  the  c h a r t  ~ t he  d i f f e r e n c e  q~(r, h)-~(r ,  h) has o rde r  O(h).  Then a t  
the points x6Q ~ 

(K(Q) }) (x)=K(Q)(q~+O(h))(x). 

Proof. By the definition of K(gT~xQ) 

(l~(~2)r i e x p {  ]n--xIl~ 
2ho } X 

R k 

[exp { - - - - ~ ( S - - ~ p ~ l  o 2)(r (r~))} 0(x, ?) ~ (r~ (x))](r(r~(x)))-�89 ~i(rg=n d~. (3.3) 

Here 0(x,  h) i s  a smooth f u n c t i o n  of  compact suppor t  equa l  to  u n i t y  in a $ ne ighborhood of  
n , ( g H ~ ) t  To c a l c u l a t e  t h i s  i n t e g r a l ,  we use  the  Laplace  method. For t h i s  we f i nd  the  
p o i n t  ~ a t  which the  d e r i v a t i v e  of  the  p r e - e x p o n e n t i a l  v a n i s h e s :  

~_ (~]--x')~ +(S_  ~ 2 ) ( r ( r ~ ) ) l ~ ( ~ ) = ~ ,  
2a -2- p~ 

( 3 . 4 )  
aS q--xz_}.[a~(E o Op,)( ax,(r ~ ) -~] t  = ~--x,}_ OS 

From the  c o n d i t i o n  of  van i sh ing  of  t h i s  e x p r e s s i o n ,  we f i n d  

Oxz 

and hence f o r  x e n ~  t h e r e  e x i s t s  a unique ~ t h a t  s a t i s f i e s  t h i s  e q u a t i o n :  ~](x)=x~(r~ 

We c a l c u l a t e  the  second d e r i v a t i v e  of  the  p r e - e x p o n e n t i a l :  

,[Ox(r ~) ~-'[ O~S i + O~S (r(rO) ) ~ 0 " ~  ) I = 
Oq z 0 Oxz z ~ (~%=n 

I (Ox(r ~)+ O~S , ~[Ox(r ~)~-' i (Ox(r ~ ]-~ , 

since 

Ox(rO WS 
E - o - - -  

ax(r) ax, 2 

whence, in p a r t i c u l a r ,  i t  f o l l o w s  t h a t  ~(x)  i s  a nondegenera te  minimum p o i n t  of  ~ (q) .  
S u b s t i t u t i n g  the  c r i t i c a l  va lue  of  q(x)  in the  e x p r e s s i o n  (3 .4 )  f o r  g, we immedia te ly  f i n d  
g ( ~ ( x ) )  = S (x ) .  We now have e v e r y t h i n g  ready  to  w r i t e  down the  a s y m p t o t i c  behav io r  of  
the  i n t e g r a l  ( 3 . 3 )  by the  Laplace  method ( f o r  x~n~(Q~)): 

h 

(~ h det \ Ox(r) ! 
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After obvious cancellations, we obtain 

i.e., at the points xE~ = 

K(O) r  (~+O(h)), 

as  we n e e d e d  t o  p r o v e .  

T h i s  lemma s u g g e s t s  a way o f  d e f i n i n g  a l o c a l  o p e r a t o r  in  t h e  n e i g h b o r h o o d  o f  a 
s i n g u l a r  p o i n t .  As i s  known f rom s y m p l e c t i c  g e o m e t r y  ( s e e  [ 3 , 2 7 ] ) ,  in  t h e  n e i g h b o r h o o d  o f  
any  such  p o i n t  r on h t h e r e  e x i s t  f o c a l  c o o r d i n a t e s  (p~,xT), where  I~{1  . . . .  , n } , f { l  . . . . .  n}\I, 
(p~,xT) a r e  s e t s  o f  p r o j e c t i o n s  o f  t h e  p o i n t s  o f  A o n t o  t h e  c o r r e s p o n d i n g  c o o r d i n a t e  a x e s  
in  R ~, and t h e  l e a s t  p o s s i b l e  power  l i t  o f  t h e  s e t  I i s  e q u a l  t o  t h e  c o r a n k  o f  t h e  m a t r i x  
O x ( r ) / 3 a .  I t  i s  r e a d i l y  s e e n  t h a t  f o r  any  s i n g u l a r  p o i n t  t h e r e  e x i s t s  a n e i g h b o r h o o d  
in  A w i t h  f o c a l  c o o r d i n a t e s  (p~,x~) and number  v > 0 such  t h a t  t h e  t r a n s f o r m a t i o n  ~ g ~  
c a r r i e s  i t  t o  a p o s i t i o n  in  which  i t  i s  u n i q u e l y  p r o j e c t e d  o n t o  R~ ~, and t h e  f u n c t i o n  
g ( n )  o f  t h e  fo rm ( 3 . 4 )  i s  n o n - n e g a t i v e  f o r  x~n~O. For  such  a n e i g h b o r h o o d  ~ we d e f i n e  a 
l o c a l  t u n n e l  o p e r a t o r  i n  a c c o r d a n c e  w i t h  ( 3 . 2 ) .  As in  t h e  lemma, we can  p r o v e  t h a t  t h e  
o p e r a t o r  d e f i n e d  in  t h i s  way i s  i n v a r i a n t  ( i n  t h e  same s e n s e  as  in  t h e  lemma) w i t h  r e s p e c t  
t o  t h e  m a g n i t u d e  o f  a and i t s  d i r e c t i o n  s p e c i f i e d  by t h e  s e t  I ,  and a l s o  t h e  o t h e r  
p a r a m e t e r s  t h a t  o c c u r  in  i t s  d e f i n i t i o n ,  The g l o b a l  t u n n e l  o p e r a t o r  i s  d e t e r m i n e d  by a 
r e s o l u t i o n  o f  t h e  i d e n t i t y  in  t h e  same way as  f o r  an o r d i n a r y  c a n o n i c a l  o p e r a t o r  [ 2 7 ] ,  

n a m e l y ,  we c h o o s e  a c a n o n i c a l  a t l a s  o f  c h a r t s  on A : A =  U ~ ,  such  t h a t  t o  e a c h  s i n g u l a r  
j = i  

c h a r t  ~ t h e r e  c o r r e s p o n d  f o c a l  c o o r d i n a t e s  (p~, xT) and number oj  s a t i s f y i n g  t h e  c o n d i t i o n s  
l i s t e d  ~bove  and n e c e s s a r y  f o r  d e f i n i t i o n  o f  t h e  l o c a l  o p e r a t o r  K ( ~ j ) ;  l e t  { e j ( r ) }  be  t h e  
r e s o l u t i o n  o f  t h e  i d e n t i t y  on h c o r r e s p o n d i n g  t o  t h e  c h o s e n  a t l a s .  -Then  t h e  t 5 n n e l  
c a n o n i c a l  o p e r a t o r  i s  d e f i n e d  as  t h e  mapp ing  C0~(AX[0, I ) ) ~ C ~ ( R ~ [ 0 ,  t ) )  by t h e  f o r m u l a  

K~ = Z K(~j)  (ejT). 
J 

We i n t r o d u c e  e q u i v a l e n c e  r a t i o s  on C~(R~) :  t h e  f u n c t i o n s  g, hEC~(R~') a r e  e q u i v a l e n t  i f  
g - h b e l o n g s  t o  t h e  s p a c e  o f  f u n c t i o n s  o f  t h e  fo rm K~, where  ~ i s  O(h)  in  vx(A c)  ( t h i s  
s u b s p a c e  i s  w e l l  d e f i n e d  and does  n o t  depend  on t h e  p a r a m e t e r s  t h a t  s p e c i f y  K).  Note  t h a t  
f o r  f u n c t i o n s  t h a t  do n o t  v a n i s h  on ~x(h  c)  and h a v e  t h e  fo rm K~ and K~ in  t h e  image o f  K 
t h i s  e q u i v a l e n c e  i s  e q u i v a l e n t  t o  t h e  e q u a t i o n  K~/K~=~+O(h). We d e n o t e  by r t h e  c o r r e s p o n -  
d i n g  f a c t o r  s p a c e .  From t h e  a r g u m e n t s  we have  g i v e n ,  t h e  lemma, and i t s  a n a l o g  f o r  s i n g u l a r  
c h a r t s  we c o n c l u d e  t h a t  t h e  f o l l o w i n g  t h e o r e m  h o l d s .  

THEOREM 2. The t u n n e l  c a n o n i c a l  o p e r a t o r  

K : C0: (A• i ) ) + @  

does not depend on the choice of the canonical atlas, the resolution of the identity, and 
the parameters o and y that define the local operator. 

Remark 1. Let A ~ be a certain Lagrangian manifold in R~R~:A={(x, p)~R~:x=x(a), 
p=p(a), ~6R ~} with positive measure d~(a)=~(a)da~ ..... da~ and non-negative entropy So, and 
H(x, p) be a Hamilton function such that its Lagrangian is non-negative. Then on the 
Lagrangian manifold g~A ~ = A t shifted along the characteristics of the Hamiltonian flow g~ 
there are naturally defined the transported measure d~tand the (also non-negative) entropy 
S t in accordance with 

t 

OH 

o 

where  r~A ~ i s  t h e  image  o f  r0~A ~ u n d e r  d i s p l a c e m e n t  a l o n g  t h e  s o l u t i o n s  p ( ~ ) ,  x ( ~ )  o f  t h e  
Hamiltonian system; the integral is taken along this solution. It is known [27] that 
the function defined in this manner on A t is the generating function of this manifold. 

Remark 2. In some important cases the tunnel operator is defined not only on finite 
functions but also on all bounded (smooth) functions on A. It is readily seen that this 
holds when the Lagrangian manifold satisfies the additional condition of "properness": 
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for every xeR ~ the set {p~R~'(x, p)~A} is compact. This property holds for the manifolds 
At,S introduced in what follows for t > 0; they play a special role in the theory. 

4. Global Asymptotic Behavior of the Fundamental 

Solution and the Problem of Large Deviations 

The tunnel canonical operator introduced above makes it possible to express in general 
form the exponential asymptotic behavior for the Green's function of the problem (2.1) at 
an arbitrary time. 

We denote by A t,S the Lagrangian manifold obtained by displacement of the plane 
A~ = {(p, x):x = ~} along the trajectories of the Hamiltonian system (2.3) during the 
time t. We assume that on A~ the entropy is zero and the measure in the coordinates 
p6R~ ~ is unity, and that on At,~ these objects are determined by means of the displacement 
(see Remark 1 above). We denote by Kt,~ the tunneling canonical operator on A t,S. 

THEOREM 3. A. Suppose there exists a finite number k of trajectories X(~, $ P~I that 
connect the points S, x during the time t and realize a minimum of the functional i2 
equal to S(t, x, S). Then the solution of the problem (2.1)-(2.2) at these t, x has the 
form 

u(t ,x ,~,h)=(2~h)-~/2exp{-~S(t ,x ,~)} 2J/ /~(t ,x ,~)( l+O(h)) ,  (4.1) 

where Jj is the Jacobian along the trajectory X(T, $, pj). 

B. In the general case, the solution u(t, x, S, h) is determined by the formula 

u(t, x, ~, h)=(2r~h)-~nKt,~( t+O(h) ). (4 .2 )  

Proof. At small t, this theorem follows directly from (2.5) and the definition of 
the canonical operator. For t6((m--l)t0, rot0] the solution (2.1)-(2.2) can be represented 
in the form 

u(t, x, ~, h)=G~5(x-~)=GJ~- 'u(% x, g, h), (4 .3 )  

where T=t/m~-(O, to], G~ ~ is the power of the operator, 

(G@) (x, ~, h )=  I a(T,x, ~l, h) T (q, ~, h)d~ 1. (4 .4)  
II 

I f  X i s  no t  a f o c a l  p o i n t  of  t he  mani fo ld  At ,~ ,  then t h e r e  e x i s t s  a f i n i t e  number 
of  t r a j e c t o r i e s  Xr(T) = X(~, S, Pr) of  the  Hamil tonian  sys tem (2 .3)  t h a t  connect  S and x 
dur ing  the  t ime t and r e a l i z e  a minimum of  the  en t ropy .  I t  then fo l lows  from L a p l a c e ' s  
method t h a t  to  w i t h i n  e x p o n e n t i a l l y  smal l  q u a n t i t i e s  the  s o l u t i o n  (4 .3)  i s  equal  to  the  
sum of  ~ terms of  the  form 

I ' ' "  I u(~'x '~1'h) '"u(% E~-l'~'h)d~l""dn~-~' (4 .5)  
1 m - 1  

v] v] 
where V~ i s  a smal l  neighborhood of  the  p o i n t  Xj(s such t h a t  from S to  every  p o i n t  of  V~ 
t h e r e  l~ads on ly  one t r a j e c t o r y  t h a t  r e a l i z e s  a minimum of the  f u n c t i o n a l  (2 .4)  dur ing  
the time IT. In (4.3), we replace all the functions u by formal asymptotic solutions G. 
Then the expression (4.3) is changed by O(h). Calculating now successively the integrals 
with respect to dNs s = i, ..., k -- i, by Laplace's method, and using the identity (2.12), 
we obtain (4.1). 

But if x is the projection of an essential focal point, then direct application of 
Laplace's method to (4.3) is impossible, since the stationary points are degenerate. In 
this case, we use the following device. Employing Lemma 4, we write the integral kernel 
of the last operator in (4.3) in the form (3.2)-(3.3), where the subset I is chosen in 
such a way that the rotated neighborhood gH~Q of the focal point r(x) in At,S is uniquely 
projected onto l~L Then, for m = 2, say, (4.3) can be rewritten in the form 

2ha } • 
Rk 
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where 

l exp { - - ~ z  (S (r(rZ))+ S (~, z, ~))} 0(x, ? ) ] - ~ ( r ( r Z ( x ) ) ) ]  (z, z, E)-~ ~(,z)=ndzd~l, 
R ~ 

~(~-:=/ ) (%=(r(~~ xOl),~) 
is the transformed phase on the manifold g~ A ~,~ in the neighborhood of the point x. Cal- 
culating now the integral with respect to z by Laplace's method, we obtain, as in the 
previous situation, (4.2). This argument completes the proof of the theorem. 

