SPLITTING OF THE LOWEST ENERGY LEVELS OF THE SCHRODINGER
EQUATION AND ASYMPTOTIC BEHAVIOR OF THE FUNDAMENTAL SOLUTION
OF THE EQUATION huy = h?au/2 — V(x)u

S. Yu. Dobrokhotov, V. N. Kolokol’tsov,
and V. P. Maslov

For the equation hdu/dt = h2Au/2 — V(x)u with positive potential V(x),
global exponential asymptotic behavior of the fundamental solution is
obtained by the method of the tunnel canonical operator. In the case
of a potential with degenerate points of global minimum, the

behavior of the solutions to the Cauchy problem is investigated at
times of order i=h~0+% x>0 The developed theory is used to obtain
exponential asymptotics of the lowest eigenfunctions of the Schrddinger
operator —h?A/2 — V(x) and to estimate the tunnel effect.

1. Introduction

This paper, which develops ideas of [1—-5], is devoted to the h + 0 asymptotic behavior
of different Cauchy problems for the parabolic equation

hgg:ithu—V(x)u, z€R", (1.1
at 2

with smooth potential V{(x) and the investigation of tunnel effects for the lowest energy
states in the spectral problem for the Schrddinger equation

— AtV (z)u=Eun, ubL,(R.>). (1.2)

In the second case, it is assumed that V(x) 2 0 and that there is a finite number of points
at which V vanishes.

In probability theory and quantum mechanics there are interesting problems that are
based on the same mathematical constructions. These are problems of large deviations and
tunnel effects for the lowest energy states. From the point of view of specialists on
differential equations, they are characterized by the presence of a small parameter h and
exponential smallness with respect to h of the corresponding solutions at almost all points
of the configuration space. The connection between such problems arises from the following
elementary and well-known considerations. Consider Eq. (1.1). Suppose the potential V(x)
is a non-negative function that increases as |x| > «. Then the spectrum of the operator
—LR*A+V(z) in Z,(R") is discrete, and if we denote by {yi} and {Ey} the corresponding
orthonormalized eigenfunctions and eigenvalues, then for the solution of the Cauchy problem
(1.1), w|ime=uo(z), we have the formula

U= k}l cke_Ek”hqpk, g == (Py» Ug) == Sn Yrlto da. (1.3)
=0 R

If the Fourier coefficient ¢, # 0, then multiplying the expansion for the function u
by e™/* and letting t tend to =, we obtain
Po = lim (ue™"*}/ (u,, ). (1.4)
t-> o0
It is on this formula and its analogs that the connection between the Cauchy problem for
the time-dependent equation (1.1) and the spectral problem (1.2) is based. It is clear
that the solution of the Cauchy problem for Eq. (l1.1), like the solution of the problem

(1.4), can be found only in exceptional cases, and for arbitrary potential V(x) analytic
expressions can be obtained only asymptotically. Under the assumption that V(x) 2 0, the
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fundamental solution for t > 0 of the Cauchy problem u|,—,=8(z—E) for Eq. (1.1) and the
eigenfunctions of the problem (1.2) corresponding to eigenvalues E(h) - 0 as h + 0 are
exponentially small as h -~ 0 at almost all points of the configuration space and are given
almost everywhere by the expressions

=25 V(g (7, 1) +O(R)), 18>0, (1.5)
Y=h"""e=S M (@ (z)+0(h)), (1.6)
where S, ¢ are continuous functions, S 2 0.

The absence of oscillations in the asymptotic behavior of the fundamental solution
is a characteristic of the tunnel-type equations introduced and investigated by one of the
authors of this paper in [1-3]. Besides the parabolic equation (1.1), these equations
also include the Kolmogorov—Feller equation, some equations in the theory of viscoelastic
media (Voigt model), the system of linearized Navier—Stokes equations, etc. For some of
them, for example, the parabolic equation and the Kolmogorov—Feller equation, Varadhan [7]

and Borovkov obtained logarithmic asymptotic behaviors limhlnu (see [8]) or asymptotic
h—0

behaviors of the form (1.5); however, this was under the assumption that there are no
focal points in the asymptotics.

One of the main results of this paper is the proof of the fact that the constructed
asymptotics are valid not only at the "standard" times for asymptotic theory, t ~ 0(1)
(as h + 0) but alsc at "very large' times t~h~'"% 1>%>0. It is this result that allows us
to make a rigorous transition from the asymptotic behavior of the fundamental solution of
Eq. (1.1) to asymptotic behaviors of eigenfunctions of the Schrédinger operator that enable
us to pick up the tunnel effects.

Let us explain this in more detail. Suppose that £ is a nondegenerate point of
minimum of the potential V(x), V(0) = 0. Then, since the potential V in the neighborhood
of £ can be approximated by the potential of a harmonic oscillator, Vogp = <z—§, 0°V(§)/d2°
(z—E)>, we can find a series of asymptotic eigenfunctions and eigenvalues of the original
operator —'/,h*A+V(z), and their leading terms will be identical to the eigenfunctions and
eigenvalues of the quantum harmonic oscillator. In particular, the lowest eigenvalue and
corresponding (asymptotic) eigenfunction have the form

s — h Z @j, llo——”*—_—i—’— ~SE@m g L <x E’Vﬂ(g)(x E)> (1.7)

(7h)"Vo,.

where wy, ..., wy > 0; w§ are the eigenvalues of the matrix 32V(g)/ox2.

The expressions (1.7), as approximations for the eigenfunctions and eigenvalues of the
operator —'/;h*A+V(z), have long and productively been used in physics problems, but accurate
arguments that bring out the connection between the eigenfunctions and eigenvalues of the
quantum harmonic oscillator and the operator —!/;h*A+V(z) were given in a recent study by
Simon [9]. For completeness, we also give here the corresponding investigations (Sec. 7)
that differ somewhat from [9] and are based on the variational principle. Note that
despite the exponential decrease of the function ¥, (1.7) this formula has only a power-
law asymptotic behavior with respect to h for the genuine eigenfunctions of the operator
—1,h*A+V(2), and this is quite insufficient if we want to obtain the tunnel effects.

Suppose the potential V(x) is symmetric (either with respect to the point x = 0, or
with respect to some plane) and has two points of global minimum £+. Then near the minimal
eigenvalue E, of the operator —!/,h*A-+V(z) there is an eigenvalue E, that differs from E, by
an amount exponentially small in the parameter h. We have the expressions

3 h 1
E°=“§'20’5+0(h2), E1=—é—2mg~+0(h2), E,—E,=A exp(——h-jpdx). (1.8)
J=t j=1 -

Here, p(t) = X, x = X(t) is the trajectory of the Newtonian system
i=V, (1.9)

that connects the points £. and £4: x(Fo) = Ex (if there are several such trajectories,
then on the right-hand side we take the minimum over all trajectories). The function A(h)
can also be found in terms of the solutions X(t) and variational systems with respect to
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(1.9). The trajectory X(t) is called an instanton. Note that it is determined from a
Newtonian system that differs from the ordinary classical system corresponding to the
quantum problem (1.2), % = —Vy, by reversal in the sign of the potential V or transition
from the real time t to the "imaginary" time it. Formula (1.8) first appeared in the book
[5] and in [10—11] (in these last, only the argument of the exponential was calculated) and
was then actively used in quantum field theory. The bulk of this work related either to the
one-dimensional case z€R! (see [11-16]1) or the infinite-dimensional (continuum) case (see
the review in [17]). An accurate justification in the n-dimensional case appeared in [2,18]
and then in a somewhat more general situation in [19]. A stimulating role in the appearance
of the studies [18,19] was played by Witten’s elegant paper [20], which uncovered deep
connections between certain problems of physics and mathematics.

Our first aim in this paper is to expound in more detail, sometimes differently and
in a more general situation, the results of [2]; in particular, we derive (1.8), including
an expression for A (absent in [18]). Our derivation, which is based on the asymptotics
"at large times' of the fundamental solution of Eq. (1.1), is quite different from the
methods of [18], which are based on Feynman integrals and the Agmon metric.

We describe the key points of the paper and the main heuristic arguments.

1. In Sec. 2, we give the asymptotic behavior of the fundamental solution of the
parabolic equation for small t. Generalizing the construction of the WKB solutions and
the exact fundamental solution V=exp [—(z—E)%/2th]/(nht)"* of the parabolic equation Vi = hAV,
we seek a solution of (1.1) in the form

u= W e8I (o (2, 1) Fhos (2, 1)+ .. ).

The standard procedure of the WKB method (or zeroth method) leads to the Hamilton—Jacobi
equations Sy + (VS§)2/2 — V(x) = 0 (but, by virtue of the purely imaginary action —iS

they have "inverted" potential V) and the transport equation ©u+VSV@,+ASq,/2=0. The

initial conditions for § and ¢, are chosen from the condition u » é(x — £) as t » 0 and
with allowance for the formula for V have the form S|,_,—~(2—8)*/2t, @o|li=—>t""*% The correspon-
ding solutions S and ¢ can be expressed in terms of the solutions of the variational problem
and trajectories of the Newtonian system (1.9). For the difference between the exact
solution and the asymptotic behavior ujin = ¢ *"¢/(nh)"* we obtain an estimate that is
important for what follows:

lu—uy;,|=e5"QO (k).

2. The global asymptotic behavior of the fundamental solution of Eq. (1.1) (with
allowance for focal points) is given by means of the tunnel canonical operator, which is
constructed in Sec. 3. Here, we give a geometric approach to the studied asymptotics
(Lagrangian manifolds). There is the well-known difficulty in constructing the asymptotic
behavior of u at large t due to the appearance of focal points, this leading, in particular,
to the appearance of regions in the configuration space in which the function S becomes
multiply valued. One of the important considerations in "tunnel" problems is that, in
contrast to "ordinary" semiclassical asymptotics, only one term contributes to the result.
It is the one corresponding to the branch of the function S(x, t) that at the given point x
takes minimal value compared with the other branches of S.

3. In Sec. 4, we give a global construction of the asymptotics of the fundamental
solution of Eq. (1.1). In Sec. 5, we prove one of the central propositions of the paper —
a theorem which establishes the validity of the obtained asymptotics at "very large" times
E~h~ 4>34>0. This proof is based on repeated application of Laplace’s method and makes
essential use of (1.10). Here, we give solutions of special Cauchy problems for Eq. (1.1)
(large deviation problems), which are then used in the spectral problem (1.2).

4. The transition from the solutions of the Cauchy problem for the time-dependent
equation (1.1) to the solutions (1.2) is based (Sec. 6), as we have already noted, on
formula (1.4), in which we take in place of infinitely large times values of the time
t=h~""", This is sufficient for, on the one hand, to omit from the eigenfunction expansion
all the functions except those corresponding to eigenvalues in a neighborhood 0(h?) of the

h
lowest energy wvalue of the harmonic oscillator, E0==——1§:“m, and, on the other, to go to the

"=t
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limit t > « in the leading term of the asymptotic behavior e™®®""¢(z,t) of the fundamental
solution. This procedure, which takes into account the existence in the problem of the
two large parameters t and 1/h, leads to determination of the asymptotic behaviors of the
necessary eigenfunctions of the operator —'/;A’A+V(z). The use of these functions in the
expressions for the splitting of the lowest energy values, which are analogous to those in
Chap. 8 of [21], gives formula {1.8) and analogous expressions for a large number of wells.

In Sec. 7, analogous results are obtained for the case when the configuration space is
a torus, in particular, a circle. In Sec. 8, we analyze some examples, and in Sec. 9, as
already noted, we justify the use of the oscillator approximation. Finally, since in our
arguments we use very special estimates of the Laplace method, which are not found in
standard treatises, we give in Sec. 10 the Laplace method with corresponding estimates.

2. Asymptotics in the Small of the Fundamental

Solution of the Cauchy Problem for the Heat

Conduction Equation with Potential

We consider the equation

hai=lAu—V(x)u, 2€R*, =0

2.1
ot 2 ’ (2.1

where h is a positive parameter, A is the Laplacian, and the potential V(x) is a suffi-
ciently smooth non-negative function with bounded matrix of second derivatives:
;|azu

: - ‘”SEC for all z€R" and fixed C.
i dxid.z‘,-

We construct the h + 0 asymptotics of the fundamental solution of the Cauchy problem
for this equation, i.e., a solution u(t, x) = u(t, x, &, h) that satisfies the initial
condition

u(t,z, &, h)=8(z—t). (2.2)

We first find this asymptotic behavior at small times t. For this, we need some estimates
and identities satisfied by the solutions of the variational system for the Newtonian
equations.

We define the Hamiltonian H(x, p) = p?/2 — V(x) and denote by X(t, x, p), P(t, x, p)
the solutions of the Hamiltonian system

oV

with initial condition X(0, x, p) = x, P(0, x, p) = p. By virtue of the conditions given
on V, these solutions are defined, as is well known [3,13], for all t.

We shall need the following well-known (see, for example, [6]) proposition. There
exists a t, sufficiently small that det 3X/3p # 0 for all t £ t,, and for all z, E€R" there
exists and is unique a solution of the Hamiltonian system (2.3) with boundary conditions
X(0) = £, X{(t) = x. At the same time, on this curve there is realized a minimal value of

the functional
t

J(3 @+ ae) . (2.4)

which is defined on continuous piecewise smooth curves with fixed ends y(0) = g, y(t) = x.
We denote the minimal value of the functional (2.4) by S(t, x, &).

We introduce p,(t, x, &), a momentum such that X(t, &, p,{(t, x, £)) = x, and Jacobian
X
J(t: z, g)= det—g; (ti gs Po (ta z, E))

We formulate the main result of this section (see also [23-25]).

THEOREM 1. If V(x) has bounded, in R% derivatives of fourth order, then for t€(0,1%,)
the solution to the problem (2.1)—(2.2) has the form
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(e, 8 0) = (2ah) 5 (1,2, 8) " expl ~ - 56,2, 8) (1+0(he)), (2.5)

where O(ht3) uniformly with respect to all z, EER™,

If V possesses derivatives of order higher than the fourth, then the function O0(ht3)
in (2.5) still remains a function of the form O(ht3) after differentiation with respect to
X or £.

If V(x) is infinitely differentiable, then for every MEN
, 1
u(t, z,& h)=(2ah) "/ (t,2,8) " exp{ - —[S(t, z,E) },X

(AR Rt . R O (REH1P142)) (2.6)

where the functions by are defined by the recursion relations
t
1 j‘ lI II
’!‘pi(tv Z, §)=—é_ JEA (’q”j—i']— z)dr (2'7)
0

(here y, = 1, the integral is taken along the trajectory X(t, &, p.{(t, %, £)}, and the
Laplacian is applied to the argument x) and satisfies the estimates {;=0(#*?), j=1.

We first prove some helpful auxiliary propositions. In the space of continuous matrix-

valued functions on the interval [0, t] we define linear operators G,, G, by the formulas

t t

(GiF)(t)=j( Vm”(s)F(s)ds)dT, (GF) (t)= j(Vxx”('C)jF(s)ds>dT.

9 0

LEMMA 1. The norms of the operators G;, G, are bounded above by t?C/2 and for small
t 5= t, do not exceed unity. For these t, the derivatives of the solutions of the system
(2.3) with respect to the initial data are given by

90X

x

(¢, z, p)=(1d—G,) 'E= (1d+G,+G> + .. .)E,

>

apP
(t,z, p)=(1d—G,) LK, —57 (t, 2, p)=(1d—G,) 'E,
b

P
™ (t,z,p)=(1d—G,)"* g V" (t)dr.

0

ap

Here, E is the unit n x n matrix, and Id is the identity operator. In particular,

g(t,:c,p):t(E-|-0(t‘2)), g~P—(t,ac,p)=E+0(if2), (2.8)
op op

where 0(t?) uniformly with respect to all i<t z, peR™

The proof follows from the standard [26] representation of the solution of the
variational system

0 E E 0
(. )4, a0=(77)
Vxx (X(T7x7p)) 0 0 E
s s . ix, Py | )
which is satisfied by the 2n x 2n matrix A(t)==~5(——3» in the form of a series of a time-
z,p

ordered exponential.

We recall that the functions S, P, X satisfy the following well-known identities
[3,27]:

5%8 3P ax -1
—az—z'(t7x7§):_a—p_(t1§7p0(t7x7§))('é_p‘*(t’g»po(t:xag))) » (2'9)
58 94X - 9X

e D= (T anenD) 2o e, (2.10)
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Let t; + t, £ t,. We introduce the function f(n)=S8(t, z, n)+S(t, 0, £). We denote

ﬁ=X(t27 §7 pO(ti_}—tZ? x= E))v ﬁ"=P(t2, §7P0(t1+t27 .'L',&)), P0=Po(t1+t27 -T, E) =Po(t27 ﬁvg)-
LEMMA 2. The following matrix equation holds:

X 0X axX -
T (ti+t27 g’po):: A (th ﬁ7 ﬁﬂ)f”'—— (t27 fiv E) (2- 11)
ap op op
In particular,
det f'=J (t, s, &, )" (Ly, 2, 1) (L, 7, E). (2.12)

Proof. We represent the mapping X(t,; + t,, &, p) as a composition of mappings:
(& p)=>(n=X(1, 8 p), p»=P(&,§,p))- and (n,p,) —>X(ti, 1}, pa). Then

X X 80X
A (t +1,, &, P)———— (ts, UB Pn) (tzag P) (tu N, pn) . (tzvg P)

For p = p, we have n = 7, Pn = pn. Substltutlng in the last expression the values of. 3X/3x
2 2

9%
and 3P/3p expressed in terms of {(t,, z,m) and, respectively, {tz, 1, &) by means of the

3§
identities (2.9) and (2.10), we obtain (2.11), which is what we needed to prove.
LEMMA 3.
328
-—(t x, s)-~(E+0(t ), (2.13)
J(t, 2, &) =t"(1+0(t")), (2.14)
where O(t) uniformly with respect to all I<t, z, E€R"
mJ
-—a——=——0(t””), m=nm,+m,, (2.15)
axm,agma
Atmtz)
S(t,2,8)=0(1) (2.16)

axm—r’-z

for the m 2 1 for which there exist continuous derivatives of V of order m + 2, and O(i**?)
and O(¢) uniformly with respect to x, £ in any compact set (and uniformly with respect to
all z E€R" if the corresponding derivatives of the function V are bounded in R").

The proof follows from the formulas of Lemma 1 and the identity (2.9).
Note that from (2.13) we obtain the equation

stz =" roenrse o+ (2 59,0,
and therefore
S(t,x,g)s%—t—@i<1+0(z2>>+0(t>(1+ux~§n>, (2.17)

where 0(t) uniformly with respect to £ in any compact set and all z€R”

Proof of Theorem 1. Consider the function

G(t, 2, h)=(2nh) (¢ z, E)exp{——}—i—S(i, z, g)}, (2.18)

where @=J"". We obtain directly from the estimates (2.14) and (2.17) that limG(¢ z, & h)=
fp

8(z—t), i.e., G satisfies the initial condition (2.2). It is well known [27] that

S(t, x, £) satisfies the Hamilton—Jacobi equation

s 1 (65 2
Srrla) —re=o

dx
and the function g=J-" satisfies the transport equation
0 dp S 1
°% 0%

— + —@AS=0.
gt dxadx 2
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Substituting G in (2.1) and differentiating, we obtain

d (hz ] )
[hﬁ— —2~A—V(x)) G=—h?F,
where
1 1
F=—2— (Znh)“"/zAcpexp{*h—S(t,x,§)} (2.19)

It follows from the estimates (2.15) that A¢=0(#")p, and hence
F(t, z, & h)=0(t")G. (2.20)
Thus, G is a formal asymptotic solution of the problem (2.1)-(2.2).

We show that the exact solution of the problem (2.1)—(2.2) can be represented in the
form of the convergent series

oo

t A
w(t, 2,8 h)—G (t, =, g,h)+2hk+lg S G (t—1, . B) F* (v, . &, ) dn d, (2.21)
k=0 oR"

where F* is the k-th power of the integral operator F, which is defined by the kernel F
in accordance with

¢t
(FY) (¢, 2, &, &) :5 S F(t—7 2, W)Y (t,n, & k) dndt.

0 R"

It is easy to show that the series is well defined for small h and gives a function of the
form G(t, x, &, h)(1 + 0(ht®)), where 0(ht3) uniformly with respect to all x, £ in any
compact set and all t £ t,. For this, it is necessary to estimate successively the results
of applying the operators F by means of Lemma 10 (from Sec. 10), using at the same time the
identity (2.12), the estimates from Lemma 3, and the estimate

o \n/2
( exp{__S(t____T’x,n)___S(Tyn’E)—{—S(t,x,g)}d]’]:O(i)(ﬂT(tt T) ; ,
i | \ '

which follows from the fact that the expression in the curly brackets does not exceed

1
0(1)(——ﬂ+-z—~)(n—4h)? The required asymptotic properties of the derivatives of the function
T —1

u can be verified in the same way. To verify that (2.21) determines a solution of
Eq. (2.1), we note that

[ha (hZA v ))]FG WFF-+hF
gt Vg TNV T :

and therefore N
a h*
| h— —( 2—A—V(x))] bl — Y W A ) W),
Re=1 k=0
Thus, the representation (2.21) has been proved.

To obtain the expression (2.6), we first find a formal asymptotic WKB solution to
the problem (2.1)-(2.2) of the necessary accuracy. This is done in the usual manner (as,
for example, for the Schrédinger equation in [27]), and this gives formulas (2.7). The
further demonstration is exactly as before.

3. Tunnel Canonical Operator

The global exponential asymptotic behavior of the Green’s function of Eq. (2.1) is
determined by the tunnel canonical operator introduced below. We use facts from symplectic
geometry and the theory of Lagrangian manifolds; these can be found, for example, in [27].

We recall that the simply connected manifold A in a 2n-dimensional phase space R™=
RoXBp" t A={r{a)=(p(r(a)), z(r(e)))}, a~r(a), is a smooth mapping R*—R®", is said to be
Lagrangian if on it the Lagrange brackets vanish or, which is the same thing, if on A there
is defined a function
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S(r)= 51} dz, TEA,

To

where the integral is taken along any curve lying on A (r, is a fixed point of A). Suppose
the function S(r) is non-negative. Then we shall call S(r) the entropy of the manifold A.

7}
Suppose on A there is defined a measure du = pu(a)da. We call the function J==de2;fu(a)
o

the Jacobian on A. We recall that the point r on A is called a focal (singular) point if
J = 0; otherwise it is nonsingular. In what follows, we shall assume that if the focal
point ¥ is a zero of the entropy S then ¥ is an isolated zero of S.

We call r an inessential point of A if there exists another point €A with the same
projection onto R,” and such that the entropy at it is less than at r.

We construct an operator K, which carries functions on A to functions defined on R,
It is this operator that will determine the global asymptotic behavior of the fundamental
solution of Eq. (2.1) and some other solutions of it.

We first define the action of the tunnel operator in the neighborhood of nonsingular
points of A.

Suppose £ is a nonsingular chart on A, i.e., a chart such that the Jacobian J is
nonvanishing for all points of Q. We denote by DcR.” the set mg(QC€), where 7y is the
natural projection from R* to R.", Q° is the closure of the set of essential points of
the region @, and by D'cR,” the y neighborhood of the set D, i.e., the neighborhood such
that |x — x"| 2 y for all z€R,"\D", 2’€D. We introduce a smooth function 6(x, y) that is
equal to unity for z€D' and zero for z€R,"\D*. Let o(r, h)€C,*(Q) Vk=0 (smooth function
of compact support). We define the operator K(Q) by

(K@) @)= 1771 exp{~ 5o (r(2), 0 ), (3.1)

where r(z)€A solves the system x = x(r), and JY and 3Y are smooth functions equal to J and
S on D. Of course, the function K(Q)¢ depends on y, 8(x, v), and the ways in which J
and S are extended to JY and SY.