The solution to the Cauchy problem of a linear equation with arbitrary initial function 
is given, as is well known, by the convolution of this initial function with the fundamental 
solution. Using this fact, we find an asymptotic expression for the solution to the 
problem of large deviations. This is the name given to the Cauchy problem for the equation 
(2.1) with initial data 

u I ,=0=9~ (x), ( 4 . 6 )  

where  ~~ i s  a d i s c o n t i n u o u s  f u n c t i o n  t h a t  does  n o t  v a n i s h  in  a c e r t a i n  c l o s e d  bounded 
r e g i o n  D0cR~=,~~ o u t s i d e  D O and ~~ and t h e  b o u n d a ry  8D o i s  smooth .  As 
was n o t e d  a b o v e ,  t h e  s o l u t i o n  o f  t h i s  p rob lem i s  d e t e r m i n e d  by v i r t u e  o f  Theorem 3 by t h e  
f o r m u l a  

u (t, x, h) = (2nh)-~/2 I K (i + 0 (h)) (t, x, ~, h) ~o (~) d~, ( 4 . 7 )  
n~ 

where  K = K t , g  i s  t h e  t u n n e l  c a n o n i c a l  o p e r a t o r  on t h e  f a m i l y  o f  L a g r a n g i a n  m a n i f o l d s  h t , ~ .  
We d e n o t e  by D t t h e  p r o j e c t i o n  o n t o  R~ ~ o f  t h e  image o f  t h e  r e g i o n  {p=O,x~Do} u n d e r  t h e  
a c t i o n  o f  t h e  H a m i l t o n i a n  f l ow  ( 2 . 3 ) .  I t  can  be shown t h a t  f o r  a l l  xER," n o t  l y i n g  on t h e  
b o u n d a r y  8D t o f  D t h e  i n t e g r a l  ( 4 . 7 )  can be c a l c u l a t e d  by L a p l a c e ' s  method.  

THEOREM 4. The s o l u t i o n  t o  t h e  Cauchy p ro b l em  ( 2 . 1 ) ,  ( 4 . 5 )  has  t h e  f o l l o w i n g  form:  

A. For xEDt\ODt 

u(t, x, ~, h)=K~'(r176 ) )+O(h) ), (4.8) 

where  Kin i s  t h e  t u n n e l  c a n o n i c a l  o p e r a t o r  c o n s t r u c t e d  on t h e  L a g r a n g i a n  m a n i f o l d s  A~n = 
g~{p = 0}, the images under the action of the Hamiltonian flow of the plane {p = 0} 
in1~XR; ~, on which the measure and the Jacobian have unit values: d~ = d$1...d$ n, J = i, 

0X 
and the entropy is zero, so that on A~n the Jacobian J= det-~-(t,~,0), while the entropy is 

calculated in accordance with formula (3.5) along the solutions X(T, $, 0) of the system 
(2.3) with initial data X(0) = $, P(0) = 0. 

B. For x~R~\Dt 

u(t, x, h ) =  ~ o~t(o(r)-'~~ 

t t t 0 where  K~u t i s  c o n s t r u c t e d  on t h e  L a g r a n g i a n  m a n i f o l d s  Aout=gH A0ut, Aou t ={p=pn(x)ax@Do, 
p~R~,n(x) i s  t h e  v e c t o r  o f  t h e  u n i t  o u t e r  normal  t o  8D 0 a t  t h e  p o i n t  x} and on Aou t t h e  
e n t r o p y  i s  z e r o  and t h e  J a c o b i a n  u n i t y ,  d~=dpda~...da~-~; a~,... ,  ~-~ a r e  o r t h o n o r m a l i z e d  
c u r v i l i n e a r  c o o r d i n a t e s  on t h e  m a n i f o l d  ~D 0 w i t h  u n i t  m e t r i c  t e n s o r ,  and 0 ( r )  i s  d e t e r m i n e d  
by t h e  r e l a t i o n  p(r)n(gH-~r)=p(gH-~r). 

The p r o o f  i s  o b t a i n e d  by d i r e c t  c a l c u l a t i o n  in  a c c o r d a n c e  w i t h  L a p l a c e ' s  method o f  
i n t e g r a l s  o f  t h e  fo rm 

f g (~l~) (e~  0 (~)) d~, 
~ n  

where  {~j} i s  a c a n o n i c a l  a t l a s  on h t , $ ,  and in  c a s e  A t h e  p o i n t  o f  minimum o f  t h e  phase  
i s  an i n n e r  p o i n t  o f  t h e  r e g i o n ,  and in  c a s e  B i t  i s  a b o u n d a ry  p o i n t ;  f o r  c a l c u l a t i o n s  in  
the neighborhoo d of focal points, the device from the proof of the previous theorem should 
be used. 
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5. Asymptotic Behavior of the Solutions at Large 

Times (of Order h-(i+~, ~> 0) 

Suppose the potential V(x) satisfies the following additional conditions: V(x) + 
as Ix[ § ~ and V(x) vanishes only at a finite number of points (of global minimum) ~, .... 
gt, at which the matrix of second derivatives V"(x) is nondegenerate. We denote the 
eigenvalues of the matrix V"($k) by (~k)2: ~ > 0, j = i, ..., n. Under these conditions 
on V, we investigate in this section the asymptotic behavior of solutions of the problems 
(2.1), (4.6) (or (2.1) and (2.2)) at "large" times t of order h -(1+x), • and also the 
t § ~ limits of their logarithmic asymptotic behaviors. First, we study some properties 
of the solutions of the Hamilton-Jacobi equation and the Hamiltonian system in the case of 
the Hamiltonian H~-I/2p~-V(x) when the potential has the indicated properties. 

We recall that the resulting operator of the Cauchy problem for the Hamilton-Jacobi 
equation 

Ot - 2 0 f x  -- V(x)=O, Sl,=o=So(x) (5.1) 

is the mapping R t that associates the initial function S o with the solution S = RtS 0 of 
the problem at the time t. It is well known that the resulting operator of the problem 
(5.1) is defined on the set of functions bounded below by the formula (see, for example, 
[ 2 8 , 2 9 ] )  

(R,So) (x) ---- inf (S0 (~) +S  (t, x, ~) ). ( 5 . 2 )  

The s emig roup  o f  n o n l i n e a r  o p e r a t o r s  R t i s  u n i q u e l y  d e t e r m i n e d  by t h e  f o l l o w i n g  
p r o p e r t i e s  [ 2 8 , 3 0 ] :  a)  f o r  s m a l l  t and smooth convex  i n i t i a l  f u n c t i o n s  S 0 (x )  t h e  f u n c t i o n  
( R t S 0 ) ( x )  i s  a c l a s s i c a l ,  i . e . ,  e v e r y w h e r e  smooth ,  s o l u t i o n  o f  t h e  Cauchy p r o b l e m ;  b) t h e  
o p e r a t o r s  R t a r e  c o n t i n u o u s  in  a c e r t a i n  n a t u r a l  t o p o l o g y  on t h e  s p a c e  o f  f u n c t i o n s  t h a t  
a r e  bounded be low;  c)  t h e  o p e r a t o r s  R t commute w i t h  t h e  o p e r a t i o n s  o f  t a k i n g  t h e  minimum 
o f  f u n c t i o n s  and add ing  c o n s t a n t s ,  i . e . ,  

Rt(min (S~, S2))=min (RtS~, t7tS2), Rt(~.+S(x))=%+RtS(x). ( 5 . 3 )  

At the same time, the image RtS of any function (bounded below) at points of differentia- 
bility satisfies the Hamilton-Jacobi equation. It follows directly from the expression 
(5.2) for R t that this image for t > 0 is always locally Lipshits continuous and, therefore, 
almost everywhere differentiable. 

We recall that the function S(t, x, g) in (5.2) was introduced at the beginning of 
Sec. 2 and denotes a lower bound of the functional 

0 

](y( ) )= t (V~(~)+v(Y(~))) d~, (5.4) 
- - t  

which is defined on continuous piecewise smooth curves parametrized by a segment of length 
t > 0 with fixed ends y(--t) = ~, y(0) = x. It is well known that under the conditions 
imposed on the potential at the beginning of Sec. 2 the minimum of the functional (5.4) 
is always realized on a smooth curve [6]. This fact is readily deduced from the remark 
that since for small t (less than a certain fixed t o ) the minimum of (5.4) is realized on 
a unique smooth curve; for arbitrary t the minimum with respect to piecewise smooth 
curves is identical to the minimum with respect to the set of piecewise smooth curves 
whose dericatives have not more than t/t 0 discontinuities at fixed times kto, k6N, k~t/to. Note 
also the symmetry of the function S: S(t, x, y) = S(t, y, x) for all t, x, y. This fact 
follows from the invariance of Newton's system with respect to time reversal. 

We introduce functions that are important for what follows: 

Sk(x)=inf  {S(t, x, ~ )  : t~O}, k = ]  . . . .  , l, ( 5 . 5 )  

and also their minimum 

S(x) =rain {Sk(x), k = t  . . . . .  l}. ( 5 . 6 )  

I t  i s  c l e a r  t h a t  t h e  f u n c t i o n  S ( t ,  x ,  ~k) f o r  f i x e d  ~k, x m o n o t o n i c a l l y  does  n o t  
i n c r e a s e  w i t h  r e s p e c t  t o  t ,  s i n c e  r e s t  a t  ~k (a  z e r o  o f  t h e  p o t e n t i a l )  does  n o t  i n c r e a s e  
t h e  v a l u e  o f  t h e  f u n c t i o n a l  ( 5 . 4 ) .  T h e r e f o r e  
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Sh (x) = lim S(t, x, %~). ( 5 . 7 )  

In addition, the functions Sk(X) are everywhere non-negative, since the functional (5.4) 
takes only positive values, and S,(x)=0~=~x=%~. We need above all the following facts about 
these functions. 

PROPOSITION i. The functions Sk(x) , k = i, ..., s and S(x) are fixed points of the 
resolving operator (5.2) of the Cauchy problem (5.1). 

PROPOSITION 2. If x is such that 

S~(x) < rain (S~(x)+S~(%~)), ( 5 . 8 )  

then the limit in (5.7) is realized on a smooth curve, i.e., there exists a smooth curve 
q:(-~,0]~R~such that 

0 

S~(x)=  ~ (V~( t )+V(q( t ) ) )d t ,  ( 5 . 9 )  

and 

q ( 0 ) = x ,  lira q(t)=%~, lira ~ ( t )=0 .  

Proof of Proposition i. From the definition (5.2) of the operator R t and the monotoni- 
city with respect to t of the function S(t, x, ~k) we obtain successively 

R~Sh(x) = inf inf (S(~, %, %J+S(t, x, %) ) =  inf S (t+~, x, %~) = inf S(T, x, %h)=Sk(x). 
~ 0  ~ 0  ~ 0  

I t  now f o l l o w s  f rom ( 5 . 3 )  t h a t  R t does  n o t  change  u n d e r  t h e  a c t i o n  o f  ( 5 . 3 ) .  

P r o o f  o f  P r o p o s i t i o n  2. We f i x  kE{l . . . . .  l}, x6R ~, s a t i s f y i n g  ( 5 . 8 ) .  From t h e  a b o v e  
v e r y  s i m p l e  p r o p e r t i e s  o f  t h e  f u n c t i o n s  S k ( x )  and S ( t ,  x ,  ~) i t  f o l l o w s  t h a t  t h e r e  e x i s t s  
a s e q u e n c e  {qm( t )}  o f  s o l u t i o n s  o f  t h e  H a m i l t o n i a n  s y s t e m  ( 2 . 3 )  p a r a m e t r i z e d  by t i m e  
i n t e r v a l s  [--Tm, 0] (T m § ~ a s  m + ~)  such  t h a t  q ( - - T  m) = ~k, q ( 0 )  = x ,  and on qm a minimum 
of the functional (5.4) is realized, i.e., J(qm(')) = S(Tm, x, ~k)- We obtain the exis- 
tence of a limiting trajectory in several stages: 

A. For every j ~ k there exists a neighborhood Uj of the point Sj such that from a 
certain number (in what follows, when going over to a subsequence, we shall assume that we 
begin from the first) none of the trajectories qm intersect Uj. Indeed, supposing otherwise 
for arbitrary s, and using the continuity of Sj(x) (which follows from the properties of 
the resolving operator R t and Proposition i), we construct a neighborhood Uj of the point 
Sj such that in it Sj(y) < s. By the assumption, there exist trajectories with arbitrarily 
large number m for which g~=q,~(--tm)6Uj for some t m. Therefore 

S(T~, x, %~)=S(t~, x, y.~)+s(r~-t~, y,~, %). 

But S(t, x,, xJ )S j (x~) -~(x2)  f o r  a l l  x ,  x2ER ~, ]6{t . . . .  , l} ( t h i s  i n e q u a l i t y  i s  o b t a i n e d  by g o i n g  
to the limit ~ § ~ from the obvious inequality S(t,x~, xf)>S(t+~, x, %j)-S(~, xf, %j)). Therefore 

s (T~, x, %~) ~ (x) +s~(~) -2s~ (y~) ~ (x) +sj (%~) - 2 ~  

Going to the limit Tm ~ ~ and bearing in mind that ~ is arbitrary we obtain 

& (x) ~ (x) +~ (%~), 
which  c o n t r a d i c t s  ( 5 . 8 ) .  

B. Fo r  e v e r y  n e i g h b o r h o o d  U o f  t h e  p o i n t  %k:x~U t h e r e  e x i s t s  a number N and t i m e s  
t 1 < t 0 < 0 such  t h a t  f o r  numbers  m > N t h e  t i m e  

tm(U)=sup{~ : q~(~)~U} 

b e l o n g s  t o  t h e  i n t e r v a l  [ t ~ ,  t o ] .  I n d e e d ,  on t h e  one hand ,  t h e  t r a j e c t o r i e s  c a n n o t  r e m a i n  
outside U for an infinitely long time t (since then the value of the functional on them, 
which is larger than t.min{V(g) :y%U,y%Uj, y~k}, tends to infinity) and, on the other hand, the 
trajectories cannot move arbitrarily rapidly from x to U, since 

m i n S ( T , x , y ) ~  as ~-~0. 
yOU 
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C. It follows directly from the arguments of B that the sequences tm(U) and Ym(U) = 
qm(tm(U)) belong to compact sets [t I, t o ] and 8U, respectively. Therefore, these sequences 
have a limit point, and, going to a subsequence, we can assume that they have a limit. 
Choosing an arbitrary sequence of numbers e D + 0, p + ~ and corresponding balls Bp of 
radius E D with center at ~k, we construct (by the diagonal method) a sequence of trajec- 
tories qm(T) such that for p6N the sequences tm(B p) and Ym(BD) have limits t(p) and y(p). 
Using the Arzela-Ascoli theorem, we now choose a subsequence~ of trajectories qm(~) such 
that for every p the sequence of pieces of trajectories qm(T), TG[t(p), 0], converges in the 
C I topology. The limits of these pieces then form together the required limiting 
trajectory q: (--0% 0]-~R ~. 