At the singular points, the expression (3.1) has singularities, and it cannot be used
in calculating the asymptotic solutions. In the neighborhood of singular points, we shall
use other expressions based on a choice of coordinates different from (p, x) in the phase
space.

1

Namely, let I be a certain set of indices in {1, ..., n}, IYﬁ=~é—:£:pf,gH;° is the phase-

Jer

space shift during time ¢ along the trajectory of the Hamiltonian flow with Hamiltonian
—H1. Let o > 0 be so small that the region_gﬁﬂSE is still projected in a single-valued
manner onto R,”, so that as coordinates on gﬁ%&l whose points we shall denote by rY, we can
take the projections x(r?) of its points on R z,(r°)=z,(r)—op;, z:(r°) =2:(r). Here z:=(x;,...,
xh),hél;xf=(x%+ﬂ...,x%),h+ﬁf;I?={1,...,n}\lgr=(x“ z7) determine the projections of the points
of Q onto R, (p1, p7) are the projections of the points of Q onto R,*. As the Lagrangian
manifold is displaced along the trajectories of the Hamiltonian flow its entropy and

Jacobian are transformed in a natural (from the point of view of Hamiltonian mechanics)
manner:

SFoy=S(r)+ j. (pdxzt+H;dt),

where the integral is taken along trajectories that connect the initial point r on § and
the displaced r9(r),

J(r°(r) )=p(a)det 02 (r.) .

In the given case

Az (r°)
Az (r)

:S,
=J(r)det( E—o¢ 0 ) s

S())=S(r)— ’2("‘ pi(r),  J(7(r))=J(r)det 9z
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since in nonsingular charts, as is well known, the coordinates p and x are connected by
the equation p = 3S/3x.

In the new coordinates z:(r°), z7{r°) we can again write down the expression (3.1), but
this formula will give a new function. To 'compensate'" the transition to the mew coordinates
in the phase space, we correct this new function, by applying to it the resolving operator
exp{-ofly} of the Cauchy problem for the k-dimensional heat conduction equations. This
operation leads to definition of the "inverted" local operator R(Q): '

(K (Q) ¢) (z) = exp {(— oH1} (K (g:5,2) 9) (z) =
_ 2
anoy s § exp (—IUZEEY & (55,0 9) Ly man (3.2)
ok
(the function @ on gi;Q is determined by its values on Q: ¢(r*(r)) =¢(r), the essential points
on gg;Q are assumed to be the images of the essential points in Q).

LEMMA 4. Let ¢ and @ be smooth functions of compact support on @ such that at the
essential points of the chart Q the difference ¢(r, )—@(r, k) has order O(h). Then at
the points z€Q°

(K(Q)%) () =K(Q) (9+0(R)) (z).
Proof. By the definition of K(gu, Q)

(K (Q) §) (x) = (2wwho)k/2 Sh oXp ‘{—Mg;z? P } o
R

dn. (3.3)

x709)=n

[exp {— (s = prt) o0} 0@ M0 0D S @) iaen FET

Here 8(x, h) is a smooth function of compact support equal to unity in a y neighborhood of

5@(g§§9)2 To calculate this integral, we use the Laplace method. For this we find the
point n at which the derivative of the pre-exponential vanishes:

~ (n—a)? o
S =T'+(S_”§‘P12 ) (r(*)) Ix, (%y=m
(3.4)
a8 n—z 88 G dp fz (Y \ ! ~z; , 38
e o G B o I I T e
" o dx, 2 Bz (r) - c dxx
From the condition of vanishing of this expression, we find
as
y]=1'1+0 ax} (r(r(’))lxl(fn}:'ﬂ?

and hence for z6mQ there exists a unique n that satisfies this equation: n(z)=z;(r(r(z))).

We calculate the second derivative of the pre-exponential:

98 1 3*S [0\
S a5 hmﬂ
1 { dz(r° 0S dx(r )\ 1 {0z )\
G—(ax((r)) +8_x;7 (r(r“))ff)( axﬁr))) ot —0—( ,M((r)) ) .
since
0z (r’) RN
6a(r) ozt

whence, in particular, it follows that n(x) is a nondegenerate minimum point of §(n).
Substituting the critical value of n(x) in the expression (3.4) for S, we immediately find
8(n(x)) = S(x). We now have everything ready to write down the asymptotic behavior of
the integral (3.3) by the Laplace method (for z@m.(Q°)):

(R (©)) ()= (2h0)~ (2uth) " exp{ - %S} X

dz{r)
0z (r°)

(o det (ZE2)) 0z 0@ 7)ot (Z2) " (@) +0h)).

ox(r)
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After obvious cancellations, we obtain
1
R(@)5(0)=0(e(P(r(2))). 1) (6(r(2) +0 () 1 r(a))* exp |~ -5 .

i.e., at the points z€Q°
E(Q)=K(Q) (¢+0(h)),
as we needed to prove.

This lemma suggests a way of defining a local operator in the neighborhood of a
singular point. As is known from symplectic geometry (see [3,27]), in the neighborhood of
any such point r on A there exist focal coordinates (p;, z7), where I={1, ..., n}, I{1, ..., n}\],
(pr, z7) are sets of projections of the points of A onto the corresponding coordinate axes
in R*®, and the least possible power |I| of the set I is equal to the corank of the matrix
ax(r)/aa It is readily seen that for any singular point there exists a neighborhood Q
in A with focal coordinates (p;, z7) and number o > 0 such that the transformation Q-—-gz7Q
carries it to a position in which it is uniquely projected onto R:", and the function
8(n) of the form (3.4) is non-negative for z€m,Q. For such a neighborhood @ we define a
local tunnel operator in accordance with (3.2). As in the lemma, we can prove that the
operator defined in this way is invariant (in the same sense as in the lemma) with respect
to the magnitude of o and its direction specified by the set I, and also the other
parameters that occur in its definition. The global tunnel operator is determined by a
resolution of the identity in the same way as for an ordinary canonical operator [27],

namely, we choose a canonical atlas of charts on A*A=|JQ; such that to each singular

J=1
chart Q; there correspond focal coordinates (p; z7) and number o; satisfying the conditions
listed above and necessary for definition of the local operator K(Qi); Ilet {e4 (r)} be the
resolution of the identity on A corresponding to the chosen atlas. Then the tunnel
canonical operator is defined as the mapping Co*(AX[0, 1))—~C>(R."[0,1)) by the formula

Ko=) LK(@) (es).

We introduce equivalence ratios on C*(R.*): the functions g, h€C~(R,") are equivalent if
g — h belongs to the space of functions of the form K¢, where ¢ is O(h) in mg(AC) (this
subspace is well defined and does not depend on the parameters that specify K). Note that
for functions that do not vanish on m4(A®) and have the form K¢ and KY in the image of K
this equivalence is equivalent to the equation K¢/Ky=1+0(k). We denote by & the correspon-
ding factor space. From the arguments we have given, the lemma, and its analog for singular
charts we conclude that the following theorem holds.

THEOREM 2. The tunnel canonical operator
K:C~(AX][0, 1))—=0

does not depend on the choice of the canonical atlas, the resolution of the identity, and
the parameters o and y that define the local operator.

Remark 1. Let A° be a certain Lagrangian manifold in R.,XR,":A={(z, p)€R*" . z=z(a),
p=p(a), a€R"} with positive measure dp(a)=p(a)da, ..., da. and non-negative entropy S,, and
. H(x, p) be a Hamilton function such that its Lagranglan is non-negative. Then on the
Lagrangian manifold gHA° At shifted along the characteristics of the Hamiltonian flow gH
there are naturally defined the transported measure dut and the (also non-negative) entropy
St in accordance with

5=+ | (p0 2- (-H @, 20 ) ax. (3.5)

where 7€A' is the image of r€A° under displacement along the solutions p(t), x(t) of the
Hamiltonian system; the integral is taken along this solution. It is known [27] that
the function defined in this manner on At is the generating function of this manifold.

Remark 2. In some important cases the tunnel operator is defined not only on finite
functions but also on all bounded (smooth) functions on A. It is readily seen that this
holds when the Lagrangian manifold satisfies the additional condition of "properness':
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for every z6R" the set {p6R": (2, p)6A} is compact. This property holds for the manifolds
Ats& introduced in what follows for t > 0; they play a special role in the theory.

4., Global Asymptotic Behavior of the Fundamental

Solution and the Problem of Large Deviations

The tunnel canonical operator introduced above makes it possible to express in general
form the exponential asymptotic behavior for the Green’s function of the problem (2.1) at
an arbitrary time.

We denote by Ats& the Lagrangian manifold obtained by displacement of the plane
A%E = {(p, x):x = £} along the trajectories of the Hamiltonian system (2.3) during the
time t. We assume that on A°s& the entropy is zero and the measure in the coordinates
pER,” is unity, and that on Ats& these objects are determined by means of the displacement
(see Remark 1 above). We denote by Kts& the tunneling canonical operator on Ats&,

THEOREM 3. A. Suppose there exists a finite number k of trajectories X(r, £, p;) that
connect the points £, x during the time t and realize a minimum of the functional (Z.ﬂ)
equal to S(t, x, £). Then the solution of the problem (2.1)-(2.2) at these t, x has the
form

u(t, z, & h)=(2nh) " EXP{——:L—S(t’ z, §)} Z]{"’(t, z, &) (1+0(R)), (4.1)

i=1
where Jj is the Jacobian along the trajectory X(t, &, pj).
B. In the general case, the solution u(t, x, &, h) is determined by the formula
u(t, z, & h)=(2nh) 2K+ (1+0(h)). (4.2)

Proof. At small t, this theorem follows directly from (2.5) and the definition of
the canonical operator. For t€((m—1)t, mt] the solution (2.1)—(2.2) can be represented
in the form

u(t, z, &, h)=G"6(z—E)=G.""u(x, z, , h), (4.3)

where t=t/m€(0, t,}, G is the power of the operator,

(Geg) (2, &, )= | u(x, 2,m, B (n, &, k) dn. (4.4)

R

If X is not a focal point of the manifold Ats&, then there exists a finite number ¥
of trajectories X, (1) = X(v, £, py) of the Hamiltonian system (2.3) that connect £ and x
during the time t and realize a minimum of the entropy. It then follows from Laplace’s
method that to within exponentially small quantities the solution (4.3) is equal to the
sum of ¥ terms of the form

S S (T 2 N> )+ - et (T Moy B B) )y -+« s (4.5)
vi o v

where V¥ is a small neighborhood of the point Xj(lr) such that from § to every point of V%
there leads only one trajectory that realizes a minimum of the functional (2.4) during

the time /. In (4.3), we replace all the functions u by formal asymptotic solutions G.
Then the expression (4.3) is changed by 0(h). Calculating now successively the integrals
with respect to dng, £ =1, ..., k — 1, by Laplace’s method, and using the identity (2.12),
we obtain (4.1).

But if x is the projection of an essential focal point, then direct application of
Laplace’s method to (4.3) is impossible, since the stationary points are degenerate. In
this case, we use the following device. Employing Lemma 4, we write the integral kernel
of the last operator in (4.3) in the form (3.2)—(3.3), where the subset I is chosen in
such a way that the rotated neighborhood ga;Q of the focal point r(x) in Ats& is uniquely
projected onto R,". Then, for m = 2, say, (4.3) can be rewritten in the form

- (n—z1)®
u(t & h) = (2mho) /2 \ exp [— DU 1«
ii { 2ho }
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where
aS
Seen=(s-2(25
(r(r)) 5\ om
is the transformed phase on the manifold gi; A" in the neighborhood of the point x. Cal-

culating now the integral with respect to z by Laplace’s method, we obtain, as in the
previous situation, (4.2). This argument completes the proof of the theorem.