COROLLARY. For all points x, y there exists the limit 

lira S (t, x, y) ---- rain (Sk (x) +Sj (y) +Sk (~j)). 

Remark 3. This number is called the Agmon distance between the points x, y. 

We discuss the geometrical meaning of the functions Sk(x). Since z k = (~k, 0) is a 
hyperbolic nondegenerate singular point of the Hamiltonian system, there follows from the 
general theory [31] the existence of stretching and contracting invariant subsets WE n 
and W~ ut embedded in R 2~ . The dimension of each of them is n, since half the eigenvalues 
of the linear part of the Hamiltonian system in the neighborhood of z k are positive and 
the other half negative. The stretching (contracting) manifold is defined as the set of 
points (x, p)EB 2n such that the trajectories of the system omitted from them tend to z k as 
t § --~ (respectively, as t + +~). In the given case, both these manifolds are Lagrangian, 
since they are invariant under the action of the Hamiltonian flow, which is a group of 
symplectic transformations, so that the bracket of two tangent vectors at a point in, 
for example, W~ ut, is, on the one hand, invariant under the action of the flow and, on the 
other, tends to zero as t § --~ and, hence, is equal to zero. 

PROPOSITION 3. In the region distinguished by the inequality (5.8), the function 
Sk(X) is the generating function (or entropy) of the stretching Lagrangian manifold W~ ut 
in its essential part, normalized to zero at z k = ($k, 0) (the essential part of a Lagran- 
gian manifold was defined in Sec. 3). 

Proof. The generating function of the manifold W~ ut, normalized to zero at z k is 
given by 

z 

(z) = j- p dq, 
z ~  

where the integral is taken along any curve in W~ ut that connects z k and z = (x, p). 
Choosing as such a curve the trajectory z(t) = (x(t), p(t)) of the Hamiltonian system 
with boundary conditions z(--~) = z k, z(O) = z (such a definition exists in accordance with 
the definition of w~ut), we see that 

0 

T h e r e f o r e ,  i n  t h e  e s s e n t i a l  p a r t  o f  W~ u t  we h a v e  o ( z )  = S k ( x )  , as  we n e e d e d  t o  p r o v e .  From 
t h i s  in  p a r t i c u l a r  t h e r e  f o l l o w s  s m o o t h n e s s  o f  Sk(X) in  t h e  n e i g h b o r h o o d  o f  t h e  p o i n t  ~k" 
Note  a l s o  t h a t  in  P r o p o s i t i o n  2 we h a v e  e s s e n t i a l l y  p r o v e d  t h e  e x i s t e n c e  o f  an i n v a r i a n t  
s t r e t c h i n g  m a n i f o l d  in  t h e  g i v e n  c a s e .  

PROPOSITION 4. On W~ u t  t h e r e  i s  d e f i n e d  t h e  smooth  m e a s u r e  d~,  which  i s  r e l a t e d  t o  
t h e  H a m i l t o n i a n  f l o w  by t h e  c o n d i t i o n  

where  z t i s  t h e  image  o f  zo~Wk ~ u n d e r  t h e  a c t i o n  o f  t h e  f l o w  ( 2 . 3 ) .  

P r o o f .  The e x i s t e n c e  o f  t h i s  m e a s u r e  f o l l o w s  f rom t h e  t h e o r y  o f  n o r m a l  fo::ms o f  
s y s t e m s  o f  o r d i n a r y  d i f f e r e n t i a l  e q u a t i o n s  in  t h e  n e i g h b o r h o o d  o f  i s o l a t e d  a t t r a c t i v e  ( o r  
repulsive) fixed polnts" applledktO" the flow (2.3) o nk W~ut'2 Indeed, in the nonresonance. 
case, i.e., when every number ~j (we recall that (mj) are eigenvalues of the matrix V (~k)) 

( 5 . 1 0 )  
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is different from any linear combination of the form ~_jv~o~ ~, where v i are natural numbers 

such that Zv~2, the system (2.3) on W~ ut is in accordance with [22] linearizable, i.e., 

in a small neighborhood of the singular point on W~ ut there exist coordinates ~ = (~l, ..', 
~n) that depend smoothly on (x, p) and in which the system (2.3) has the linear form 

~(t)=exp{o~kt}~j(O), ]=1 . . . . .  n. 

Then obv ious ly  

det O~(t) exp{t~-7 j~}. 
0~(0) ~=~ 

(5.12)  

Therefore, the coordinates D determine in the neighborhood of the fixed point a measure d~ 
on W~ ut that satisfies (5.11)~ It is clear that this measure can be naturally extended to 
a measure on the whole of W~ un with retention of (5.11). In the case when resonance 
relations are present, the system cannot be linearized even locally by a smooth transforma- 
tion (in this situation, a linearizing transformation can be chosen in general only in the 
class of nonsmooth homeomorphisms [22,31]). However, there always exists a polynomial 
normal Poincar~ form [32]. It is easy to show that the coordinates ~ specifying this form 
satisfy as before (5.12) and, hence, determine the necessary measure satisfying (5.11). 

It is clear that the measure on W~ ut with condition (5.11) is uniquely defined up to a 
constant factor. We shall find it convenient to choose a measure ~ that, besides (5.11), 
satisfies the following normalization: at a fixed point z = (~k, 0) 

Remark 4. If V is analytic, then the coordinates U can be calculated by means of 
Dirichlet series, the coefficients of which are found from recursion relations [2,5]. 

At the nonsingular points of W~ ut we now define the Jacobian 

We denote  by D k the  neighborhood of  the  p o i n t  Sk d i s t i n g u i s h e d  by the  i n e q u a l i t i e s  

Sk(x) ~min {Sj(x),/~k} (5 .15)  

( o b v i o u s l y  x6D ~ s a t i s f i e s  ( 5 . 8 ) ) .  Let  ak be a smooth Lagrangian mani fo ld  wi th  edge such 
t h a t  a k c W~ u t ,  ~k c o n t a i n s  a l l  e s s e n t i a l  p o i n t s  of  W~ u t  p r o j e c t e d  to  a c e r t a i n  ~ ne igh-  
borhood of  the  r eg ion  D k (~ i s  an a r b i t r a r y  smal l  p o s i t i v e  parameter )  and does not  co n t a in  
p o i n t s  above a 2~ neighborhood of  D k. We denote  by K~t the  t unne l  canon ica l  o p e r a t o r  con- 
s t r u c t e d  from ~k wi th  the  phase S k and Jacob ian  Jk above in t roduced  on i t .  This ope ra to r  
w i l l  p l ay  the  main p a r t  in  the  f o l l o w i n g  c o n s t r u c t i o n s .  

We t u r n  to the  Cauchy problem ( 2 . 1 ) ,  ( 4 . 6 ) .  

PROPOSITION 5. Suppose the  p o t e n t i a l  V s a t i s f i e s  the  c o n d i t i o n s  l i s t e d  a t  the  
beginning of  the  s e c t i o n ,  the  i n i t i a l  f u n c t i o n  ~0 in (4 .6 )  i s  the  c h a r a c t e r i s t i c  f u n c t i o n  
of  the  bounded r eg ion  D wi th  smooth boundary 

t, x~D, (5 .16)  
ul '=~176 0, z~D. 

and all ~l ..... ~k belong to the interior of D. Then at all points x6R ~ there exists a 
limit as t § ~ of the first term of the logarithmic asymptotic behavior of the solution to 
the problem (2.1), (5.16). This limit does not depend on D O and has the form 

lim lim (hln a)=-S(x). (5 .17)  

Proof. It follows from Theorem 4 that 

lira (h In a) =--o (t, x), 
h ~ o  
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where 

o 

(5.18) 

y(~) = X(T, g(t, x), p0(t, x)) is the trajectory of the Hamiltonian (Newtonian) system 
(2.3) that connects the points g(t, x) and x and satisfies the conditions: a) ~I~=0=0, if 
x6Dt\ODt (then ~(x,t)6intD0); b) the vector ~I~=0 is normal to the boundary 8D 0 at the point 
g(t, x) if xER~\D~ (then ~(t,x)6OD0). By y(~) we understand a trajectory that satisfies one 
of these conditions and realizes a minimum of the functional (5.4). 

It follows from the definitions that 

0 ~ o  (t, x) ~ rain S (t, x, ~k), 
h 

and he nc e  

lim'o (t, x)~S(x) .  

We denote by ~(t, x) the point on the trajectory y(~) that specifies o(t, x) in 
accordance with (5.18) at which the function V(x) has a minimum; we denote by t the time 
for which y(t) = $(t, x). Obviously o(t, x) ~ tV(~(t, x)). Therefore, as t + ~ the 
point ~(t, x) tends to a certain point ~k of global minimum of V(x) and, hence, in 
particular 

lira s(t,  ~ (t, x), ~) =0 

Hence and from the relations 

s (t, ~ (t, x), ~)  +o (t, x) = s  (t, ~ (t, x), ~)  + 

7 t 

(5.19) 

we obtain the inequality 

lira o (t, x) ~>Sk (x) ~>S (x). 

The i n e q u a l i t i e s  ( 5 . 1 9 )  and ( 5 . 2 0 )  p r o v e  P r o p o s i t i o n  5. 

In exactly the same way, using the Corollary to Proposition 2, it is possible to 
obtain the limit of the first term of the logarithmic asymptotic behavior of the fundamental 
solution to the Cauchy problems for Eq. (2.1). 

PROPOSITION 6. Under the conditions formulated on the potential 

lira lim (h ]n a (t, x, ~, h) ) = - rain (Sh (x) § (y) +S~ (~j)), 

where  u ( t ,  x ,  r h)  i s  t h e  s o l u t i o n  t o  t h e  p ro b l em  ( 2 . 1 ) - ( 2 . 2 ) .  

PROPOSITION 7. Under t h e  c o n d i t i o n s  o f  P r o p o s i t i o n  5,  x6intD ~ 
n 

(5.20) 

(5.21) 

where u 0 is the leading term in the exponential asymptotic behavior of the problem (2.1), 
( 5 . 1 6 ) ,  and K~t i s  t h e  t u n n e l  o p e r a t o r  on ak i n t r o d u c e d  above .  

n 

COROLLARY. I f  f o r  a l l  k = 1 . . . .  , ~ t h e  sums 2 ~ j  ~ a r e  t h e  same and e q u a l  t o  ~,  t h e n  

(5.22) 

Proof of Proposition 7. In accordance with Proposition 5, for each x and sufficiently 
large t the solution to the problem (2.1), (5.16) will be expressed by formula (4.8) of 
Theorem 3. At the same time, if xED h is the projection of only nonsingular essential points 
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of the manifold flk (of course, then a finite number of them), then for sufficiently large t 
there will over x be only nonsingular essential points of the manifold Ain determining the 
tunnel operator Kin in (4.8). In this case, we shall have at x nonvanishing Jacobians 

~X 
J(t)=det-~-(t),i which occur in the expression for KEn , and the Jacobian 8x/8~ in the formula 

for K~t. Since then the manifold flk can be locally diffeomorphically projected onto R~ ~ 
along all points of the trajectory connecting zh=(~,0) and z=(x,p)E~ ~, it follows that 

O Xo x __O x ~0 ~ ~ ~ (t) = - ~  (X(t)) (t) (X(0)) .  

Hence ,  t a k i n g  i n t o  a c c o u n t  ( 5 . 1 2 ) - ( 5 . 1 3 )  we o b t a i n  

det (t)=det7?7. exp t ~jk (l§ (5.23) 
Ox 

From (5.23) and Proposition 5 we obtain (5.21) for the nonsingular points of ~k. In the 
case of a singular essential point it is necessary to use a device analogous to the one 
employed at the end of the proof of Theorem 3. 

We have investigated for t=h -~+• the leading term in the exponential asymptotic 
behavior of the solution of the problem (2.1), (5.16). However, as is clear from the 
introduction (see also Sec. 6), for applications to the theory of the lowest levels of a 
SchrSdinger operator it is necessary to know the behavior of the solution (and not only the 
leading term) of the problem (2.1), (5.16) at large times t of order h -~+~, • The corre- 
sponding theorem formulated below is one of the main results of this paper. In all that 

n 

follows in this section we assume that the sums Z~j ~ are the same for all k = I, ..., ~. 

THEOREM 5. The solution u(t, x, h) to the Cauchy problem (2.1), (5.16) for 
t=h -I~+~, • and h § 0 has the form 

l 

2 

where  O(h)  u n i f o r m l y  w i t h  r e s p e c t  t o  x and • i n  any  compac t  s e t .  

P r o o f .  We c o n s i d e r  o n l y  t h e  c a s e  o f  a p o i n t  x~intD ~ t h a t  i s  t h e  p r o j e c t i o n  o f  n o n s i n g u -  
l a r  r e a l  p o i n t s  o f  ~k.  We s h a l l  t h e n  c o n s i d e r  t h e  c a s e  o f  a s i n g u l a r  p o i n t  in  t h e  u s u a l  way,  
i . e . ,  u s i n g  t h e  d e v i c e  f rom t h e  end o f  t h e  p r o o f  o f  Theorem 3. As we h a v e  a l r e a d y  n o t e d ,  
f o r  s u f f i c i e n t l y  l a r g e  t t h e  s o l u t i o n  u ( t ,  x ,  h)  i s  d e t e r m i n e d  by a f o r m u l a  o f  t h e  t y p e  
( 4 . 8 ) ,  and t h e  c o r r e s p o n d i n g  p o i n t s  on h [ n  a r e  a l s o  n o n s i n g u l a r ) .  At t h e  same t i m e ,  
u ( t ,  x ,  h)  can  be e x p r e s s e d  in  t h e  fo rm 

a (t, x, h) = (2nh) -~/~ I a (t, x, 2, h) d~, 
Do 

where  t h e  f u n d a m e n t a l  s o l u t i o n  u ( t ,  x ,  ~, h)  i s  d e t e r m i n e d  by f o r m u l a  ( 4 . 3 ) .  

The b a s i c  i d e a  i s  t h a t  t h e  number  m o f  i t e r a t i o n s  in  ( 4 . 3 )  s h o u l d  be  t a k e n  a b o v e  what  
is minimally necessary, i.e., not the integral part of t/t 0 but somewhat larger. This 
makes it possible to use the fact that for small times t the correction in formula (2.5) 
in Theorem i has the form O(ht3), and not simply O(h). Thus, we shall choose the number 
of iterations of order m=t ~+~, where a > 0 (more precisely, of course, we take the integral 
part of t~+=). Then the time of one iteration T in (4.3) will be of order 

~=t/t~+~=t-~=h ~(~+~). ( 5 . 2 5 )  

Let q~(T), T~(--~,0], r<F, be a finite set of trajectories connecting ~k and x during infinite 
time on which the limiting phase Sk(x) is realized (see Proposition 2). We choose a small 
E such that at large t in an a neighborhood of each trajectory qr there exists a unique 
trajectory connecting Sk and x during time t. 

Then the fundamental solution will be equal to the sum of P terms of the form (4.5) 
with balls of radius s as Vj up to an exponentially small remainder. However, it is 
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necessary to show that this remainder is small uniformly in t and m. We first consider the 
expression (4.5), where u(t, x, $, h) is of the form (2.5) and Vj is a ball of radius g. 
We shall calculate the integrals in (4.3) successively, applying to each integral Laplace's 
method with estimate of accuracy (10.12) (this result is deferred to Sec. 10 in order not to 
interrupt the exponsition). From the estimate of the coefficient ~(h) of h in the remainder 
of formula (10.12) and the estimates for the derivatives of the Jacobian and the phase at 
small T (see Sec. 2) it can be seen that the first three terms in the estimate for ~(h) have 
the form O(T3)f(x0). Choosing a suitable 6, we achieve the same for the penultimate term. 

To estimate the last term in (10.12), it is necessary to know how to estimate integrals 
of the form 

~ exp{ - -~  [S(T,x, ~j)+S(~, ~j, ~)-S(T+~,x, ~) ] l d~j , ( 5 . 2 6 )  
v! 

where T = k~ f o r  some k < m. But by v i r t u e  o f  t h e  c h o i c e  o f  t h e  n e i g h b o r h o o d s  Vj t h e  
f u n c t i o n  S(T,  x,  q i )  i s  convex w i t h  r e s p e c t  t o  ~ in  V i .  A t  t h e  same t i m e ,  f o r  t h e  s econd  
d e r i v a t i v e  o f  t h e  ~ u n c t i o n  S(T,  q j ,  ~) we have  tSe  e s t i m a t e  ( 2 . 1 3 ) ,  so t h a t  t h e  e x p r e s s i o n  
in  t h e  c u r l y  b r a c k e t s  in  ( 5 . 2 5 )  does  n o t  exceed  

i 
- - -  ( t + o ( ~ ) )  ( ~ j - ~ ? ) ~ .  

h~ 

T h e r e f o r e ,  t h e  i n t e g r a l  ( 5 . 2 5 )  i s  bounded below by 

[2~h~ (1+O (~))] ~/z. ( 5 . 2 7 )  

Thus,  each  a p p l i c a t i o n  o f  L a p l a c e ' s  method ( e a c h  i t e r a t i o n )  w i l l  add t o  t h e  l e a d i n g  
t e rm o f  t h e  a s y m p t o t i c  b e h a v i o r  a f a c t o r  o f  t h e  form (1 + O(h~3) ) .  Thus,  t h e  c o m p l e t e  
i n t e g r a l  ( 4 . 5 )  w i l l  d i f f e r  f rom i t s  l e a d i n g  t e rm o f  t h e  a s y m p t o t i c  b e h a v i o r  by a f a c t o r  

7 (h) -= (~ + O ( h ~ ) ) . . .  (t + O (h~)). 

~n 

The d e v i a t i o n  o f  7 ( h )  f rom u n i t y  can t h e r e f o r e  be e s t i m a t e d  by (1 + Ch~3) m -- 1, where  C i s  
a c o n s t a n t  and,  h e n c e ,  w i t h  a l l o w a n c e  f o r  

]7 ( h ) - l [ ~  (l+Ch'+~c~+~)) h-(1+• - 1 =  exp {h -(~+~)(~+=> In ( l+Ch  ~+3~(~+~)) } - l -  

exp {O(h~+3=(~)-(~+~)('+~)}-l=O(h'+(~+~)(~-~)), 
1 t h i s  e x p r e s s i o n  has  t h e  form O(h) f o r  a > ~. 

We now e s t i m a t e  t h e  d i f f e r e n c e  between t h e  e x p r e s s i o n  ( 4 . 3 )  and t h e  sum 2 o f  t e rms  o f  
t h e  form ( 4 . 5 ) ,  which  in  what  f o l l o w s  we s h a l l  c a l l  t h e  main p a r t  o f  t h e  e x p r e s s i o n  ( 4 . 3 ) .  
We f i r s t  e x p l a i n  what  i s  t h e  d i f f i c u l t y  in  o b t a i n i n g  t h e  n e c e s s a r y  e s t i m a t e .  I t  i s  c l e a r  
t h a t  t h e  minimum o f  t h e  phase  in  t h e  c a s e  o f  i n t e g r a t i o n  o v e r  t h e  e x t e r i o r  o f  ~ t u b e s  o f  
t h e  t r a j e c t o r i e s  q r ( ~ )  i s  g r e a t e r  t h a n  Sk(x)  by a c e r t a i n  amount A, so t h a t  when t h e  
i n t e g r a l  o v e r  t h e  e x t e r i o r  o f  t h e  e t u b e s  i s  c a l c u l a t e d  a f a c t o r  e x p ( - - ~ / h } ,  which  i s  
a b s e n t  in  t h e  main t e rm ,  a p p e a r s .  However,  each  a p p l i c a t i o n  o f  t h e  o p e r a t o r  G~ in  ( 4 . 3 )  
adds a f a c t o r  (2nh)  - n / 2 ,  so t h a t  a f t e r  m i t e r a t i o n s  we o b t a i n  a c o e f f i c i e n t  (2~h) -mn/2 ,  
which  i s  n o t  "knocked  o u t "  by t h e  f a c t o r  exp{ - -~ /h}  f o r  m o f  o r d e r  h ~+", •  I n  t h e  c a s e  
o f  m f i x e d  o r  o f  o r d e r  h ~-~, x>0 ,  t h e  e x p r e s s i o n  (2vh)  -mn/z i s  s m a l l  compared w i t h  e x p ( - - A / h } ,  
and t h e r e f o r e  in  t h i s  s i t u a t i o n  t h e  e x p o n e n t i a l  s m a l l n e s s  o f  t h e  d e v i a t i o n  o f  ( 4 . 3 )  f rom 
i t s  main p a r t  i s  o b v i o u s ,  and t h i s  was used  by us in  t h e  p r o o f  o f  Theorem 3. Here ,  however ,  
we need a more a c c u r a t e  d i s c u s s i o n .  

N o n d e g e n e r a c y  o f  t h e  m a t r i x  o f  s econd  d e r i v a t i v e s  o f  t h e  p o t e n t i a l  in  t h e  n e i g h b o r h o o d  
o f  p o i n t s  o f  g l o b a l  minimum has  as  a c o n s e q u e n c e  t h e  f o l l o w i n g  f a c t :  For  e v e r y  p o i n t  ~k 
t h e r e  e x i s t s  a n e i g h b o r h o o d  Uk9~ such  t h a t  f o r  a l l  x, y6U~ and any  t t h e r e  e x i s t s  a u n i q u e  
t r a j e c t o r y  o f  t h e  Newtonian  s y s t e m  t h a t  c o n n e c t s  x and y in  t ime  t ,  l i e s  in  Uk, and 
r e a l i z e s  a minimum o f  t h e  f u n c t i o n a l  ( 5 . 4 ) ;  a t  t h e  same t i m e ,  t h e  f u n c t i o n  S ( t ,  x ,  y )  
i s  smooth  and convex  w i t h  r e s p e c t  t o  e a c h  o f  t h e  a r g u m e n t s  x, g~U~ s e p a r a t e l y  f o r  a l l  t .  
We f i r s t  e s t i m a t e  t h e  d e v i a t i o n s  o f  ( 4 . 3 )  f rom i t s  main p a r t  f o r  a p o i n t  x in  t h e  n e i g h -  
borhood  U k.  I n  t h i s  c a s e ,  t h e  t r a j e c t o r y  q~(~)  t h a t  j o i n s  ~k and x o v e r  an i n f i n i t e  t ime  
i n t e r v a l  i s  u n i q u e .  The i n t e g r a l  o v e r  t h e  e x t e r i o r  o f  i t s  e t u b e  can be r e p r e s e n t e d  as  a 
sum o f  i n t e g r a l s  o v e r  t h e  s e t  Ok, t h e  complement  o f  t h i s  r t u b e  in  Uk, and o v e r  t h e  e x t e r i o r  
o f  U k. More p r e c i s e l y ,  t h e  f i r s t  i n t e g r a l  I z i s  t a k e n  o v e r  t h e  s e t  o f  t h e  ~z,  . . . .  qm t h a t  
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all belong to U k with at least one of them lying outside the E tube of the trajectory q(~), 
while the second integral 12 is taken over the set of NI, ..., Um for which at least one 
lies outside U k. The integral 11 can be estimated in exactly the same way as in the 
estimate of the integral over the interior of the ~ tubes of the limiting trajectories, 
since the convexity of S(t, x, y) for x, y6Uk means that integrals of the type (5.26) 
over U k can be estimated by the expressions (5.27). The integral 12 can be represented 
as a sum of m integrals over the sets ~i, ..., ~m, where 

~ j = { ~ t , . . . , ~ j - ~ U k ;  ~j~Uk; ~j+~ . . . . .  ~ R ~ } .  

The integral over each ~j is exponentially small compared with the main term. To see this, 
it is necessary to integrate over NI, ..-, qj-1 in accordance with the preceding scheme, 
and then obtain for the resulting phase 

S(]~, ~j, ~)+S(~, n~+~, ~ ) + . . .  +S(~, x, ~ ) - S ( t ,  x, ~) 

a lower bound in terms of the expression 

5 + (~+~-%)~+...+ (x-~)~ 
2T 2~ 

where  A > 0 i s  t h e  l o w e r  bound f o r  t h e  e x p r e s s i o n  S ( j T ,  q j ,  6) -- S ( t ,  x ,  6) ( f o r  e x a m p l e ,  

A =  min S~(y)-S~(x)). As a r e s u l t ,  we o b t a i n  a Sum o f  m = h  -u+*)~ e x p r e s s i o n s  t h a t  a r e  
v~gk 

e x p o n e n t i a l l y  s m a l l  w i t h  r e s p e c t  t o  h ,  and t h e  sum i t s e l f  i s  t h e r e f o r e  a l s o  e x p o n e n t i a l l y  
s m a l l .  

When x~Uk, we use the following arguments. For large times t, almost all critical 
points U~ of the phase are in U k, except for a small number of points of order h ~. There- 
fore, for ~ < 1 their number has the order h'-• ~'>0. As was noted above, for h ~-~' critical 
points the estimate is trivial, and for the remaining integrals we repeat the arguments 
applied in the case x6U~. Thus, the parameter ~ introduced at the beginning of the proof 
must be chosen in the interval (~, i). This last argument completes the proof of Theorem 5. 

The following theorem is proved in exactly the same way. 

THEOREM 6. Under the assumptions of Theorem 5, the solution uk(t, x, h) of the 
Cauchy problem for Eq. (2.1) with initial condition 

,*k (0, x, h ) =  Xv~ (x), ( 5 . 2 8 )  

where  Xv~(x) i s  t h e  c h a r a c t e r i s t i c  f u n c t i o n  o f  t h e  c l o s e d  n e i g h b o r h o o d  V k c i n t  D k o f  j u s t  
t h e  one p o i n t  ~k, ha s  f o r  t=h-(~+*) ,•  and h § 0 t h e  fo rm 

u~-=e--Y-~K~(t + 0 ( h ) ) = e x p  - -  h -(~§ K~(I  + O(h))~ ( 5 . 2 9 )  

up t o  t e r m s  t h a t  a r e  e x p o n e n t i a l l y  s m a l l  in  t h e  l i m i t  h ~ 0 compared  w i t h  t h e  f u n c t i o n  
( 5 . 2 4 ) .  

6. Exponential Asymptotic Behavior of the 

Lowest Levels of Schrbdinger Operators 

We consider the time-independent Schrbdinger equation 

B ~ = E r  ~6L2(R~=), x~nY', ( 6 . 1 )  

where 
h 2 

B = - -  -~- A+V(x) ,  ( 6 . 2 )  

and the potential V(x) satisfies the conditions imposed on it at the beginning of Sec. 5. 
n 

We shall also assume that ~=s does not depend on the point 6k and, therefore, 

Theorems 5 and 6 hold. It is well known [33] that for a potential V that increases at 
infinity the spectrum of the operator (6.2) is discrete. Because V(x) is non-negative, 
the spectrum is, in addition, non-negative. In addition, by virtue of the localization 
principle under the assumptions that have been made the power-law asymptotic behavior of 
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the lowest energy levels of ~ is determined solely by the behavior of V(x) in the neighbor- 
hood of the minima ~l, "-., ~s In particular, }I has precisely s eigenvalues E I .... , Es 
of the form ~/2h(~+O(h)), while for all the higher levels E the inequality E/h-~/2>~C>O holds 
with a certain constant C. The proofs of these facts can be found, for example, in [9] 
(see also Sec. 9). We denote by ~j the eigenfunctions of the operator ~, j = I, .... s 
corresponding to Ej. 

To construct the exponential asymptotic behaviors of the functions ~j, it is convenient 
R ~ to introduce the space ~, which is defined as the factor space of L2( ~ ) with respect to 

the subspace 

P={ ]6L2(R2) : ]= ~'~ Kj(O (h) ) } , 

where the tunnel operators Kj are the same as in Theorems 5 and 6. For brevity, we shall 
also denote by K~ the projections of functions of the form Kj(I + O(h)) in ~. The 
arguments that fgllow are based on Theorem 7: 

THEOREM 7. Two ~-dimensional vector spaces generated by functions Kj, j = i, ..., 
and, respectively, the projections of the eigenfunctions ~j in ~ are identical. In 
particular, for all j = 1 ..... 

l 

~J = Z  C~(h)K~ 

up to functions in P; Ci(h) are certain coefficients. 

Proof. Let uk(t, x, h) be solutions of the heat conduction equation (2.1) with 
initial condition Uk(0 , x, h) of the form (5.28). If 

u~(O, x, h ) =  )~, aj% (x) 

is an expansion of the initial condition in a series in eigenfunctions of the operator ~, 
then 

ak (t, x, h) = L aJe-t~/h~ "~ (x), 

is obviously a series expansion of the solution uk(t, x, h). Let t=h -(i+• Substituting 
(5.29) on the left-hand side and multiplying by exp{t~/2}, we obtain 

K~ (i-60 (h)) = L exp {-h ~+~ (E/h-~/2) } ~j. 