)) etz

The solution to the Cauchy problem of a linear equation with arbitrary initial function
is given, as is well known, by the convolution of this initial function with the fundamental
solution. Using this fact, we find an asymptotic expression for the solution to the
problem of large deviations. This is the name given to the Cauchy problem for the equation
(2.1) with initial data

u]t=o=cp°(x), (4.6)

where ¢°(z) is a discontinuous function that does not vanish in a certain closed bounded
region D,=R.", ¢°(z)=0 outside D, and ¢’(z)€C~(D,), and the boundary 8D, is smooth. As

was noted above, the solution of this problem is determined by virtue of Theorem 3 by the
formula

u(t, z, h)=(2mh)="/2 S K14 0M) @ x, & h)¢° (&) dE, (4.7)
R'n

where K = Kts& is the tunnel canonical operator on the family of Lagrangian manifolds Ats&.
We denote by Dy the projection onto R,” of the image of the region {p=0, z€D,} under the
action of the Hamiltonian flow (2.3). It can be shown that for all z€R,” not lying on the
boundary 3Dy of D the integral (4.7) can be calculated by Laplace’s method.

THEOREM 4. The solution to the Cauchy problem (2.1), (4.6) has the following form:
A. For IeDt\th

u(t, z, &, k) =K' (¢ (& (ga' (r))+O(h)), (4.8)

where K%n is the tunnel canonical operator constructed on the Lagrangian manifolds AEn =
gﬁ{p = 0}, the images under the action of the Hamiltonian flow of the plane {p = 0}
in R,"XR,", on which the measure and the Jacobian have unit values: du = dg*...dg®, J =1,

X
and the entropy is zero, so that on Agn the Jacobian J==detzﬁ;(L§,OL while the entropy is.
calculated in accordance with formula (3.5) along the solutions X(t, &, 0) of the system
(2.3) with initial data X(0) = £, P(0) = 0.
B. For z6R,"\D,

h n/2 .
st =(o5) " Kiulo) 79 (g () HO (),

where Kgut is constructed on the Lagrangian manifolds Aeu=gu'Am, A%, ={p=pn(z), 266D,

p€éR!, n(z) is the vector of the unit outer normal to 8D, at the point x} and on Agut the
entropy is zero and the Jacobian unity, du=dpda, ...ddu-1; C4, ..., Gu—y are orthonormalized
curvilinear coordinates on the manifold 8D, with unit metric tensor, and p(r) is determined
by the relation p(r)n(gz—'r)=p(gsz~'r).

The proof is obtained by direct calculation in accordance with Laplace’s method of
integrals of the form

\ K () (90 (@) a2,
Rgn

where {Qj} is a canonical atlas on Ats&, and in case A the point of minimum of the phase

is an inner point of the region, and in case B it is a boundary point; for calculations in
the neighborhood of focal points, the device from the proof of the previous theorem should
be used.
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5. Asymptotic Behavior of the Solutions at Large

Times (of Order h-(4%) x> Q)

Suppose the potential V(x) satisfies the following additional conditions: V(x) » =
as |x| » = and V(x) vanishes only at a finite number of points (of global minimum) &,, ...,
E¢, at which the matrix of second derivatives V”(x) is nondegenerate. We denote the
eigenvalues of the matrix V”(gg) by (w%)2: wj >0, j=1, ..., n. Under these conditions
on V, we investigate in this section tﬂe asymptotic behavior of solutions of the problems
(2.1), (4.6) (or (2.1) and (2.2)) at "large" times t of order A~“** %>0, and also the
t > « limits of their logarithmic asymptotic behaviors. First, we study some properties
of the solutions of the Hamilton—Jacobi equation and the Hamiltonian system in the case of
the Hamiltonian H=='/,p*—V(z) when the potential has the indicated properties.

We recall that the resulting operator of the Cauchy problem for the Hamilton—Jacobi
equation

as 1 (08)2 '
+—{—) —V(z)=0, S§|==S 5.1

a 5 \ oz (x) |t 0 o (z) ( )

is the mapping Ry that associates the initial function S, with the solution S = RS, of

the problem at the time t. It is well known that the resulting operator of the problem

(5.1) is defined on the set of functions bounded below by the formula (see, for example,

(28,291)

(RiS,) (z)=1inf (S, (§) +8 (2, 2,8)). (5.2)
13

The semigroup of nonlinear operators Ry is uniquely determined by the following
properties [28,30]: a) for small t and smooth convex initial functions S,(x) the function
(R¢So)(x) is a classical, i.e., everywhere smooth, solution of the Cauchy problem; b) the
operators Ry are continuous in a certain natural topology on the space of functions that
are bounded below; c¢) the operators Ry commute with the operations of taking the minimum
of functions and adding constants, i.e.,

R, (min (S, $.)) =min (RS, B:S:), R.(A+S(z))=A+R.S(z). (5.3)

At the same time, the image RS of any function (bounded below) at points of differentia-
bility satisfies the Hamilton—Jacobi equation. It follows directly from the expression
(5.2) for Ry that this image for t > 0 is always locally Lipshits continuous and, therefore,
almost everywhere differentiable.

We recall that the function S(t, x, &) in (5.2) was introduced at the beginning of
Sec. 2 and denotes a lower bound of the functional
0

Ty)=) (g @+V @), (5.4)

—t

which is defined on continuous piecewise smooth curves parametrized by a segment of length
t > 0 with fixed ends y(—t) = £, y(0) = x. It is well known that under the conditions
imposed on the potential at the beginning of Sec. 2 the minimum of the functional (5.4)

is always realized on a smooth curve [6]. This fact is readily deduced from the remark
that since for small t (less than a certain fixed t,) the minimum of (5.4) is realized on

a unique smooth curve; for arbitrary t the minimum with respect to piecewise smooth

curves is identical to the minimum with respect to the set of piecewise smooth curves

whose derivatives have not more than t/t, discontinuities at fixed times kt,, k€N, k<<t/t,, Note
also the symmetry of the function S: S(t, x, y) = S(t, y, x) for all t, x, y. This fact
follows from the invariance of Newton’s system with respect to time reversal.

We introduce functions that are important for what follows:
Sy (z)=inf {S(¢, z, &) : =0}, k=1,...,]1, (5.5)
and also their minimum
S(z)=min {Sy(z), k=1, ..., 1}. (5.6)

It is clear that the function S(t, x, gk) for fixed £y, x monotonically does not
increase with respect to t, since rest at Ek (a zero of the potential) does not increase
the value of the functional (5.4). Therefore
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Sy (z)=1lim S(t, z,&,). (5.7)

>0

In addition, the functions Sk(x) are everywhere non-negative, since the functional (5.4)
takes only positive values, and S,(r)=0<>z=F, We need above all the following facts about
these functions.

PROPOSITION 1. The functions Si(x), k =1, ..., &, and S(x) are fixed points of the
resolving operator (5.2) of the Cauchy problem (5.1).

PROPOSITION 2. If x is such that
Sy (z)<min (Sj(x)+Sh(§j)), (5.8)

iR

then the limit in (5.7) is realized on a smooth curve, i.e., there exists a smooth curve
g: (==, 0] >R*such that

[}

(@)= | (1 (O+V (1)) dr, (5.9)

and
g(0)=z, lim ¢(t)=%, lim ¢(¢)=0.

{->-—o0 {—>—c0
Proof of Proposition 1. From the definition (5.2) of the operator Ry and the monotoni-
city with respect to t of the function S(t, x, ) we obtain successively

RS, (x)=infinf (S(t,&,&)+S(t,2,8))=inf S (t+1,2, &)= infS(1,z, &) =5 ().

& =0 =0 =0

It now follows from (5.3) that Ry does not change under the action of (5.3).

Proof of Proposition 2. We fix k€{1,...,!}, z6R", satisfying (5.8). From the above
very simple properties of the functions Sy(x) and S(t, x, &) it follows that there exists
a sequence {qm(t)} of solutions of the Hamiltonian system (2.3) parametrized by time
intervals [—Ty, 0] (T > «© as m » =) such that q(—Ty) = £k, q(0) = x, and on gy a minimum
of the functional (5.4) is realized, i.e., J(gp(+)) = S(Ty, %, £x). We obtain the exis-
tence of a limiting trajectory in several stages:

A. For every j # k there exists a neighborhood Uj of the point £j such that from a
certain number (in what follows, when going over to a subsequence, we shall assume that we
begin from the first) none of the trajectories qp intersect U;. Indeed, supposing otherwise
for arbitrary €, and using the continuity of Sj(x) (which foliows from the properties of
the resolving operator Ry and Proposition 1), We construct a neighborhood U; of the point
£Ej such that in it S:(y) < €. By the assumption, there exist trajectories with arbitrarily
large number m for wﬂich Ym=gm(—1ln)€U; for some tp. Therefore

S(Tmy 2, &) =S (tm, T, ) TS (Tri—tm, Yoy E).

But S(¢, zi, 22} =S;(x,) —S;(z,) for all =z, z,€R" jé{1,...,1} (this inequality is obtained by going
to the limit 1 - « from the obvious inequality S(¢ z,, 2.)>S{+1, z,, §)—S (7, 25, §;)). Therefore

S(Tm, @, 8) Z=S;(2) +S8:(8) —28;(ym) =S5 (2) +5;(84) —2¢.
Going to the limit T - = and bearing in mind that € is arbitrary we obtain
Su(2)=8;(x) +S; (B,
which contradicts (5.8).

B. For every neighborhood U of the point & :2¢U there exists a number N and times
t; <ty < 0 such that for numbers m > N the time

tn(U)=sup{t : ¢. ()€U}

belongs to the interval [t,, t,]. Indeed, on the one hand, the trajectories cannot remain
outside U for an infinitely long time t (since then the value of the functional on them,
which is larger than t-min{V(y) : y4U, y4U,, j%k}, tends to infinity) and, on the other hand, the
trajectories cannot move arbitrarily rapidly from x to U, since

min S(1,z,y)—~~ as 1-0.
veu
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C. It follows directly from the arguments of B that the sequences t,(U) and yp,(U) =
qm{tp(U)) belong to compact sets [t;, t,] and 3U, respectively. Therefore, these sequences
have a limit point, and, going to a subsequence, we can assume that they have a limit.
Choosing an arbitrary sequence of numbers €5, > 0, p > © and corresponding balls Bp of
radius e, with center at £, we construct (gy the diagonal method) a sequence of trajec-
tories qu(t) such that for peéN the sequences tm(B ) and ym(B ) have limits t(p) and y(p).
Using the Arzela—Ascoli theorem, we now choose a subsequence of trajectories qu(t) such
that for every p the sequence of pieces of trajectories g.(7), T€[¢(p), 0], converges in the
C! topology. The limits of these pieces then form together the required limiting
trajectory g: (—o, 0] ~R"

COROLLARY. For all points x, y there exists the limit
lim S(t, z, y)——m1n(Sk(x)+S (y)+58,(5)). (5.10)

f00

Remark 3. This number is called the Agmon distance between the points x, y.

We discuss the geometrical meaning of the functions Sg(x). Since zj = (£, 0) is a
hyperbolic nondegenerate singular point of the Hamiltonian system, there follows from the
general theory [31] the existence of stretching and contracting invariant subsets Wk
and WRY Ut embedded in R*. The dimension of each of them is n, since half the eigenvalues
of the linear part of the Hamiltonian system in the neighborhood of zj are positive and
the other half negative. The stretching (contracting) manifold is defined as the set of
points (z, p)€R* such that the trajectories of the system omitted from them tend to zy as
t > —e (respectively, as t » +=). In the given case, both these manifolds are Lagrangian,
since they are invariant under the action of the Hamiltonian flow, which is a group of
symplectic transformations, so that the bracket of two tangent vectors at a point in,
for example, WR"Y, is, on the one hand, invariant under the action of the flow and, on the
other, tends to zero as t » —« and, hence, is equal to zero.

PROPOSITION 3. 1In the region distinguished by the inequality (5.8), the function
Sg(x) is the generating function (or entropy) of the stretching Lagrangian manifold WR"
in its essentjal part, normalized to zero at zy = (Ek, 0) (the essential part of a Lagran-
gian manifold was defined in Sec. 3).

Proof. The generating function of the manifold Wﬁut, normalized to zero at zy is

given by

o&%=§pdm

z5

where the integral is taken along any curve in WﬁUt that connects zy and z = (x, p).
Choosing as such a curve the trajectory z(t) = (x(t), p(t)) of the Hamiltonian system

with boundary condltlons z(—w~) = zp, z(0) = z (such a definition exists in accordance with
the definition of WRY t), we see that

0

o0(z)= j (—;—a&z(t)-i-V(x(t) )) dt

—o0

Therefore, in the essential part of Wﬁut we have o(z) = Sp(x), as we needed to prove. From

this in particular there follows smoothness of Sy(x) in the neighborhood of the point gj.
Note also that in Proposition 2 we have essentially proved the existence of an invariant
stretching manifold in the given case.

PROPOSITION 4. On WﬁUt there is defined the smooth measure duy, which is related to
the Hamiltonian flow by the condition

du(zt)=exp(2mj"t) dp(z,), (5.11)

where z+ is the image of zfW,"™" under the action of the flow (2.3).

Proof. The existence of this measure follows from the theory of normal forms of
systems of ordinary differential equations in the nelghborhood of isolated attractive (or
repulsive) fixed points applied to the flow (2.3) opn WR" Ut Tndeed, in the nonresonance
case, i.e., when every number wj (we recall that (wj)? are eigenvalues of the matrix V”(£g))
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is different from any linear combination of the form :El\ymﬁ, where v; are natural numbers
issj
such that‘§1 v;=2, the system (2.3) on WﬁUt is in accordance with [22] linearizable, i.e.,
iwk]
in a small neighborhood of the singular point on W§Ut there exist coordinates p = (uy, ...,
) that depend smoothly on (x, p) and in which the system (2.3) has the linear form

i (t)=exp {0/} u;(0), j=1,...,n

Then obviously

n

t ::((é; =exp{t2mﬁ}. (5.12)

j=1

Therefore, the coordinates p determine in the neighborhood of the fixed point a measure du
on Wku that satisfies (5. 11) It is clear that this measure can be naturally extended to
a measure on the whole of Wk at with retention of (5.11). In the case when resonance
relations are present, the system cannot be linearized even locally by a smooth transforma-
tion (in this situation, a linearizing transformation can be chosen in general only in the
class of nonsmooth homeomorphisms [22,31]). However, there always exists a polynomial
normal Poincaré form [32]. It is easy to show that the coordinates p specifying this form
satisfy as before (5.12) and, hence, determine the necessary measure satisfying (5.11).

It is clear that the measure on WRU! with condition (5.11) is uniquely defined up to a

constant factor. We shall find it convenient to choose a measure p that, besides (5.11),
satisfies the following normalization: at a fixed point z = (g, 0)

d t(;;) 1. (5.13)

Remark 4. If V is analytic, then the coordinates u can be calculated by means of
Dirichlet series, the coefficients of which are found from recursion relations [2,5].

wout

At the nonsingular points of we now define the Jacobian

P
Jk=det(—x>. (5.14)
ou

We denote by DK the neighborhood of the point £ distinguished by the inequalities
S, (z) <min {S;(z), j7k} (5.15)

(obviously zGDk satisfies (5.8)). Let 0K be a smooth Lagrangian manifold with edge such
that gk c wk t ok contalns all essential points of w prOJected to a certain y neigh-
borhood of the region Dk (y is an arbitrary small positive parameter) and does not contain
peoints above a 2y neighborhood of DK. We denote by Kgt the tunnel canonical operator con-
structed from Q¥ with the phase S and Jacobian Ji above introduced on it. This operator
will play the main part in the following constructions.

We turn to the Cauchy problem (2.1), (4.6).

PROPOSITION 5. Suppose the potential V satisfies the conditions listed at the
beginning of the section, the initial function ¢’ in (4.6) is the characteristic function
of the bounded region D with smooth boundary

1, z€D
—o=0"(z)=1 ' ’ 5.16)
. 2] m0=¢" (z) {0, z4D. (
and all £;, ..., £k belong to the interior of D. Then at all points z€R" there exists a

limit as t > = of the first term of the logarithmic asymptotic behavior of the solution to
the problem (2.1), (5.16). This limit does not depend on D, and has the form

limlim (Rlnu)=-—S(x). (5.17)

-0 h—>0

Proof. It follows from Theorem 4 that

lim(Alnu)=—0o(t, z),

he>0
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where l

o(t,x)=f(%yZ(THV(y(T)))dT, (5.18)

0

y(t) = X(t, &(t, x), po(t, x)) is the trajectory of the Hamiltonian (Newtonian) system
(2.3) that connects the points £(t, x) and x and satisfies the conditions: a) gjl.—o=0, if
26D\8D, (then E(z, t)€intD,); b) the vector §l.., is normal to the boundary 98D, at the point
g(t, x) if z6R"\D, (then E(¢, 2)€4D,). By y(t) we understand a trajectory that satisfies one
of these conditions and realizes a minimum of the functional (5.4).

It follows from the definitions that

0<o(t,z)<min S (¢ z, &),
3

and hence
lim o (i, z)<S(z). (5.19)

We denote by Z(t, x) the point on the trajectory y(t) that specifies o(t, x) in
accordance with (5.18) at which the function V(x) has a minimum; we denote by £ the time
for which y(£) = E(t, x). Obviously o(t, x) 2 tV(E(t, x)). Therefore, as t > « the
point E(t, x) tends to a certain point &, of global minimum of V(x) and, hence, in
particular

lim S (¢, E (¢, x), E.) =O0.

{~> 0

Hence and from the relations

St E (5 x), B to(t, z)=S(t, £, 2), &)+

(

O = -

+.i )[éiy'z(r)ﬂ’(y(r)) ]dr>Sk(2t—f, z, &) =8, ()

we obtain the inequality

lim o (¢, 2) =8, () =S (). (5.20)

>0

The inequalities (5.19) and (5.20) prove Proposition 5.

In exactly the same way, using the Corollary to Proposition 2, it is possible to
obtain the limit of the first term of the logarithmic asymptotic behavior of the fundamental
solution to the Cauchy problems for Eq. (2.1).

PROPOSITION 6. Under the conditions formulated on the potential
limlim (hlnu(t, 2, € k)= — min (S,(z) +S;(y) +5; (&),
ik

t—>r o0 h—>0

where u(t, x, &, h) is the solution to the problem (2.1)-(2.2).
PROPOSITION 7. Under the conditions of Proposition 5, z€intD*

n

lim[exp(—;—z a)j") uo]=Ksc”(1+0(h)), (5.21)

] =1

where u, is the leading term in the exponential asymptotic behavior of the problem (2.1),
(5.16), and K&t is the tunnel operator on 9K introduced above.

COROLLARY. If for all k =1, ..., & the sums ‘21 o/ are the same and equal to &, then

Je=1

i
t
limexp{-—z—g}uo=z K (1+0(h)). (5.22)
t—>co Bt

Proof of Proposition 7. In accordance with Proposition 5, for each x and sufficiently
large t the solution to the problem (2.1), (5.16) will be expressed by formula (4.8) of
Theorem 3. At the same time, if z€D* is the projection of only nonsingular essential points
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of the manifold QK (of course, then a finite number of them), then for sufficiently large t
there will over x be only nonsingular essential points of the manifold AEn determining the
tunnel operator Kgn in (4.8). In this case, we shall have at x nonvanishing Jacobians

). G
JU)=4mt7;-U)A which occur in the expression for KEn, and the Jacobian 8x/8p in the formula
z ‘

for th. Since then the manifold QK can be locally diffeomorphically projected onto R,”

along all points of the trajectory connecting z=(£,0) and z=(x,p)€Q" it follows that
0X dx on 7]
L ()=20 (X () 2 (1) 5= (X(0)).
oz ap e ox

Hence, taking into account (5.12)—(5.13) we obtain
X o]
deti—(t)=det-£exp{t Z,a),»“} (1+0 @ )). (5.23)
dx au it

From (5.23) and Proposition 5 we obtain (5.21) for the nonsingular points of QK. In the
case of a singular essential point it is necessary to use a device analogous to the one
employed at the end of the proof of Theorem 3.

We have investigated for t=h-"*” the leading term in the exponential asymptotic
behavior of the solution of the problem (2.1), (5.16). However, as is clear from the
introduction (see also Sec. 6), for applications to the theory of the lowest levels of a
Schrddinger operator it is necessary to know the behavior of the solution (and not only the
leading term) of the problem (2.1), (5.16) at large times t of order =" »>(0. The corre-
sponding theorem formulated below is one of the main results of this paper. 1In all that

follows in this section we assume that the sums §:<m” are the same for all k=1, ..., %.
j=1
THEOREM 5. The solution u(t, x, h) to the Cauchy problem (2.1), (5.16) for
t==h~**) 5%>0 and h » 0 has the form

u=exp{—%é°}ZKst"(1+0(h)), (5.24)

where O(h) uniformly with respect to x and x in any compact set.

Proof. We consider only the case of a point z€intD* that is the projection of nonsingu-
lar real points of QK. We shall then consider the case of a singular point in the usual way,
i.e., using the device from the end of the proof of Theorem 3. As we have already noted,
for sufficiently large t the solution u(t, x, h) is determined by a formula of the type
(4.8), and the corresponding points on Ain are also nonsingular). At the same time,

u(t, x, h) can be expressed in the form

u(t,z, h)==(2nh)"* S u(t, z, & h)dE,

Dy
where the fundamental solution u(t, x, &, h) is determined by formula (4.3).

The basic idea is that the number m of iterations in (4.3) should be taken above what
is minimally necessary, i.e., not the integral part of t/t, but somewhat larger. This
makes it possible to use the fact that for small times t the correction in formula (2.5)
in Theorem 1 has the form O(ht3), and not simply O(h). Thus, we shall choose the number
of iterations of order m=¢** where o > 0 (more precisely, of course, we take the integral
part of #**)., Then the time of one iteration t in (4.3) will be of order

T____t/t(ﬁfx):t—a:ku(ﬁu)_ (5‘ 25)

Let g.(v), 1€(—o, 0], r<F, be a finite set of trajectories connecting £; and x during infinite
time on which the limiting phase Sk(x) is realized (see Proposition 2). We choose a small
€ such that at large t in an & neighborhood of each trajectory q; there exists a unique
trajectory connecting £, and x during time t.

Then the fundamental solution will be equal to the sum of ¥ terms of the form (4.5)
with balls of radius e as V5 up to an exponentially small remainder. However, it is
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necessary to show that this remainder is small uniformly in t and m. We first consider the
expression (4.5), where u(t, x, £, h) is of the form (2.5) and Vi is a ball of radius e.

We shall calculate the integrals in (4.3) successively, applylng to each integral Laplace’s
method with estimate of accuracy (10.12) (this result is deferred to Sec. 10 in order not to
interrupt the exponsition). From the estimate of the coefficient a(h) of h in the remainder
of formula (10.12) and the estimates for the derivatives of the Jacobian and the phase at
small 1 (see Sec. 2) it can be seen that the first three terms in the estimate for a(h) have
the form 0(t®)f(x,). Choosing a suitable §, we achieve the same for the penultimate term.

To estimate the last term in (10.12), it is necessary to know how to estimate integrals
of the form
J exp{ -2 |
exp) ~ = [8(T, 2,m,)+S(z, s n) =S (Itv,2,m)] fdn, (5.26)

Vi

wvhere T = kt for some k < m. But by virtue of the choice of the neighborhoods Vi the
function S(T, %, ns:) is convex with respect to n: in V; At the same time, for the second
derivative of the %unctlon S(t, njs n) we have tﬂe estlmate (2.13), so that the expression
in the curly brackets in (5.26) does not exceed

—hi (140 (7)) ()"
T

Therefore, the integral (5.26) is bounded below by
[2aht (140 (1)) ]2, (5.27)

Thus, each application of Laplace’s method {each iteration) will add to the leading
term of the asymptotic behavior a factor of the form (1 + O(ht®)). Thus, the complete
integral (4.5) will differ from its leading term of the asymptotic behavior by a factor

)=+ 0. .. (140 Hh?).

m

The deviation of y(h) from unity can therefore be estimated by (1 + Cht3¥)M — 1, where C is
a constant and, hence, with allowance for

H(h)_ﬂg (1+Ch1+3a(1+-/.))h—(1+‘4)(1+r/v) —1=exp {A~UHP U+ |y (1+Ch1+3a(1+m) }—1=
exp {0(h1+3a(1+z)-—(1+x)(1+a))}_1=0(h1+(1+z)(2a—i))7

this expression has the form O(h) for o > 3.