From the properties of the eigenvalues noted above it follows that we can, taking any 
compact set in Rx n, choose • such that for x in the compact set all terms with j > Z 
are in the space P and, hence, in 

l 

j ~ i  

Theorem 7 follows from this fact and the linear independence of the functions Kj. 

Particularly interesting problems are those in which tunnel effects are important 
from the point of view of the physics, i.e., problems in which the potential V(x) has a 
certain symmetry. In this case, the coefficients C~(h) in Theorem 7 can usually be 
calculated explicitly. We consider two such situations. 

PROPOSITION 8. Suppose V(x) has only two minima: 

~,=(1~,1,o . . . . .  o), ~ , = ( - I ~ , 1 , o , . . . , o ) ,  

and that V(x) is even with respect to the first coordinate: V(R(x)) = V(x), where 
R(x l, x 2 ..... x n) = (-Xl, x= .... , x n) is the reflection with respect to the hyperplane 
{x I = 0}. Then (up to functions in P) 
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%=C(h) (K,+K~), 

r (h) (K~-K~), 

C (h) = (h~)-~/~ ( o ~ . . . .  �9 o),,) % 

( 6 . 3 )  

( 6 . 4 )  

( 6 . 5 )  

where ~=~ji=~?. 

Proof. We shall assume that E I ~ E 2 (if E I = E2, then the entire two-dimensional 
space spanned by K I and K 2 is an eigenspace for ~ with eigenvalue E I = E2, and therefore the 
eigenfunctions can be taken, for example, in the form (6.3) and (6.4), and the proposition 
is already proved; however, it will be shown below that in reality E I ~ E2). Because 
V(x) is even, it follows that if ~(x) is an eigenfunction of ~ with eigenvalue E, then 
so is ~(R(x)) with the same eigenvalue. However, both the eigenspaces corresponding to 
E I and E 2 are one dimensional. Therefore ~i(R(x))=%~1(x), ~2(R(x))=a2~2(x), where ~i and ~2 
are certain complex constants with modulus equal to unity. But it is obvious from the 
construction of K I, K 2 (see Sec. 5) that KI(R(x)) = K2(x), from which it immediately 
follows that ~1,2 = • and (6.3) and (6.4) hold. A formula for C(h) follows from the 
normalization condition: U@jl[ = i, and Laplace's method should be used to calculate the 
norms of the functions K~ and K 2 . 

PROPOSITION 9. Suppose V(x) has three minima $i, ~2, Ss in the plane {x 3 = x~ = ... 
x n = 0} and that V(x) is invariant with respect to the rotation R of this plane through 
120~ V(R(x)) = V(x), from which in particular $2 = R($I), $3 = R($2). In this case the 
one-dimensional eigenspace of the lowest energy E I is generated by the function 

~t=C(h)  (KI+K~+K~), ( 6 . 6 )  

and t h e  two o t h e r  l e v e l s  a r e  e q u a l :  E2 = E3, t h e i r  e i g e n s p a c e  c o n s i s t i n g  o f  f u n c t i o n s  
r = C I ( h ) K  1 + C2(h)K 2 + C3(h)K 3 t h a t  s a t i s f y  t h e  c o n d i t i o n  Cz(h )  + C2(h)  + C3(h)  = 0; i n  
o t h e r  w o r d s ,  i t  i s  g e n e r a t e d  by t h e  f u n c t i o n s  r  = Ki -- Kj ,  where  i ,  j = 1, 2, 3. 

P r o o f .  As in  P r o p o s i t i o n  8, i t  i s  s u f f i c i e n t  t o  make t h e  a s s u m p t i o n  t h a t  n o t  a l l  
the levels Ez, E2, E 3 coincide. Then there necessarily exists a one-dimensional eigen- 
space (among the three lowest levels). From symmetry considerations, as above, we find 
that the eigenfunction ~l of this one-dimensional subspace satisfies the condition 
~1(R(x)) = ~1(x)~, where [~[ = i. Since the transformation R generates a cyclic group 
of transformations of order 3, i.e., R(R(R(x))) = x, it is obvious that a s = i. Finally, 
bearing in mind that the eigenfunctions ~ can be assumed to be real, and that the trans- 
formation R preserves the reality, we find that ~ = I, from which (6.6) follows. We now 
consider the two-dimensional eigenspace. For it, the functions ~(x) and ~(x) = ~(R(x)) 

form a basis. Therefore ~ ( x ) = ~ ( R ( x ) )  is a linear combination of them: ~=~+~. Replacing 

in this equation x by R(x), we obtain ~=~+~. Substituting in this equation the previous 
one, we obtain (l-~)~=(=+~z)~, whence I-~=0, ~+~2=0. It follows from these equations 
that ~3 = --I, and we again conclude from the reality arguments that $ = --i and, hence, 

also a = --i. Therefore ~=--(~+~). For the function $ = CI(h)K l + C2(h)K 2 + C~(~)Ka this 
condition is equivalent to the equation C1(h) + C2(h) + %(h) = 0 as we needed to prove. 

Following [2], we now calculate the exponentially small (with respect to the parameter 
h) distance between the lowest energy levels E~ and E2 in the case of a potential V(x) with 
two symmetric minima, i.e., under the conditions of Proposition 8 (the arguments for the 
case of Proposition 9 are similar). We multiply Eq. (6.1) for ~ of the form (6.3) by ~ 
of the form (6.4), and Eq. (6.1) for $~ by $~ and subtract one of these relations from 
the other. We then integrate the result over a certain region D with smooth boundary. 
We obtain 

- - .  ~ r (6.7)  

and i n t e g r a t i n g  t h e  l e f t - h a n d  s i d e  o f  t h i s  e q u a t i o n  by G r e e n ' s  f o r m u l a  we f i n d  

h ~ 
(6.8) 

where  8 /~n i s  t h e  d e r i v a t i v e  a l o n g  t h e  o u t e r  n o r m a l  n t o  t h e  b o u n d a r y  8D. 

As t h e  r e g i o n  D we t a k e  D z ( s e e  Sec .  5 ) ,  wh ich  in  t h i s  c a s e ,  V(x)  b e i n g  e v e n ,  c o i n c i d e s  

582 



with the half-space {x~ ~ 0}. We substitute (6.3) and (6.4) in (6.8) and calculate the 
denominator on the right-hand side of (6.8) by Laplace's method: 

D |  D i Dl  

We obtain 

E2_E~=2h~C(h)2(i+O(h)) ~9,~ ~K~n--K21 OK~ _ OKto_.n )ds. (6.9) 

To calculate this integral by Laplace's method, we first assume that there exists a 
unique nondegenerate point Y0 of global minimum of the function S,(x) 10D. (S~, ~ are the 
entropy and Jacobian on the manifolds ~k introduced in Sec. 5). The integrand in (6.9) in 
the neighborhood of Y0 over 8D I is 

J['~ exp {-SJh} ~n (]~'n exp {-SJh} ) ]t exp{-SJh}~n(]~ exp{-Sz/h})- = 

-~(i+O(h))(]~]z)-'~( 8S~ ~nZ) exp{ - ~(S,+S~)} �9 On 
and because V(x) is even, so that SI(R(x)) = S2(x) , Jl(R(x)) = J2(x), the expression in 
which we are interested is equal to 

-:-2 ,oxp _ a 1~- t h J On 
Therefore ,  c a l c u l a t i n g  the  (n -- 1 ) -d imens iona l  i n t e g r a l  in (5 .9)  by Lap lace ' s  

method, we f ind  t h a t  

where A is the matrix of second derivatives of the function S~log, with respect to the 
variables x2, ..., x n. We now note that if yE#D ~ is a stationary point of the function 
S~I~9,, then the trajectory q1(z) of the Newtonian system ~ = V'(q) in Proposition 2 in 
Sec. 5, i.e., the trajectory such that q1(-~) = $i, qi(0) = Y with the action along q1(z) 
equal to Sl, is orthogonal to the boundary 8D I. By virtue of the symmetry, the trajectory 
q2(z) = RqI(T) is also orthogonal to 8D I, and q2(-~) = $2, q2(0) = Y. It follows from 
this that, first, there exists a smooth trajectory q(T) of the Newtonian system for which 
q(--~)=~t, q(+~)=~2, q(--~)=0(+~)=0, q(0)=y, and, second, 

i 
42dT, (6.10)  

since the Hamiltonian H on q(T) is zero. Solutions q(T) of the Newtonian system ~ = V'(q) 
satisfying the conditions ~(-~)=~(+~)=0, q(-~)=~t,q(~)=~2, are called the instantons 
corresponding to the quantum-mechanical problem specified by the Hamiltonian H. We denote 
by S12 the minimum of the integral ~ ~2dT over all instantons (in other words, S12 is twice 
the Agmon distance between the points $i and 62; see the Corollary to Proposition 2 in 
See. 5 and Remark 3 after it). Substituting in (6.9) formula (6.5) for C(h) we obtain 

E2--~t=ax ~ ~(i+O(h)) (~t '... ~)~/t-~(y0) (yo)detA-'" exp{-S,z/h} (6. Ii) 

If there exist several nondegenerate points of global minimum of StieD,, then: E 2 -- E I 
is equal to the sum of the expressions on the right-hand side of (6.11) over ali such 

points. Note also that the derivative OS~ a~-(y0) in (6.11) is the Velocity modulus I~(0) I of 

the instanton at the point Y0. From (6.11) in particular there follows a formula for the 
first term of the logarithmic asymptotic behavior of the number E 2 -- El, which determines 
the splitting of the lowest energy levels of the operator ~: 

lira h In (E2-E~) =-S~2. (6.12) 
h~O 

Note that in the case when the minimum Y0 of the function Stl0D, is degenerate the result 

583 



of [34] can be used to calculate the first term in the logarithmic asymptotic behavior 
of E 2 -- E 1 �9 Therefore, in contrast to (6.11), formula (6.12) is true in the general case. 

It is possible to obtain in the same way asymptotic expressions for the splitting of 
the lowest levels for the potential in Proposition 9, and also for other potentials with 
symmetry. 

7. Tunnel Operator on a Torus and SchrSdinger Equation 

with Periodic Potential 

In this section, we briefly explain the theory of a periodic tunnel operator and its 
application to the construction of exponential asymptotics of the lowest eigenfunctions of 
SchrSdinger operators with periodic potential. 

Suppose the function V(x) is 2v-periodic with respect to each coordinate. We consider 
the heat conduction equation 

hO__u.= h 2 
ot -U A~-V(~lu (7.1) 

in the class of 2v-periodic (with respect to each spatial coordinate x~R~") functions. In 
such a formulation, the problem is equivalent to consideration of Eq. (7.1) on the n- 
dimensional torus T~=R~/(2~Z)L The existence and uniqueness of the solution follow from 
the standard theorems of the theory of linear equations. The Green's function of the 
periodic Cauchy problem for Eq. (7.1) is defined as the periodic (with respect to x) solu- 
tion uP(t, x, ~, h) of the equation that satisfies the initial condition 

u p (0, x, ~, h) --- y~  5 (x - -  (~ + 2~N)). (7.2) 
N ~ Z  n 

We shall assume that V(x) is sufficiently smooth, non-negative, and has on the torus T n 
only a finite number of zeros gl ..... ~E. Then 

uV( t ' x '~ 'h )~  Z u(t,x,~ + 2~N,h), (7.3) 
N E Z  n 

where u(t, x, $, h) is a nonperiodic Green's function of the form (2.5) for small t and 
the form (4.1) and (4.2) for all finite times. This fact follows directly from the linear- 
ity of Eq. (7.1) and the consideration that the phase S(t, x, ~) tends to infinity for 
$ + ~ and fixed t, x (see Sec. 2), from which we obtain convergence of the series (7.3) and 
also the fact that in the sum (7.3) only a finite number.of terms makes a real contribution 
to the asymptotic behavior. 

Now suppose that the function V has on the torus T ~ only a finite number of zeros 
$i ..... ~, at which the matrix of second derivatives V"(~ k) is nondegenerate and has 

n 

eigenvalues (oj~)2, ojk>0 ' ]=I,..., n, and ~=Zoj k does not depend on k. We shall also denote 
j=1 

by Sk the pre-images of Sk in the square with side 2v in R~ ~. Then it follows from the 
superposition principle and Theorem 6 that the solution of the periodic Cauchy problem with 
initial condition 

uk p (0, x, h )~  Z Xvk (x + 2nN), (7.4) 
N ~ Z  n 

where %v~ is the characteristic function of a small closed neighborhood V k of the point 

~R~ n, is for t----h -(~+~), x>0, h-+0, equal to 

u~'-----exp{----~ h-(*+~)} 2 K~,lv(i+O(h)), (7.5) 
N ~ Z  r* 

where the tunnel operators Kk, N are defined as in Sec. 5 (see the notation after Eq. (5.15)), 
but with respect to a countable set of points ~h.N=~h+2~N" k=i,..., Z, N6Z ~ , the zeros of 
V(x) in Rx ~. In particular, the region D k,N that occurs in the definition of the operator 
Kk, N is distinguished by the inequality 
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S~,~(x)~< min {S~,~(x) : ( ] ,M):#: (k ,N)} .  ( 7 . 5 )  
j,M 

We c o n s i d e r  t h e  f o l l o w i n g  S e h r S d i n g e r  e q u a t i o n  on a t o r u s :  

/ 7 ~ = E , ,  r  (7.7) 

L~=--~/~h~A+V(x). T h i s  p r o b l e m  i s  e q u i v a l e n t  t o  f i n d i n g  smooth  s o l u t i o n s  o f  Eq. ( 7 . 7 )  i n  t h e  
whole of space but with a condition of periodicity of the solution ~. It is well known 
that this problem has a positive discrete spectrum. Moreover, as in the case of the 
Schrldinger operator in II ~ considered in the previous section, ~ on the torus has precisely 
s eigenvalues E~, .... Es of the form ~/~h(~+O(h)), and for all higher levels E the 
inequality E/h-~/2>~C>O holds (see, for example, [9]). 

As in the case of Theorem 7, it can be shown that the lowest eigenfunctions ~, ..., 
~s are linear combinations 

% =~-~ C~(h)K~ 

of periodic tunnel operators 

N~Z n 

Suppose  V(x)  h a s  o n l y  two min ima in  T",  t h e  images  o f  t h e  p o i n t s  ~ = ( [ ~ [ ,  0 . . . .  , 0), ~z= 
( - - I~ l ,  0 . . . . .  0) i n  R", 1~l<2n ,  and V(x)  i s  even  w i t h  r e s p e c t  t o  e a c h  c o o r d i n a t e .  Then i t  i s  
r e a d i l y  s e e n  t h a t  t h e  r e g i o n s  D ~, ~=Dk,~ k = t ,  2, a r e  p a r a l l e l e p i p e d s :  

DI={x~R~: x ~  [0, ~], ~ [ - ~ ,  ~] V ] r  D2={xER~: x t ~ [ - ~ ,  0], x j~[ -~ ,  ~ ] V ] ~ i } .  

As in  P r o p o s i t i o n  8 o f  Sec .  6, ~l  = C ( h ) ( ~ l  + ~ 2 ) ,  ~2 = C ( h ) ( ~ l  -- ~ 2 ) .  A s p e c i f i c  f e a t u r e  
o f  t h e  p e r i o d i c  c a s e  i s  m a n i f e s t e d  in  t h e  c a l c u l a t i o n  o f  t h e  s p l i t t i n g  E 2 - E 1. I t  i s  c l e a r  
t h a t  now - l i m h l n ( E 2 - E ~ )  w i l l  be e q u a l  t o  t h e  minimum o v e r  a l l  i n s t a n t o n s  on t h e  t o r u s  t h a t  

h-*o 

l e a d  b o t h  f rom ~l t o  ~2 and f rom ~1 t o  ~1. Fo rmu la  ( 5 . 1 1 )  i s  m o d i f i e d  s i m i l a r l y  in  t h e  n o n -  
d e g e n e r a t e  c a s e .  

I t  i s  w e l l  known ( s e e ,  f o r  e x a m p l e ,  [ 3 5 , 3 6 ] )  t h a t  i n v e s t i g a t i o n  o f  t h e  s p e c t r u m  o f  t h e  
S c h r 5 d i n g e r  e q u a t i o n  ( 7 . 7 )  w i t h  p e r i o d i c  V(x)  ( b u t ,  o f  c o u r s e ,  now w i t h o u t  t h e  r e q u i r e m e n t  
o f  p e r i o d i c i t y  o f  t h e  s o l u t i o n  $) r e d u c e s  in  a c e r t a i n  s e n s e  t o  t h e  s o l u t i o n  o f  d i f f e r e n t  
p r o b l e m s  on t h e  t o r u s .  We i l l u s t r a t e  t h i s  t h e s i s  by a p p l y i n g  t h e  r e s u l t s  o b t a i n e d  a b o v e  
t o  t h e  i n v e s t i g a t i o n  o f  t h e  o n e - d i m e n s i o n a l  S c h r S d i n g e r  e q u a t i o n  

-V~hC (z) + V (x) r =Er (7.8) 

on t h e  l i n e  xER ~ w i t h  n o n - n e g a t i v e  even  p e r i o d i c  p o t e n t i a l  V(x + 2~) = V(x)  t h a t  ha s  in  t h e  
i n t e r v a l  [0 ,  2v]  a u n i q u e  minimum a t  ~ = ~. I t  i s  known t h a t  t h e  s p e c t r u m  o f  t h i s  p r o b l e m  
i s  a b s o l u t e i y  c o n t i n u o u s  and c o n s i s t s  o f  a c o u n t a b l e  s e t  o f  i n t e r v a i s ~ [ a ~ ,  a2]U[~3, a~]U . . . .  
l y i n g  on t h e  h a l f - l i n e  R+. At t h e  same t i m e ,  ~ - ~  ( r e s p e c t i v e l y ,  a~) i s  t h e  j - t h  e i g e n v a l u e  
of the operator 

H e = -  ~- ~" (~) + V (x) ~ (~) 

on t h e  l i n e  w i t h  p e r i o d i c  c o n d i t i o n  ~ (x  + 2~) = ~ ( x )  ( r e s p e c t i v e l y ,  w i t h  a n t i p e r i o d i c  
b o u n d a r y  c o n d i t i o n  $ ( x  + 2~) = - - $ ( x ) ) .  These  f a c t s  a r e  p r o v e d ,  f o r  e x a m p l e ,  in  [ 3 5 ] .  I t  
obviously follows from this that a I and a 2 are the lowest levels of the operator ~ defined 
on the doubled circle, i.e., the calculation of the width of the first allowed band 
[~, a2] of the spectrum reduces to calculation of the splitting of the lowest discrete 
levels for the operator on a circle with potential with two minima. The solution of this 
problem is described above. Therefore 

Jim h l n ( ~ - ~ ) = - S ~ ,  ( 7 . 9 )  
h~0  

where  Sz~ i s  t h e  minimum o f  t h e  a c t i o n  o v e r  t h e  i n s t a n t o n s  ( i . e . ,  t h e  s o l u t i o n s  o f  t h e  
e q u a t i o n  ~ = V ' ( q )  w i t h  b o u n d a r y  c o n d i t i o n s  q ( - - ~ )  = ~, q ( 4 ~ )  = - - $ ) .  T h i s  f o r m u l a  i s  w e l l  
known in  t h e  p h y s i c s  l i t e r a t u r e  [ 1 7 , 3 7 ] .  Our me thods  a l s o  e n a b l e  us  t o  c a l c u l a t e  t h e  
l i n e a r  t e r m  in  t h e  e x p o n e n t i a l  a s y m p t o t i c  b e h a v i o r  o f  t h e  w i d t h  o f  t h e  band [a~ ,  a2]  in  
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accordance with a formula analogous to (6.ii). The condition of nondegeneracy, required for 
fulfillment of (6.11), is satisfied automatically in the one-dimensional case. As region D, 
we take the interval [0, 2~], so that formula (6.9) in the one-dimensional periodic case 
gives 

a~-a~= 2h~C (h) ~ ( 1 +0  (h)) (R,R~'-R~E~')  l0 2~, 

whence 

~ - - ~ = 8 ~  (1+0  (h))~-"~J,- '(V" (~))"~ ( ~ ) e x p { -  2 .S ~  (~)},  

where ~(~) is the velocity at the point ~ of the instanton leading from --~ to ~. 

(7.10) 

8. Examples 

i. We consider the SchrSdinger equation (6.1) with potential V(x I .... , x n) having 
two symmetric wells: 

n n 

Xk--Xk-l) 2 (Xk-- 2 xk+ 2 

d e f  

Here  a > O, ~ > O, ~ > 0 a r e  p a r a m e t e r s ,  xo=x~. I t  i s  o b v i o u s  t h a t  V(x)  => O, V(x)  # ~ as  
Ix[ § ~, and V(x)  s a t i s f i e s  t h e  c o n d i t i o n  V( - -x )  = V(x)  and has  o n l y  two p o i n t s  o f  g l o b a l  

minimum: x f = •  ~, . . . ,  ~ ) .  We f i n d  t h e  e i g e n v a l u e s  ~ o f  t h e  m a t r i x  a 2 V / S x i ~ x j .  The 
e q u a t i o n s  f o r  t h e i r  d e t e r m i n a t i o n  have  t h e  form 

--a(Zh+l--2Zh+Zk_~)+2~Z~=~O~Zk, k = t  . . . . .  n, Zo=Z~. 

T h e i r  s o l u t i o n s  a r e  w e l l  known and g i v e  t h e  f o l l o w i n g  s e t s  o f  e i g e n f u n c t i o n s  and e i g e n -  
v a l u e s  ( s e e ,  f o r  example ,  [ 3 8 ] ) :  

, . . . .  

Thus, the formula for the lowest energy states is 
n--i 

E0-+ = -2- 4czsin2g---m+2~+O(h2). 

We c a l c u l a t e  t h e  s p l i t t i n g  A = E + -- E- .  We f i n d  an i n s t a n t o n  s o l u t i o n  f rom t h e  Newtonian  
sy s t e m:  

s Xalt=-~=--~, X~l~=~=~, k = l  . . . . .  n. 

One o f  t h e  s o l u t i o n s  ( p o s s i b l y  u n i q u e )  has  t h e  form 

x,=xz=. . .=x~=u ( ~ t / u  

We show t h a t  t h i s  s o l u t i o n  e n s u r e s  a minimum o f  t h e  i n t e g r a l  

) 2 S = m i n  + V(x(t))  dr, x ~ ( - ~ , ) = - ~ ,  x~(~)=~,  k = t ,  n. 
x( t )  _ ~  ~ " ' " 

Indeed, it is obvious that 

x k ( 4 - a o ) = + ~  

xk k = l  - -oo  :ck(+_oo)=+~ 
n 

= rain.,  --oog[J-~--f-~-~(Xk-6~)'(Xk--~)2]d'r----- 
x k ( + o a ) = + ~  
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n minq(t) i [~2+ ~---~(q+~)2(q--~)2] d*" 

The l a s t  minimum i s  a t t a i n e d  on t h e  s o l u t i o n  q = 4~ t a n h ( ~ t / r  o f  t h e  s y s t e m  ~ = 
$(qZ -- Sq) .  Note t h a t  a t  t h e  same t ime  2S i s  e q u a l  t o  t h e  l a s t  e x p r e s s i o n  in  t h i s  c h a i n  
only in the case of vanishing of all the xk(t), which ensures the necessary proposition. 
We calculate 2S. By virtue of the equations f~=V(x(t)) and O~=~(q-~)~(q+~)~/4 

= 2S=n ~ 0 ~ d t= ~ 3 

Thus 

3h " 

This formula can be readily extended to the SchrSdinger equation with potential 
n n 

where ~k > 0, and u(z) is an even function that increases as Ix I § ~ and has two nondegene- 
rate points of global minimum. 

2. We consider one further example -- the SchrSdinger equation for the hydrogen ion. 
We note first that the theory presented in the previous sections can also be applied under 
weaker restrictions on the potential V. Namely, the potential V can have several isolated 
singular points and need not increase as Ixl § ~. An example of such a situation is con- 
sidered in this subsection. 

This problem, which admits separation of the variables, has been investigated in many 
studies; in particular, semiclassical asymptotic behaviors were obtained in [39] for high- 
energy states. Here, we obtain series of eigenvalues and their splitting, for the obtaining 
of which the method of [39] does not apply. The potential has the form 

(z 
V=- ~x2+Y2+(z--a) 2 

) 
4 ~x2+Y2+(z+a) 2 , 

where ~, a are dimensionless physical constants, and • determine the points on the z axis 
at which the atoms are situated. We express the problem in cylindrical coordinates p, ~, z 
and take into account the azimuthal symmetry, representing the wave function in the form 
ei~'~(p,z) (m is an integer): 

h 2 [ I 0 0 0 2 

2 

2p 2 ~p2+ (z-.a)~ u (z+a)~ ' 

It is readily seen that the potential V I is bounded below for p~const. In addition, it is 
easy to show (see below) that it has two points of global minimum if p~2~8a~/3~-3i Thus, we 
can apply the above scheme to this problem. It is more convenient to make the calculations 
in the special coordinates c, ~, ~ (prolate ellipsoid of revolution), o~i~--i, ~6[0, 2n], 
which are related to the cylindrical coordinates by the formulas z=ao% ~=~, pZ=a2(o2--1) 
(I-T2). In these coordinates, we obtain for the function ~ the problem 

h a ! 0 2 0 + O _ ( i _ ~ 2 ) O ) r 1 6 2  ( 8 . 1 )  

where 
i [ 21 i 

p~=hm. In what follows, we assume that m ~ i/h (essentially, the large number m is a 
parameter in the investigated problem). The potential Vef f has two symmetric points of 
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local minimum, which are found by equating to zero the derivatives 8Veff/8~, 8Veff/Sa. As 
a result of straightforward but lengthy calculations we find that the points of global 

minimum ~• and a 0 and the value ~ = --Veff(~• o 0) are determined as follows. The point a 0 
is found as root of the equation (it is readily seen that the root exists and is unique) 

o~ = a--~ (o~+l)~(z~-~). 
~pr 

The value of ~ and the points ~_+ can be expressed in terms of o 0 by the formulas 

i 2~z 1/ P~ 
~ = ~ ( I p ,  I)--Ipr + i /  , T• + I --- __. 

We now s e t  E=2a~E+~, ~ e f f  = Vef f  + ~, and then Eq. ( 8 . 1 )  t a k e s  the  form 

h ~ 1 9  2 0 

At the same time ~eff >-- 0. We apply the oscillator approximation. With allowance for the 
fact that in Eq. (8.2) the derivatives have variable coefficients the frequencies ~j are 
determined as eigenvalues of the matrix (see [5]) 

Hpp Hp~ 

which i s  formed from the  d e r i v a t i v e s  O~H/Op~Opj, 02H/Op~axs, OzH/Ox~Ox.~ c a l c u l a t e d  a t  the  p o i n t s  
o=o0, ~=~+. Here p~=p~, pz=p~, x~=~, xz='r  and H i s  t he  " t u n n e l "  Hamilton• 

t 
H = oz .r~ (p,# (~z- t) +p~ 2 ( t - ~  2) ) -~Tef f. 

As a result of simple but lengthy calculations we find 

]Pr ( 3 z J - l )  ]/30o'-2aJ+3 ]p,! ( 3 o J - l )  ~ ( 3 o J - t )  (3 -oJ )  
~o (~o~-t) (~o'~-t) ,~o(~o~- t) (,~o~- 1) 

Thus, the required eigenvalues of the problem (8.2) have the form 

In the classical limit, these eigenvalues correspond to motion of electrons in the circles 
determined by the equations o = o 0, �9 = T+. We find the splitting by using Eqs. (6.11). 

We have 

- h  In (E , -E0)=  j p d x + O  (h) ,  

where ~i = (~ z_+). Analyzing the Hamilton• system to determine the instanton solution, 
the solution satisfying the conditions PT = 0, a = o 0, �9 = z; for t + ;~, we can readily 
show that the minimum is attained on solutions for which Pa -- 0, o = a 0. Thus 

and it is convenient to replace the parameter t by the parameter ~. 
energy conservation, we find as a result of simple calculations 

T+2--T 2 

p,=Ip~l (l_x~) ( t - ~ J )  " 

Hence 
~+ 

, i--'r+ 
�9 _ P, dX=2T+V~--+IPr ] m ~ , 

Using the law of 

and finally we have the series of eigenfunctions of the original problem: 

" 2 - ~ -  ~ l--T++ 2~r+ 1/~,---~_4_0 (h) ' Eo.~=- ~'m+ ( h c ~ 1 7 6  - -h ln (E~  t+T.  
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where p~=mh and ~m=~(mh).  