We now estimate the difference between the expression (4.3) and the sum # of terms of
the form (4.5), which in what follows we shall call the main part of the expression (4.3).
We first explain what is the difficulty in obtaining the necessary estimate. It is clear
that the minimum of the phase in the case of integration over the exterior of e tubes of
the trajectories gq,(t1) is greater than Sy(x) by a certain amount A, so that when the
integral over the exterior of the e tubes is calculated a factor exp{—A/h}, which is
absent in the main term, appears. However, each application of the operator G, in (4.3)
adds a factor (27h)™P/2, so that after m iterations we obtain a coefficient (27h) mn/2
which is not "knocked out" by the factor exp{—A/h} for m of order A'*™ »>0. In the case
of m fixed or of order h'™*, >0, the expression (2wh)™™1/2 ig5 small compared with exp{—A/h},
and therefore in this situation the exponential smallness of the deviation of (4.3) from
its main part is obvious, and this was used by us in the proof of Theorem 3. Here, however,
we need a more accurate discussion.

Nondegeneracy of the matrix of second derivatives of the potential in the neighborhood
of points of global minimum has as a consequence the following fact: For every point g
there exists a neighborhood U,3§, such that for all z yeU, and any t there exists a unique
trajectory of the Newtonian system that connects x and y in time t, lies in Uy, and
realizes a minimum of the functional (5.4); at the same time, the function S(t, x, y)
is smooth and convex with respect to each of the arguments z, y6U, separately for all t.
We first estimate the deviations of (4.3) from its main part for a point x in the neigh-
borhood Ug. In this case, the trajectory q.(t) that joins Ex and x over an infinite time
interval is unique. The integral over the exterior of its & tube can be represented as a
sum of integrals over the set ﬁk, the complement of this e¢ tube in Uy, and over the exterior
of Ug. More precisely, the first integral I, is taken over the set of the n;, ..., nn that
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all belong to Uy with at least one of them lying outside the e tube of the trajectory q(t),
while the second integral I, is taken over the set of n,, ..., ny for which at least one
lies outside Ug. The integral I, can be estimated in exactly the same way as in the
estimate of the integral over the interior of the £ tubes of the limiting trajectories,
since the convexity of 8(t, x, y) for z ytU, means that integrals of the type (5.26)

over Uy can be estimated by the expressions (5.27). The integral I, can be represented

as a sum of m integrals over the sets O, ..., Qp, where

Q={ny, ..., M~ MU, Mysy, ..., NmER"}.

The integral over each Q5 is exponentially small compared with the main term. To see this,
it is necessary to integrate over n;, ..., Nj-; in accordance with the preceding scheme,
and then obtain for the resulting phase

S(].Ta 'f]i, §)+S(Ti ni+17 n1)+ e +S(T, .77, nm) ——S(t, .Z', g)
a lower bound in terms of the expression

A+ (7]5+1_7]j)2+“'+ (—nm)? ’
27 27

where A > 0 is the lower bound for the expression S(jT, njs £) — S(t, x, £) (for example,

A= min S,(y)—S:(z)). As a result, we obtain a sum of m=h~U*)+* expressions that are
ygUy
exponentially small with respect to h, and the sum itself is therefore also exponentially

small.

When z¢U,, we use the following arguments. For large times t, almost all critical
points n$ of the phase are in Uy, except for a small number of points of order h®. There-
fore, for o < 1 their number has the order A'*, »'>0. As was noted above, for A!-* critical
points the estimate is trivial, and for the remaining integrals we repeat the arguments
applied in the case z6U, Thus, the parameter o introduced at the beginning of the proof
must be chosen in the interval (%, 1). This last argument completes the proof of Theorem 5.

The following theorem is proved in exactly the same way.

THEOREM 6. Under the assumptions of Theorem 5, the solution up(t, x, h) of the
Cauchy probiem for Eq. (2.1) with initial condition

uk(ov xz, h)=Xvk($), (5'28)

where Yy+(z) is the characteristic function of the closed neighborhood vk ¢ int DK of just
the one point £j, has for t=h %), x>0 and h > 0 the form

t
up=¢ T Kp(l--O0(h))=exp {— —fi h*(“”)} K. (1 +0h), (5.29)

up to terms that are exponentially small in the limit h + 0 compared with the function
(5.24).

6. Exponential Asymptotic Behavior of the

Lowest Levels of Schrddinger Operators

We consider the time-independent Schrédinger equation
Hy=E¢, V6L, (R."), z6R.", (6.1)
where

. h?
H=——2—A+V(x), (6.2)
and the potential V(x) satisfies the conditions imposed on it at the beginning of Sec. 5.

We shall also assume that 5’=i§:‘%ﬁ does not depend on the point £y and, therefore,

j=1
Theorems 5 and 6 hold. Tt is well known [33] that for a potential V that increases at
infinity the spectrum of the operator (6.2) is discrete. Because V(x) is non-negative,
the spectrum is, in addition, non-negative. In addition, by virtue of the localization
principle under the assumptions that have been made the power-law asymptotic behavior of
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the lowest energy levels of H is determined solely by the behavior of V(x) in the neighbor-
hood of the minima &,, ..., £yg. In particular, B has precisely ¢ eigenvalues E,, ..., Eg

of the form !,h(&+O0(Rh)), while for all the higher.levels E the inequality E/h— 572>1ﬁ>0 holds
with a certain constant C. The proofs of these facts can be found, for example, in [9]

{see also Sec. 9). We denote by 3 the eigenfunctions of the operator fi, j =1, ..., &,
corresponding to Ej.

To construct the exponential asymptotic behaviors of the functions y:, it is convenient
to introduce the space &, which is defined as the factor space of L,(R.") with respect to
the subspace

i X o).

where the tunnel operators K; are the same as in Theorems 5 and 6. For brevity, we shall
also denote by K: the projections of functions of the form K; (1 + 0(h)) in &, The
arguments that follow are based on Theorem 7:

THEOREM 7. Two ¢-dimensional vector spaces generated by functions K s 3J =1, ..., 2
and, respectively, the projections of the eigenfunctions b in ¢ are 1dentlcal. In
particular, for all j =1, ..., ¢

ch

fa=d

up to functions in P; Cj;(h) are certain coefficients.

Proof. Let ug(t, x, h) be solutions of the heat conduction equation (2.1) with
initial condition uk(0, x, h) of the form (5.28). If

oo

un (0,2, h)= 3 ety (2)

=1

is an expansion of the initial condition in a series in eigenfunctions of the operator H,
then

oo

ux(t, z, h)=2 ae” BN (2),

j=1t

is obviously a series expansion of the solution ug(t, x, h). Let t=p~"*, Substituting
(5.29) on the left-hand side and multiplying by expﬁ$72} we obtain

co

Ky (10 ()= Y, expl—h+(B/h—5/2)} s

J=1

From the properties of the eigenvalues noted above it follows that we can, taking any
compact set in R,”, choose %>0 such that for x in the compact set all terms with j > %
are in the space P and, hence, in @&
14
Ky= Z B; (B) ;.
j=t

Theorem 7 follows from this fact and the linear independence of the functions Kj.

Particularly interesting problems are those in which tunnel effects are important
from the point of view of the physics, i.e., problems in which the potential V(x) has a
certain symmetry. In this case, the coefficients Ci(h) in Theorem 7 can usually be
calculated explicitly. We consider two such situations.

PROPOSITION 8. Suppose V(x) has only two minima:
:(I§l|,07"-)0)’ gz:(—lgil,oa"~yo)9

and that V(x) is even with respect to the first coordinate: V(R(x)) = V(x), where

R(%y, Xy, «v., X) = (%4, X3, ..., X,) is the reflection with respect to the hyperplane
{x; = 0}. Then (up to functions in P)
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Po=C(h) (K, +Ks), (6.3)
Po=C (k) (K,\—K), (6.4)
C(h)y=(hn)"™"* (@ ... @,)" (6.5)
where w;=0/=0f.

Proof. We shall assume that E, # E, (if E; = E,, then the entire two-dimensional
space spamned by K, and K, is an eigenspace for f with eigenvalue E, = E,, and therefore the
eigenfunctions can be taken, for example, in the form (6.3) and (6.4), and the proposition
is already proved; however, it will be shown below that in reality E; # E,). Because
V(x) is even, it follows that if ¥(x) is an eigenfunction of H with eigenvalue E, then
so is $(R(x)) with the same eigenvalue. However, both the eigenspaces corresponding to
E, and E, are one dimensional. Therefore $:(R(z))=0,:(x), }:(R(2))=as>(x), where a; and a,
are certain complex constants with modulus equal to unity. But it is obvious from the
construction of K,, K, (see Sec. 5) that K (R(x)) = K,(x), from which it immediately
follows that a; , = %1, and (6.3) and (6.4) hold. A formula for C(h) follows from the
normalization condition: uwju = 1, and Laplace’s method should be used to calculate the
norms of the functions K; and K,.

PROPOSITION 9. Suppose V(x) has three minima £,, £,, &, in the plane {x; = x, = ...
x, = 0} and that V(x) is invariant with respect to the rotation R of this plane through
120°: V(R(x)) = V(x), from which in particular &, = R(&;), £; = R(£,). In this case the
one-dimensional eigenspace of the lowest energy E, is generated by the function

¢1=C(h) (K1+K2+K3), (6.6)

and the two other levels are equal: E, = E;, their eigenspace consisting of functions
v = C,(h)K, + C,(h)K, + C,(h)K, that satisfy the condition C;(h) + C,(h) + C4(h) = 0; in
other words, it is generated by the functions wij =K; — Kj, where i, j = 1, 2, 3.

Proof. As in Proposition 8, it is sufficient to make the assumption that not all
the levels E,, E,, E; coincide. Then there necessarily exists a one-dimensional eigen-
space (among the three lowest levels). TFrom symmetry considerations, as above, we find
that the eigenfunction ,; of this one-dimensional subspace satisfies the condition
¥, (R(x)) = y,(x)a, where |a| = 1. Since the transformation R generates a cyclic group
of transformations of order 3, i.e., R(R(R(x))) = x, it is obvious that «® = 1. Finally,
bearing in mind that the eigenfunctions B can be assumed to be real, and that the trans-
formation R preserves the reality, we find that a = 1, from which (6.6) follows. We now
consider the two-dimensional eigenspace. For it, the functions {x) and §(x) = ¥(R(x))

form a basis: Therefore @(x%=¢(3(x))is a linear combination of them:;&=a¢+ﬁ@. Replacing
in this equation x by R(x), we obtain ﬁﬁ=a¢+@$. Substituting in this equation the previous

one, we obtain (1—ap)y=(at+p*)P, whence 1—ap=0, a+p*=0. It follows from these equations
that 8% = —1, and we again conclude from the reality arguments that 8 = —1 and, hence,

also a = —1. Therefore ¢y=—(¢+§). For the function y = C,(h)K; + C,(h)K, + C,(h)K, this
condition is equivalent to the equation C,(h) + C,(h) + C,(h) = 0 as we needed to prove.

Following [2}, we now calculate the exponentially small (with respect to the parameter
h) distance between the lowest energy levels E; and E, in the case of a potential V(x) with
two symmetric minima, i.e., under the conditions of Proposition 8 (the arguments for the
case of Proposition 9 are similar). We multiply Eq. (6.1) for ¥, of the form (6.3) by ¢,
of the form (6.4), and Eq. (6.1) for ¥, by ¢, and subtract one of these relations from
the other. We then integrate the result over a certain region D with smooth boundary.
We obtain

hZ
- 57(¢1A¢2—¢2Aw1)d1= (EZ“Ei) j PP d.l’, (6- 7)
D D
and integrating the left-hand side of this equation by Green’s formula we find
h? ad 7]
E2~E,=——2—B£(w1 V2 J;\lmbzdx, (6.8)

where 3/2n is the derivative along the outer normal n to the boundary aD.