9. Power-Law Asymptotic Behavior of the Eigenfunctions 

of the Operator --h2A/2 + V(x) Concentrated in the 

Region of Minima of the Potential 

In this section, we consider the spectral problem for the following SchrSdinger equa- 
tion with small parameter h: 

Hr ~ -V2h2Ar xER ~, $~L2(R~), ( 9 . 1 )  

wi th  smooth p o t e n t i a l  V(x) t h a t  s a t i s f i e s  

1) v (x)  => o; 

2) V(x) i n c r e a s e s  as Ix[ § ~; 

then ( s ee  [33])  t he  spect rum of  the  o p e r a t o r  ~ i s  d i s c r e t e ;  

3) one of  the  two f o l l o w i n g  c o n d i t i o n s  i s  s a t i s f i e d :  3 ' )  V(x) has one p o i n t  of  
g l o b a l  minimum (~0) ;  3") V(x) has two p o i n t s  of  g l o b a l  minimum ($1 and ~2).  

In case 3'), V(~ ~ = 0 and V(x) > 0 for x ~ $, and in case 3") V($ I) = V(~ 2) = 0 and 
V(x) > 0 for x ~ ~i and x ~ $2. In addition, we assume the points ~0 or gl,2 are non- 
degenerate points of minimum, i.e., that the matrices 

I I I  O~V k 
k=o or k=t ,2 ,  

are strictly positive. Up to times of higher order, the potential V(x) in the neighborhoods 
of the points of minimum is equal to harmonic oscillator potentials: 

Vos c='/2 <x-~ ~, A~ (x-~ k ) >, 

k = 0 or  k = 1, 2. The e i g e n f u n c t i o n s  and e i g e n v a l u e s  of  the  co r r e spond ing  SchrSdinger  
o p e r a t o r s  --h2A/2 + Vksc a re  w e l l  known. The minimal e i g e n v a l u e  ~ of  each of  t h e s e  
o p e r a t o r s  i s  no t  d e g e n e r a t e  and has the  form 

n 

--- ~oj ~, k=0 or  k=l ,2 .  ( 9 . 2 )  

(c0k) 2, j = 1, . . . .  n, a r e  the  e i g e n v a l u e s  of  the  mat r ix  A k, ~k > 0. They cor respond  where 
to eigen~unctions (normalized to I in L=(R')) 

exp (-- k <  ( x - ~ ) ,  YA--;(x--~) > ) 

~k-- (2~h~k. . .ok) ' / ,  ( 9 .3 )  

Here and in a l l  t h a t  f o l l o w s ,  we denote  the  norm in L2(R ~) of  the  f u n c t i o n s  ~ by []~[I- 

In t h i s  s e c t i o n ,  f o r  comple teness  of  the  e x p o s i t i o n  we rep roduce  the  p r o o f  of  the  
following well-known and rather transparent fact (see the Introduction): The minimal 
eigenvalue and the corresponding eigenfunction of the original spectral problem (9.1) are 
well approximated by the eigenvalue and eigenfunction of the harmonic oscillator. Namely, 
we prove the following propositions. 

THEOREM 8. Suppose the potential V(x) satisfies the conditions i, 2, 3': 

a) let E 0 be the minimal eigenvalue and ~0 the corresponding eigenfunction, and ~0 be 
real valued, ]Ir = i. Then there exists e > 0 such that 

E0=m+O(h'§176 N0-r ; 

b) suppose the real-valued ~ satisfies the equation 

where E and f are such that 

E=~o+O(h~+~ II/[[=O(hO, 5>0; 

(9.4) 

589 



then 

ilw-r  =max(6/2, 'h). (9.5) 

THEOREM 9. Suppose the  p o t e n t i a l  V(x) s a t i s f i e s  the  c o n d i t i o n s  1, 2, 3",  and E 0 i s  
t he  minimal e i g e n v a l u e  of  the  o p e r a t o r  ~. Then: a) Eo=~+O(hl+8), where ~=min(~ , ,  $2), 
0<5<V~; b) i f ~ # ~ 2 ,  f o r  example,  ~ 2 > ~ ,  then f o r  any r e a l - v a l u e d  s o l u t i o n  o f  Eq. ( 9 . 4 )  in 
which E=~,+O(h '+~) and [I/il=O(h6), we have 

=o (h~ (9.6) 

I f  ~ t=$z ,  then f o r  any r e a l - v a l u e d  s o l u t i o n  of  Eq. (9 .5 )  the re  e x i s t  cons tan ts  a l  and ~2 
such that 

I[W-m@-~W~ll=O(h,), ~=max(6/2, '/~). (9 .7 )  

These propositions are fairly well known in the physics literature and show that in 
the case of a potential V with one point of global minimum (one well) or two asymmetric 
wells the smallest eigenvalue of the operator ~ is separated from the following eigenvalues 
by an amount ~O(h). But if the wells are symmetric or "almost symmetric," i.e., the 
quadratic parts of the potential V in the neighborhood of the points of minimum can be 
reduced to the same form by means of orthogonal transformations, then in a neighborhood of 
the minimal eigenvalue measuring h '+~ there is a further eigenvalue. 

Despite the transparency of the formulated propositions, their proofs require some 
calculations. The main idea of the proof (somewhat different from [9]) consists of using 
the variational principle and taking into account the fact that solutions of Eqs. (9.1) 
and (9.4) corresponding to low energies, E ~ O(h) are localized in the neighborhood of 
the bottom of the well (or wells) in the potential. It is more complicated to prove 
Theorem 9 (for two points of minimum of V), and precisely this proof we give. The proof 
of Theorem 8 is similar to that of Theorem 9, and we omit it. Theorem 9 is proved by the 
following sequence of lemmas. In all that follows we shall denote by Cj constants that do 
not depend on h. 

We first prove assertion a). Thus, we assume that the conditions i, 2, 3" hold. 

LEMMA 5. For the smallest eigenvalue E 0 of the operator ~ the following estimate 
holds (see (9.2)): 

Eo<min(~,, ~z) (~+C, hV'). ( 9 . 8 )  

P roo f .  For any ~ in the  domain of  d e f i n i t i o n  of  

Eo< (,, H*)/iI*Y. 
We introduce a smooth "cutting off" function e(y); y6R: e(y)=I for lyl < i; e(y) = 0 for 
IYl > 2. As ~ we choose the function ~=e(ix-%~I)~ ~. The calculation of (~, ~) and (~*, ~) 
by Laplace's method leads directly to the inequality (9.8). 

Let s be a certain number in the interval (0, �89 We denote by ~ and ~ neighbor- 
hoods of the points ~l and ~2 of radius h~: ~?~{x6R":lx-~l<hq,]=l,2, and by 9[ the region 
of points that lie outside ~[, ~[: 

We denote by ~r the functional 

s ( m ) =  dx. 

LEMMA 6 ( L o c a l i z a t i o n  of  e i g e n f u n c t i o n s ) .  Let  ~L2(R~), Ii~II-----i and Sr(q))<~C2h. Then 

I t x dx < 
$)3 e 

Proof. We have 

(9.9) 

(9.9") 
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By virtue of the condition on the potential, min V(x) is attained on the boundary of the 

balls ~i e and ~g~ where obviously V(x)~t,~n , C,>O. From this we obtain the required 

C2 
hl-~ f ! (P 1~ dx. C4 a,a 

We now c o n s i d e r  t h e  v a r i a t i o n a l  p rob lem f o r  f u n c t i o n s  ~ d e f i n e d  in t h e  b a l l s  ~ and 
~ t h a t  i s  d e t e r m i n e d  by t h e  o p e r a t o r s  f o r  ha rmonic  o s c i l l a t o r s ,  

F~ (qo) ----- .~ W I Vq)12 @ V~scl q~ 12 dx, q) 6L 2 (5j~), [I cP Hc~(~.e) ---- t. 

We denote by ~ the minimum of the functional Fj and ~ 0 = m i n ( ~ ,  ~2). 

LEMMA 7. For the minimal eigenvalue E 0 of the problem (9.1) we have 

Eo~>~'o (1+~,) +~2, 

where 

( 9 . 1 o )  

( 9 . 1 1 )  

• • (9.12) 

Proof. As trial function in the functional ~ (9.9) we take a function ~ satisfying 
the assumptions of Lemma 6 (such a function exists by virtue of Lemma 5). In accordance 
with the results of Lemma 6, we have 

2 

j ~ l  ~ ' 

(by virtue of the expansion of V(x) in Taylor series at the points 61 and 6 2 and of the 
properties of V(x) and the balls ~) 

2 

]=I O.]a 

(by virtue of Lemma 6) 

2 o 

y=l e ]=1 9 7 ~2j ~ 

I v , j  [2 + v ; ~  I*j 12 dx 
"~ .g 

(t § • min 2 -- • 

*"*~ 2 I l%12dx 
j=t file 

This minimum is calculated with respect to functions ~fiL2(Qj ~) and • ~ satisfying the 
estimates (9.12). Denoting 

I I *j 12 dx = ~/, 

we can rewrite the last expression in the form 

2 

(t q-• min ( 2  cz72 l the(V~pj)2 + VJoscl,,12)dx--• 
j=1 fl]~ 

where the minimum is calculated with respect to all 9j6L~(e/), [Ir and %6R I, ~iz+azZ=l. 
Obviously the last expression is equal to 

(t-I-• min (~,r215215215 
c~t2q-~2z~ 1 

The f o l l o w i n g  lemma e s t a b l i s h e s  a r e l a t i o n  be tween  t h e  min imal  e i g e n v a l u e s  o f  t h e  
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operators for the harmonic oscillator in the complete space R ~ and in the ball Q/, 0<e<I/~. 

LEMMA 8. 
n 

) 
Proof. The basic idea is that extension of the region ~w in the functional Fj to R" 

leads in the least eigenvalue merely to appearance of a facto~ (l+• To simplify the 
notation, we shall assume ~3 = 0 and omit the index j. 

Consider the functional 

f~e 

Suppose the minimum of Fg is attained on the function @; 
equation 

At the same time 

then ~ satisfies the SchrSdinger 

~ ~ h Z  ~ , ( l+•  ( 9 . 1 3 )  

where [• N, N is any natural number, and C(N) is a constant. This last result is 
readily seen by choosing as trial function ~ in the functional F the eigenfunction ~~ 
of the harmonic oscillator in R ~ and taking into account at the same time the estimate 

Ixl>h e 

for E < ~. 

We n o t e  f u r t h e r  t h a t  f o r  t h e  f u n c t i o n  ~ t h e r e  i s  an e s t i m a t e  a n a l o g o u s  t o  t h e  e s t i m a t e  
o f  Lemma 6: 

l I~ [ ~ dx • C~h '-~. 

I n d e e d ,  by v i r t u e  o f  ( 9 . 1 3 )  we h a v e  as  in  Lemma 6 

Coh~-~ S Vosc,*[2dx~-~ min Vosc S '*' ~dx, 
he/,,<lxl<~he Ixl =he/2 he/2~lxl<~he 

f rom which  ( 9 . 1 4 )  f o l l o w s  i m m e d i a t e l y .  

We d e r i v e  one f u r t h e r  a u x i l i a r y  e q u a t i o n .  Suppose  ~ s a t i s f i e s  t h e  inhomogeneous  
SchrSdinger equation 

-'/~h~he~+ V ( x) (p=E(p+ l, 

where  ~ i s  a c e r t a i n  r e g i o n  in  R ~, g(x, h) i s  a c e r t a i n  f u n c t i o n ,  suppgE~2. 
and ~ z = ( l - - g ) ~ .  We c o n s i d e r  t h e  f u n c t i o n a l  

h 2 

(9.14) 

We denote ~ i = g ~  

and then 

o~=o~(~i)+oo(~D+; [g(t-g)El~l~+ qDf+~/--2h~(Vg)~l~01Udz. (9.15) 

To derive (9.15), we transform the expression 

h ~ 
( ~(Vr Vr V~, V (P2)+ V ((pt~+-~,qh) )dx = 

;2 
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(integrating by parts) 

h 2 

(by v i r t u e ,  o f . t h e  d e f i n i t i o n  of  q~,2 and the  equa t i on  fo r  q~) 

= ~ [g(l--g) (EIwI~+Wf+~I)+h~V (g*)-V (I W[D+2h2ghglw[*] dx= 

[g(t--g) (E!~[ 2+q~+~/)-2h~(Vg)~[r 

From this (9.15) follows. 

In (9.15) we now set V = Vosc, /=0, Q=Q~, g=e(Ixl/2h~), ~=~, ~=g~, E=~, where e(y) is 
the "cutting off" function defined in Lemma 5. From (9.15) 

F~(*) > r  

where 

I =  J (~0g(l-g)[~[~-2h2(Vg)~[~lDdx. 

By v i r t u e  of  the  d e f i n i t i o n  of  e,  ~ ( 9 . 1 3 ) ,  and ( 9 . 1 4 ) ,  I admits  the  obvious  e s t i m a t e  

[11 <C~h2-2~+Csh~-'t 

F u r t h e r ,  from (9 .13 )  

(9 .16 )  

(9 .17 )  

From (9 .16 )  and (9 .17 )  

(V2h~[ \ 9, [~+Vosc[% 12)dx 
~e 

(t--•215 

~e 

where O<• 0<• Since @i is a function of compact support, the 
domain of integration on the right-hand side can be replaced by R ~. Since the obtained 
equation has a minimum, which is attained on the eigenfunction (9.3) of the harmonic 
oscillator in R ~, we readily obtain, taking into account the inequality g < �89 the asser- 
tion of the lemma. 

Combining now Lemmas 7 and 8, assuming I/3<e<I/2, and choosing at the same time 6 = 
min(3e -- i, 1 -- 2e), we obtain proposition a) of Theorem 9. 

We now turn to the proof of proposition b) of Theorem 9. 

Consider the functional 

R n 

where Vos c i s  t he  harmonic o s c i l l a t o r  p o t e n t i a l  V=~/2<x, Ahx>, ~o i s  i t s  minimal v a l u e  ( 9 . 2 ) ,  
and 9 ~ i s  t he  e i g e n f u n c t i o n  ( 9 . 3 ) .  

LENI~ 9. Let  ~ be a r e a l - v a l u e d  f u n c t i o n  p o s s e s s i n g  the  p r o p e r t y  
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@ (~) =~To(i+O (h0), ~>0. (9 .18)  

Then Iltp-tp~ '~ 

Proof. We denote by ~v the normalized eigenfunctions of the operator ~osc" The sys- 
00 

tem {*v} forms a basis in L2(Rn). Therefore, for q0(x, h) we have the decomposition q0= L a~,~, 
~=0 

a~ are Fourier coefficients, and at least a0 is real (since ~0 is not degenerate). We 
substitute ~ in (9.18) and use the properties of the functions ~0 v. As a result, we 
obtain the equations 

1 ,12=a. (9.19) 
w~o v~o 

We denote by ~ '  the ~ closest to ~o: ~ '=Eo+hmin(o ,  . . . . .  o}~). 