As the region D we take D! (see Sec. 5), which in this case, V(x) being even, coincides
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with the half-space {x; 2 0}. We substitute (6.3) and (6.4) in (6.8) and calculate the
denominator on the right-hand side of (6.8) by Laplace’s method:

‘J.lp,xpz dx=C(h)2j. (K—K,")Ydz =C(h?) 51{“ dz(1+0(h)) ="/, (110 (k) ||y |P="/2+0(h).

We obtain

e oK, _ o 0K,
E,—E=2hC(h)*(1+0(h)) j (Ki on K, on )ds. (6.9)

oDt
To calculate this integral by Laplace’s method, we first assume that there exists a
unique nondegenerate point y, of global minimum of the function S,(z)lsn: (S, J. are the
entropy and Jacobian on the manifolds QK introduced in Sec. 5). The integrand in (6.9) in
the neighborhood of y, over 3D! is
~1 0 —tf —1p a’ —ty
J, Iexp{—Si/h}%(Jz “exp{—Sy/h})— J;" exp{=5,/h}——(J, " exp{—Sy/h})=

n

Lh(H*O(k)) (J ;)" (% — %—‘S;:) exp{ — 1T(Sl-i-Sz)} ;

and because V(x) is even, so that S,;(R(x)) = S,(x), J;(R(x)) = J,(x), the expression in
which we are interested is equal to

2 { 2 }051
T texpl— 28,4 22 (14
o exp A S, ™ (1+0(h)).

Therefore, calculating the (n — 1)-dimensional integral in (6.9) by Laplace’s
method, we find that

aS,
d

Eim = thC (0 (10 () () =97 17 ) 22 (g exp {25, (4) } dor ),

n
where A is the matrix of second derivatives of the function §,[sp: with respect to the
variables x,, ..., %,. We now note that if y€dD' is a stationary point of the function
S,lsp, then the trajectory q;(t) of the Newtonian system § = V'(q) in Proposition 2 in

Sec. 5, i.e., the trajectory such that q,(—~) = £,, q;(0) y with the action along gq,(t)
equal to S;, is orthogonal to the boundary 3D!. By virtue of the symmetry, the trajectory
q,(t) = Rq,(1) is also orthogonal to 8D!, and q,(—=) = £,, q,(0) = y. It follows from
this that, first, there exists a smooth trajectory q(t) of the Newtonian system for which
g(—=)=8;, g(+=)=E, §(—w)=¢(+>)=0, ¢(0)=y, and, second,

5.0)=8.0) =5 (Fr17@ )= [ pa (6.10)

since the Hamiltonian H on q(t) is zero. Solutions q(t) of the Newtonian system § = V'(q)
satisfying the conditions §(—o)=¢(+w=)=0, g(—w)=E,, g(=)=E, are called the instantons
corresponding to the quantum-mechanical problem specified by the Hamiltonian H. We denote
by S;, the minimum of the integral | ¢°dv over all instantons (in other words, S;, is twice
the Agmon distance between the points &; and §,; see the Corollary to Proposition 2 in
Sec. 5 and Remark 3 after it). Substituting in (6.9) formula (6.5) for C(h) we obtain

aS,
on

If there exist several nondegenerate points of global minimum of Si|opt, then E, — E;
is equal to the sum of the expressions on the right-hand side of (6.11) over all such

E—E =4n""h"(1+0(h)) (0, - ... 0.)" 1,7 (y.) (yo)det A=" exp{—S../h}. (6.11)

as
points. Note also that the derivative ?;i(y” in (6.11) is the velocity modulus lq(o)l of
14

the instanton at the point y,. From (6.11) in particular there follows a formula for the

first term of the logarithmic asymptotic behavior of the number E, — E,, which determines
the splitting of the lowest energy levels of the operator H:
lim & 1n (E,—E,)=-—3,,. (6.12)

h>o

Note that in the case when the minimum y, of the function. S,|sp: is degenerate the result
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of [34] can be used to calculate the first term in the logarithmic asymptotic behavior
of E, — E;. Therefore, in contrast to (6.11), formula (6.12) is true in the general case.

It is possible to obtain in the same way asymptotic expressions for the splitting of
the lowest levels for the potential in Proposition 9, and also for other potentials with

symmetry.

7. Tunnel Operator on a Torus and Schrddinger Equation

with Periodic Potential

In this section, we briefly explain the theory of a periodic tunnel operator and its
application to the construction of exponential asymptotics of the lowest eigenfunctions of
Schrddinger operators with periodic potential.

Suppose the function V(x) is 2w-periodic with respect to each coordinate. We consider
the heat conduction equation

h—-=’2L—ZAu—V(ap)u (7.1)

in the class of 2m-periodic (with respect to each spatial coordinate z=R.") functions. In
such a formulation, the problem is equivalent to consideration of Eq. (7.1) on the n-
dimensional torus T"=R"/(2aZ)", The existence and uniqueness of the solution follow from
the standard theorems of the theory of linear equations. The Green’s function of the
periodic Cauchy problem for Eq. (7.1) is defined as the periodic (with respect to x) solu-
tion uP(t, %, £, h) of the equation that satisfies the initial condition

up(O,:c,E,h)zz 8 (x — (& + 2aN)). (7.2)

Nez"

We shall assume that V(x) is sufficiently smooth, non-negative, and has on the torus T"
only a finite number of zeros §,, ..., £g. Then

u”(t,:c,g,h)zz w(t 2, & + 2aN, h), (7.3)

NezZn

where u(t, x, £, h) is a nonperiodic Green’s function of the form (2.5) for small t and

the form (4.1) and (4.2) for all finite times. This fact follows directly from the linear-
ity of Eq. (7.1) and the consideration that the phase S(t, x, &) tends to infinity for

£ > o and fixed t, x (see Sec. 2), from which we obtain convergence of the series (7.3) and
also the fact that in the sum (7.3) only a finite number.of terms makes a real contribution
to the asymptotic behavior.

Now suppose that the function V has on the torus T" only a finite number of zeros
€15 ..., Eg, at which the matrix of second derivatives V”(£y) is nondegenerate and has

eigenvalues (0})% >0, j=1,..., n, and é’=2 ®; does not depend on k. We shall also denote
j=1

by &k the pre-images of £y in the square with side 27 in R.". Then it follows from the

superposition principle and Theorem 6 that the solution of the periodic Cauchy problem with

initial condition

wP (0, 2, h)= 2 Ak (@ + 20), (7.4)

Nez™

where v+ is the characteristic function of a small closed neighborhood VK of the point
E.CR,, is for t=h~"*, x>0, k>0, equal to

1P = exp {——%h“““)} 2 Ky, x(1+ O (&), (7.5)
Nez®
where the tunnel operators Ky y are defined as in Sec. 5 (see the notation after Eq. (5.15)),
but with respect to a countable set of Eoénts By, v=ET2nN: k=1,..., I, N6Z", the zeros of

V(x) in R.". In particular, the region D that occurs in the definition of the operator
Kgx,N is distinguished by the inequality
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S (2)<min {S; () : (j, M)# (k,N)}. (7.6)

LM
We consider the following Schrédinger equation on a torus:
Hy=Evy, (€L, (T"), (7.7)

H=—'/:,h*A+V(z). This problem is equivalent to finding smooth solutions of Eq. (7.7) in the
whole of space but with a condition of periodicity of the solution y. It is well known
that this problem has a positive discrete spectrum. Moreover, as in the case of the
Schrédinger operator in R” considered in the previous section, H on the torus has precisely
2 eigenvalues E,, ..., E¢ of the form '/ ,h(&+O0(h)), and for all higher levels E the
inequality E/h—&/22C>0 holds (see, for example, [9]).

As in the case of Theorem 7, it can be shown that the lowest eigenfunctions ¥,, ...,
Py are linear combinations

TPJ':Z_: Ci(h)Ki

of periodic tunnel operators

Suppose V(x) has only two minima in T", the images of the points &i=(]E], 0,..., 0), &=
{(—]&l],0,...,0) in R", |&]<2m, and V(x) is even with respect to each coordinate. Then it is
readily seen that the regions D®»¥=D®°+N, k=1, 2, are parallelepipeds:

D'={z€R": 2,6 (0, n], z;6[ —m, m] Vj**=1}, D*={z€R": 2,€[—mx, 0], ;€[ —m, n]Vj==1}.

As in Proposition 8 of Sec. 6, ¥; = C(h)(K, + K,), v, = C(h)(K; — K,). A specific feature
of the periodic case is manifested in the calculation of the splitting E, — E;. It is clear

that now —lim A In(E,—FE,) will be equal to the minimum over all instantons on the torus that
h—0

lead both from &; to £, and from &, to £;. Formula (6.11) is modified similarly in the non-
degenerate case.

It is well known (see, for example, [35,36]) that investigation of the spectrum of the
Schrédinger equation (7.7) with periodic V(x) (but, of course, now without the requirement
of periodicity of the solution ¥) reduces in a certain sense to the solution of different
problems on the torus. We illustrate this thesis by applying the results obtained above
to the investigation of the one-dimensional Schrddinger equation

=Ll (z) +V (2) b (z) =Ep () (7.8)

on the line z€R' with non-negative even periodic potential V(x + 2m) = V(x) that has in the
interval [0, 27] a unique minimum at £ = m. It is known that the spectrum of this problem
is absolutely continuous and consists of a countable set of intervals: [o,, o U, aJU.. ..

lying on the half-line R,. At the same time, oy-, (respectively, o) is the j-th eigenvalue

of the operator
2

A h
Hw=-?¢”(x)+V(x)1P(x)

on the line with periodic condition ¢(x + 2m) = ¥(x) (respectively, with antiperiodic
boundary condition ¢(x + 2w) = —¢(x)). These facts are proved, for example, in [35]. It
obviously follows from this that «; and a, are the lowest levels of the operator H defined
on the doubled circle, i.e., the calculation of the width of the first allowed band
[a;, a,] of the spectrum reduces to calculation of the splitting of the lowest discrete
levels for the operator on a circle with potential with two minima. The solution of this
problem is described above. Therefore
lim & In (o, —ot) =—S,s, (7.9)
h—0 :
where S,, is the minimum of the action over the instantons (i.e., the solutions of the
equation § = V’(q) with boundary conditions q(—=) = £, q(+») = —f). This formula is well
known in the physics literature [17,37]. Our methods also enable us to calculate the
linear term in the exponential asymptotic behavior of the width of the band [a;, a,] in
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accordance with a formula analogous to (6.11). The condition of nondegeneracy, required for
fulfillment of (6.11), is satisfied automatically in the one-dimensional case. As region D,
we take the interval [0, 27m], so that formula (6.9) in the one-dimensional periodic case
gives

o—a,=2h*C (h)*(1+0(h)) (B, K, —K.K,") | **,

whence
_ 1 ‘ 2
os—o =8V R (1+0 (k))a~"J (V" (=) )"y (n)exp{ - -h—Si () }, (7.10)
where ¥(7m) is the velocity at the point m of the instanton leading from —m to .

8. Examples

1. We consider the Schrddinger equation (6.1) with potential V(x,, ..., x,) having
two symmetric wells:

= ‘?2—2 (xk—xk—i)z +‘%‘Z (xh—§)2($k+§)2-

def
Here o > 0, B > 0, £ > 0 are parameters, z,=z, It is obvious that V(x) 2 0, V(x) + = as
|x| + », and V(x) satisfies the condition V(—x) = V(x) and has only two points of global
minimum: x¥ = #(g, €, ..., £). We find the eigenvalues wé of the matrix 82V/8xiaxj. The
equations for their determination have the form

— 0 (Zpp1— 22yt 24— ) T2PE =020, k=1,..., R, 2Z=Z..

Their solutions are well known and give the following sets of eigenfunctions and eigen-
values (see, for example, [38]):

4 1 20
Oni=4osin? —m+2BE%  (zn)r=—ex {i—mk}, m=0,1,...,n—1.
T ST St

Thus, the formula for the lowest energy states is

n—1
Eg = -}2}—2]/ hausin® S m+2BE+0 ().
M=o
We calculate the splitting A = Et — E”. We find an instanton solution from the Newtonian
system:
F=p (2’ —:E) — 0 (X1 — 22+ Thmt),  Ti)imew=—E, Zali=e=E, k=1,...,n.
One of the solutions (possibly unique) has the form
Ty=r.=. . .=xz,=VE th(VBEL/V2).