'~'oao~+~" E la~[ ~<~o(l+~ 
v2>O 

From (9.19) 

It follows that (~'-~fo)(i-ao2)<~o.O(h ~) or 1-ao2<~C,~h~/2, and therefore 

11~-r ~= ( t-a0)2 + E  I a" I ~<2 (l-a02) <C.h,. 
v>0 

Now suppose the function ~ satisfies Eq. (9.4) with E=~+O(h ~+~) (see Theorem 9).  Then 
from Eq. (9.4), taking into account the estimate ~=O(h), we obtain for the energy 
functional ~- (9.9): ~-(q~)<~Ci4h. Then by virtue of Lemma 6 for e6(0, I/2) we have for q0 the 
estimate (9.9'). 

We now show that we can represent the function ~ up to terms of higher order as a sum 
of two terms, each of which will satisfy either the condition of Lemma 9 or be small. 
Using the "cutting off" function e(y) from Lemma 5, we introduce the functions gj = 
e(]x -- $J]/2h g) and g = gl + g2- It is clear that the supports of gl and g2 do not inter- 
sect, and g2 = g12 + g~. From the estimate (9.9') for ~ we directly obtain the equation 

H~gll2=l[~og, I]~+ll~g~l] ~= l-~8h '-2., ( 9.20 ) 

where • 

We calculate the functional im on the function g~. Integration by parts gives (cf. 
formula (9.15)) 

"~ (gq))----- ! ( ha (Vg)2 q~____ g2Aq o -]- g2V~#~)dx. (9 .21)  
R n 

Using Eq. (9.4), the estimate (9.20) and the definition of ~, we obtain from this 

h 2 

R m 
\ 

where • ~0<C~. 

On the other hand, by the definition of g, e, and the Taylor expansion of V in the 
neighborhood of the points ~J we have 

2 

j=l R n 

where [• l<Ct6. 

Thus, i t  fo l lows  from (9 .20)  and (9.21)  t h a t  
2 

h a 

~)=I~M'~ R n ~ (1 + z g h  1-2g) + Xloh 1+6 + Xll  h3~ 
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Assuming e~(~/3, ~/~), denoting max(l -- 2~, 3E -- i, ~) by u and, in addition, 

aj=[[gjq~II/V[[g~qJ[p+[Ig~q~[I ~, we obtain 

2 
h 2 

7=1 R n 

and a t  t h e  same t ime  a~+a22=i ,  I• 

Now, t a k i n g  i n t o  a c c o u n t  t h e  i n e q u a l i t i e s  

h 2 

we f i n d  by s t r a i g h t f o r w a r d  a rgument s  t h a t :  1) when ~ , < ~ o  t h e n  c~22<C~6h ~, c~=t+z~h~,,  [•  
and 

i 2 

11 n 

2) when ~=~2, then 

h2 i 2 
I ( y ( V * ] ) 2 +  Vgsc•J ) d x = ~ i (  1 + x4Jh'), [ •  C17. 

R n 

From Lemma 9 in  c a s e  1 we i m m e d i a t e l y  o b t a i n  g~----~~176 where  I[O~ ~/z, 
2 g(p=a~qo~+,a2q~Z+O ~, where []O~l]<C,sh T/z and ~ have the form (9.3). 

To complete the proof of the theorem, it now remains to note that IIg(p-(pII<~C~ghr 
Ci9h T/2 and that max (I-2e, 3e-I)=~/~. 

and in case 

i0. Laplace's Method with Estimate of the Remainder Term 

We derive the formulas used in the foregoing sections by Laplace's method of calcula- 
ting asymptotic integrals with accuracy estimates. Such estimates are not found in the 
well-known guides to this method (see, for example, [40]). 

We shall investigate the h § 0 behavior of the integral 

I (h)= ~](x)exp{-S(x)/h}dx, ( 1 0 . 1 )  

(i0.2) 

(10.3) 

where ~ is a region in R n, h is a positive real parameter, the functions f(x) and S(x) are 
real and continuous in ~, and f(x) ~ 0 in ~. 

We first recall the simplest obvious estimate for I(h) [40]: if M~inf{S(x):x~} and 
it is known that I(h) converges for h = h0, then I(h) converges for all hE(0, h0) and at 
the same time 

I (h) < exp {--M/h} exp {M/ho} I(ho). 

To obtain a more accurate estimate, we introduce further assumptions: 

a) the function S(x) attains its minimal value in ~ at a unique point x0~Q, and 
there exists a compact neighborhood U of the point x 0 in ~ such that for every convex 
neighborhood U' c U of the point x 0 

inf{S(x) : x~Q\U'}=min {S(x) :x~OU'};  

b) x 0 is a nondegenerate point of minimum of the function S(x), i.e., the matrix 
S"(x 0) is positive definite; 

c) S(x) is thrice continuously differentiable in U; 

d) l(h) converges for h = h 0. 

We denote by d and D, respectively, the smallest eigenvalue and determinant of the 
matrix S"(x0) ; let 

q)=max{](x) : x~U),  C~=max{[]S"'(x)[[ : x~U} 
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(IIS"'(x)II is the norm of S"'(x) as a polylinear functional in R"). We fix ~('/a,'/~) and an 
arbitrary 6 > 0, and set 

U~(h) = { x ~ e  : (S"(xo) (x-x0), x-xo) ~h ~} 

(the ellipsoid U~(h) is obviously contained in the ball of radius l~/dh~ in ~ with center 

at x0). 

LEMMA i0. 

then 

Proof. 

Let h < h 0 be such that U~(h) c U and, in addition, 

exp {~/2ho~-~--~/2 h~-~ } ~ (2ah) "/~h ~+~, 

~/~C~d-~h ~-~ <~ i; 

(lO.4) 

(zo.s) 

I (h)<exp  {--S(xo)/h}(2ah)~/~e'~[D-'~O+h~+q(ho) exp {S(xo)/ho}]. (10 .6)  

We split the integral l(h) into the sum li(h) + I~(h) of integrals over the 
regions U8(h) and ~\U$(h), respectively. Since the ellipsoid Us(h) is obviously contained 
in the ball of radius V~7dh~ in ~ with center at x 0, for x~U,(h) 

S(z) =S(xo)+'/2(S" (Xo) (X-Xo), x--xo)+(~(x), 
where 

and hence, by virtue of (i0.5), [o(x)]/h<.I/3, and therefore 
I (X--Xo), x--xo) }dx<~ I,(h)~CP exp{-S(xo)/h}e ''~ ~ exp{-~-~(S"(Xo) 

u~(~) 

(2ah) ~/ZD-'~ (1)e '/~ exp {-S (xo)/h}. 

Turning to the estimate of Is(h), we note that in accordance with (10.3) 

inf {S(x) :xEga\U~(h)}=min {S(x) :x6OU~(h)}. 

Using now f o r  x6OU~(h) t he  r e p r e s e n t a t i o n  (10 .7 ) ,  we ob t a in  from (10 .8)  

inf{S(x) : x6Q\U~(h) } ~S(xo)+ + h2~--~. C3d-~/~h ~. 

Hence and from the  g e n e r a l  e s t i m a t e  (10 ,2)  i t  fo l lows  t h a t  

I ~ ( h ) ~ e x p ( ' ~ ( S ( x o ) + - ~ - h - - ~ . C ~ d - h  )}exp{-~o(S(xo)+ 

I /(x)exp{--S(x)/ho}~exp{--S(xo)/h} exp{-V2hZ~-'}I(ho)e 'I' exp {S (xo) / ho} exp { ~/2ho~-~ }. 

From the estimates obtained for Ii(h) and I2(h) and the condition (10.4) Lemma i0 follows 
directly. 

THEOREM 10. Suppose that in addition to the conditions of Lemma i0 there exist in U 
continuous derivatives f', f" of the function f and the fourth derivative of the function 
S. We denote by #i, ~2, C4, respectively, the maxima of the norms in U of the polylinear 
mappings /'(x), /'(x), S~)(x). Then for h satisfying the condition of Lemma i0 

I (h) = (2ah) ~/2D-"~ (/(Xo) +a  (h) h) exp {-S (Xo)/h }, 
where ~(h) satisfies the estimate 

I a (h) I <~ '/~O2d-'n+~/'~e'l~@Ca ~d-~ (n+ 1) (n+2) + 

( ~ CJ(xo)+ ~---~. C20~ )d-~n(n+2)+l(xo) (2gh0)'~/~h~ + eV'D"~hS exp{S(Xo)/h}I (ho). 

Proof .  We r e p r e s e n t  I ( h )  in t he  form 

I (h) =exp'{-S(x0)/h} (Io (h) +I~ (h) +I~ (h) +I~(h) ), 
where 

(10.7) 

(10.8) 

(10.9) 

(1O.lO) 

(10.11) 

(lO.12) 
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I ox {_ ' ,, ~-(s (~.) (x-xo), 
Uf,(h) 

s 
U~(h) 

x-xo,, x 
u~(h) 

, .(h,: S 

The function o(x) in the integral I s is defined in (10.7). 

We shall denote by Bv(R) the ball of radius R in R ~ with center at yERL As we have 

already noted, U~(h)cB~(Yl/dh~). 
We investigate the integral Ii(h). We represent it as a difference of integrals over 

R ~ and over R~\U~(h). The integral over the whole of R ~ is tabulated: as is well known, it 
is (2nh)~/~D-'/~/(xo). Making then in the second integral a change of the variable of integration 
in accordance with the formula ~So"(X-Xo)=y, we obtain 

~l(h)=i(x0)D -~[(2~h),,/~+ f ~xP{--IIull~/2h~dY] " 
R n \  Bo(h[J) 

For  t h e  i n t e g r a l  h e r e  we can  o b t a i n  an u p p e r  bound in  a c c o r d a n c e  w i t h  f o r m u l a  ( 1 0 . 2 )  in  
terms of 

exp {--  ~/,,h"~ -~ + :~/,,h~ ~-z} i exp {--II g y/2h0} dg = (2nh0) ~/z exp {--  ~/,,h 2~-1} exp {1/2h~-1 }. 
R n 

As a result, 

where 

using (10.5), we obtain 

I~ (h) = (2~h) "/~D-'t' (] (x0) + a~ (h) h), (IO.13) 

Ia~(h) l<./(xo) (2gh0)"/2ht ( 1 0 . 1 4 )  

We turn to the integral I2(h). Expanding f(x) in a Taylor series to the second term 
and noting that the integral of an odd function over a symmetric region is equal to zero, 
we obtain 

V~(h) 

Making the substitution ]/S"(Xo)(X-Xo)=y and noting that lIs"(x0)-'i1=d-", we arrive at the 
estimate 

12 ~<l/2(1)~D-~d-~ f ll g [[2exp l--!l g ll2/2h} dg" 
B~ 

Us ing  now t h e  w e l l - k n o w n  f o r m u l a  

l 'llgH~expl--Ilgll2/2hIdg--~F(n/2)F (2h) (n+~)/2 (10.15) 
R n 

(which is readily derived by going over to spherical coordinates) for k = 2, we obtain the 
estimate 

4( h) <~i/2@2D-"2d-~ (2nh)~nhn. ( 1 0 . 1 6 )  

We e s t i m a t e  t h e  i n t e g r a l  I a ( h ) .  Fo r  t h i s  i t  i s  a l s o  n e c e s s a r y  t o  d i v i d e  i t  i n t o  a 
sum o f  two i n t e g r a l s :  I s ( h )  = I ~ ( h )  + I ~ ( h ) .  He re  

U~(h) 
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,(x)( 
UpCh) 

In the proof of the lemma we obtained the estimate [a(x)/hl~/3 in Us(h). 

estimate lo(x) I ~--$~,C~Ilx-x011 it follows that 
U'. 

exp{ ~ (x) o (x) 
V-} -1~ h 

2/ 1 + t / (J(x)\ ) <  
h ~  

[o(x) [~9(~,,, 4 ~ ,,/c0\~llx-x011, v,Cyollx_~:ollOn_=, --K-, - T )  ~<9~ t ~ . )  h~ 

and therefore 

U~(h) 

Making now, as  above ,  t h e  s u b s t i t u t i o n  ~S"(Xo)(X-Xo)=g, we o b t a i n  

, x-xo) } dx. 

Hence and from the 

< 1/4C32~el/~h-2D-'/~d-~/~ ~ I] g 116 exp {-- [I Y II~/2h} 1~' (h) dx. 
R n 

) ~176 )(~ ) ( ) Using (10.15) for k = 6, and also the equation F +3 =-~ -~+I -~-+2 r T ' we 

obtain 

4 ' ( h )  ~<'/, (2~h) ~/2D-V~(DC~2eV~d-~l~n (n+2) (n+4).  

To e s t i m a t e  I ;  we n o t e  t h a t  in  U 

I(~(x) __~. S,,, (xo) (x_xo)~l t < ~ C ,  llx-~~ �9 

Bearing in mind that the integral of an odd function over a symmetric region is zero, we 
have 

~ ( h )  

and therefore 

(10.17) 

3T Uf)(h) 

Making as  above  t h e  change  o f  v a r i a b l e  and u s i n g  ( 1 0 . 1 5 )  f o r  k = 4, we o b t a i n  

I/' (h) <~ ( ~ CJ (Xo)+ t__ C~O, ) (2~h)~nO-"~d-2n (n+2).  
\ / , I  

The integral 1 4 is estimated in the same way as in the proof of Lemma I0. 

1,(h)<~e'~(2~h)~J~h'+~ exp {S(Xo)/ho}f(ho). 

From the estimates (10.13), (10.14), (10.16)-(10.19) we obtain Theorem I0. 

Remark 5. If we do not require the existence of f" and S (~) in U, then the formula for 
I(h) in Theorem I0 is changed -- it will no longer be possible in general to represent the 
remainder term in the form O(h), but only in the form O(h2~-i). 

Remark 6. Somewhat different, "more uniform with respect to the dimension" estimates 
of the remainder term ~(h)h can be obtained if one calculates the main term, not from an 
integral over a ball (or ellipsoid), as in our arguments, but from an integral over a 
cube. 

(10.18) 

Thus 

( 1 0 . 1 9 )  
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