We show that this solution ensures a minimum of the integral

oo

25=min J(£+Vew)a a-==-t a@==5 k=t n

=ty _

Indeed, it is obvious that

noe
25— min 3§ [F G m—nare L+ iy (@ — 2] dr>
xp(te)=tt T
noe
min S[%"%W+W@r%ﬂh=
*k k=1 -
xk("_'c")=i'§

n min QSO[%' %<wk+§)2<xk—-§>ﬂ]dr=

— & —
Pl (oo)=rtt

L)
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nomin @4 G argra—e]
g(Foo)=tf —®

The last minimum is attained on the solution q = vE tanh(V/BEt/v2) of the system § =

B(q® — £q). Note that at the same time 2S is equal to the last expression in this chain

only in the case of vanishing of all the xp(t), which ensures the necessary proposition.

We calculate 25. By virtue of the equations #=V(z(f)) and ¢*=B(q—E)*(¢+E)¥4

oo

.t
2S=njqzdt=v%j (§—2z) (Etz)
-t

— o0

2nVE§Z
7

Thus

) REs
E,—E,=A exp{ — —Ilz—s-g—} .
J

This formula can be readily extended to the Schrédinger equation with potential

n

Vv =Z o (Ty—xpy )2 +%2 u(z),

k=1 A==1

where ap > 0, and u(z) is an even function that increases as [x| > « and has two nondegene-
rate points of global minimum.

2. We consider one further example — the Schrdédinger equation for the hydrogen ion.
We note first that the theory presented in the previous sections can also be applied under
weaker restrictions on the potential V. Namely, the potential V can have several isolated
singular points and need not increase as |x| + o, An example of such a situation is con-
sidered in this subsection.

This problem, which admits separation of the variables, has been investigated in many
studies; in particular, semiclassical asymptotic behaviors were obtained in [39] for high-
energy states. Here, we obtain series of eigenvalues and their splitting, for the obtaining
of which the method of [39] does not apply. The potential has the form

s )
Yottt (z—a)® Va*+y*+(z+a)?

where o, a are dimensionless physical constants, and =+g determine the points on the z axis
at which the atoms are situated. We express the problem in ecylindrical.coordinates p, @, 2
and take into account the azimuthal symmetry, representing the wave function in the form
e™p(p,z) (m is an integer):

ol KNI a;)w+Vnp=E¢,

1 1
Vi(p,2)= ad ——oc{ }, pe=mh.
20° Yor+(z—a)? Vp*t+(z+a)?

It is readily seen that the potential V, is bounded below for py,=const. In addition, it is
easy to show (see below) that it has two points of global minimum if p<8aa/3V3. Thus, we
can apply the above scheme to this problem. It is more convenient to make the calculations
in the special coordinates o, 1, ¢ (prolate ellipsoid of revolution), o=1=1=—1, ¢€[0, 2r],
which are related to the cylindrical coordinates by the formulas z=aot, =9, p*=a?(c*~1)
{(1—7*). In these coordinates, we obtain for the function ¢ the problem

BRI o
(004 L 1) D)y ey, (8.1)

where

1 [ ( 1 1 ]
V == 2 —
eff P Pe o1 + 1_12) 4ao |,

Pe=hm. In what follows, we assume that m ~ 1/h (essentially, the large number m is a
parameter in the investigated problem). The potential Vgff has two symmetric points of
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local minimum, which are found by equating to zero the derivatives oVgff/3T, dVeff/d0. As
a result of straightforward but lengthy calculations we find that the points of global
minimum T4+ and ¢, and the value & = —Vga¢s(t4, 0,) are determined as follows. The point o,
is found as root of the equation (it is readily seen that the root exists and is unique)

Qo
4p,*

The value of & and the points T+ can be expressed in terms of o, by the formulas

a’=

(6*+1)%(0*—1).

1 20

4
E=&(Ip)= T, [
| (4 ’pq’l (002_1)2 lp(pl‘io-o @ 'Vg

We now set E=20’E+&, Vgogs = Vegs + &, and then Eq. (8.1) takes the form

W(o,, 90,9, ,98 B
(L @02+ L1y )t eeri=E. (8.2)

gt —1?
At the same time Vggg 2 0. We apply the oscillator approximation. With allowance for the
fact that in Eq. (8.2) the derivatives have variable coefficients the frequencies wj are
determined as eigenvalues of the matrix (see [5])
—pr '—Hxx)
Hyp Hp !’

which is formed from the derivatives #*H/dpdp;, 0*H/dpdzx;, d*H[dz,0z; calculated at the points
0=0,, T=T.. Here pi=ps, po=p:, =0, ;=7 and H is the "tunnel" Hamiltonian

-

1
H= o (p (0= 1)+p# (1=7)) ~Fess.

As a result of simple but lengthy calculations we find

_ ps) (80:*—1) Y30:'—20,*+3 o] B0 =1) ¥ (3os’—1) (3—04?)
 ale D (-1 T 60 (G0 —1) (05°—1) '
Thus, the required eigenvalues of the problem (8.2) have the form

E, =", (ho,+ho:) +0(R?).

1

In the classical limit, these eigenvalues correspond to motion of electrons in the circles
determined by the equations o = o,, T = T+. We find the splitting by using Eqs. (6.11).

We have
&+

hln(E—B)=| pdzton),

E_

where £+ = (0,, T+). Analyzing the Hamiltonian system to determine the instanton solution,
the solution satisfying the conditions pr = 0, 0 = 04, T = 77 for t > ¥, we can readily
show that the minimum is attained on solutions for which py; = 0, ¢ = o,. Thus

:]:pd‘zszrdf’

and it is convenient to replace the parameter t by the parameter 1. Using the law of
energy conservation, we find as a result of simple calculations

N L ok
ALy
Hence )
= 1—7
cf_p, dv=21, Y&+ | p| lnH_T:,

and finally we have the series of eigenfunctions of the original problem:

1

m : 1 1—
By 5 8n b5 (ho tho) FO(R),  —hin(Er—Em) | py|In

. —
+ m
T 20, V&, +0(R),
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where p,~mh and &,.=& (mh).

9. Power-Law Asymptotic Behavior of the Eigenfunctions

of the Operator —h?A/2 + V(x) Concentrated in the

Region of Minima of the Potential

In this section, we consider the spectral problem for the following Schrédinger equa-
tion with small parameter h:

Hy = 4/, Ap+V () p=FEy, z€R", $EL,(R™), (9.1)
with smooth potential V(x) that satisfies
1) V(x) z 0;
2) V(x) increases as |x| > «;
then (see [33]) the spectrum of the operator H is discrete;

3) one of the two following conditions is satisfied: 3’) V(x) has one point of
global minimm (£°); 3”) V(x) has two points of global minimum (£! and £2).

In case 3’), V(%) = 0 and V(x) > 0 for x # £, and in case 3”) V(&') = V(£2?) = 0 and
V(x) > 0 for x # £ and x # £2. In addition, we assume the points £% or £'s2 are non-
degenerate points of minimum, i.e., that the matrices
v
ox; 0.1':,'

Ak=—1§~” E™|, k=0 or k=1,2,

are strictly positive. Up to times of higher order, the potential V(x) in the neighborhoods
of the points of minimum is equal to harmonic oscillator potentials:

Vose="/a{x—E" A*(z—E")?,

k=0or k=1, 2. The eigenfunctions and eigenvalues of the corresponding Schrddinger
operators —h2?A/2 + Vgg. are well known. The minimal eigenvalue &, of each of these
operators is not degenerate and has the form

h
gkz_z_; o, k=0 or k=12 (9.2)

where (wk)z, j=1, ..., n, are the eigenvalues of the matrix AK, w% > 0. They correspond

to eigenfunctions (normalized to 1 in L.(R"))

exp(——éﬁ<(x—§ﬂ,VZF(x~§0>)

= . 9.3
P Crhof... 0" ( )

Here and in all that follows, we denote the norm in L.(R") of the functions ¢ by ¢

In this section, for completeness of the exposition we reproduce the proof of the
following well-known and rather transparent fact {(see the Introduction): The minimal
eigenvalue and the corresponding eigenfunction of the original spectral problem (9.1) are
well approximated by the eigenvalue and eigenfunction of the harmonic oscillator. Namely,
we prove the following propositions.

THEOREM 8. Suppose the potential V(x) satisfies the conditions 1, 2, 3’:

a) let E;, be the minimal eigenvalue and ¥, the corresponding eigenfunction, and P, be
real valued, IYy,]1 = 1. Then there exists € > 0 such that

E=&+0(h'"), |loe—pol=0(h°);
b) suppose the real-valued ¢ satisfies the equation
Ho=Eg+t{(z), l[oll=1, (9.4)
where E and f are such that

E=&,+0(h*°), |fll=0(r%), 6>0;
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then
lo—¢"|=0(r*), p=max(8/2,/s). (9.5)

THEOREM 9. Suppose the potential V(x) satisfies the conditions 1, 2, 3", and E, is
the minimal eigenvalue of the operator H. Then: a) E=&+O0(h'**), where &=min(&,, &,),
0<<§<<'s; b) if & +#&, for example, &.>&, then for any real-valued solution of Eq. (9.4) in
which E=&,+0(h'**) and ||[fi=0(h%), we have

lo—@!|=0(n). (9.6)

If & =&, then for any real-valued solution of Eq. (9.5) there exist constants a, and a,
such that

lo—o @ —cag?|=0(A*), p=max(6/2, /). (9.7)

These propositions are fairly well known in the physics literature and show that in
the case of a potential V with one point of global minimum (one well) or two asymmetric
wells the smallest eigenvalue of the operator H is separated from the following eigenvalues
by an amcunt ~0(h). But if the wells are symmetric or "almost symmetric," i.e., the
quadratic parts of the potential V in the neighborhood of the points of minimum can be
reduced to the same form by means of orthogonal transformations, then in a neighborhcod of
the minimal eigenvalue measuring h'*® there is a further eigenvalue.

Despite the transparency of the formulated propositions, their proofs require some
calculations. The main idea of the proof (somewhat different from [9]) consists of using
the variational principle and taking into account the fact that solutions of Eqs. (9.1)
and (9.4) corresponding to low energies, E ~ O(h) are localized in the neighborhood of
the bottom of the well (or wells) in the potential. It is more complicated to prove
Theorem 9 (for two points of minimum of V), and precisely this proof we give. The proof
of Theorem 8 is similar to that of Theorem 9, and we omit it. Theorem 9 is proved by the
following sequence of lemmas. In all that follows we shall denote by C; constants that do
not depend on h.

We first prove assertion a). Thus, we assume that the conditions 1, 2, 3” hold.

LEMMA 5. For the smallest eigenvalue E, of the operator H the following estimate
holds (see (9.2)):

E,<min(&,, &) (1+C.h"). (9.8)
Proof. For any ¢ in the domain of definition of fi
Eo<(p, Hp)/1IP"

We introduce a smooth "cutting off" function e(y); yéR: e(y)=1 for |y| < 1; e(y) = 0 for
[y| > 2. As ¢ we choose the function y=e(|z—Lt"|)¢*. The calculation of (¢, Hp) and (y*, @)
by Laplace’s method leads directly to the inequality (9.8).

Let € be a certain number in the interval (0, 3). We denote by Q% and Q§ neighbor-
hoods of the points £! and £? of radius k% Q7={ztR"™ |z—F|<h’}, j=1,2, and by Q§ the region
of points that lie outside Qf, §:

Q=R"\ (Q,*URQ:*).
We denote by ¥ the functional

k2
F@={ (5 1Ver+V @] op)d (9.9)
Rn
LEMMA 6 (Localization of eigenfunctions). Let ¢€L,(R"),|¢|=1 and F (p)<<C.,h. Then
{lopde<cps, (9.9%)
o
Proof. We have

F@=\ V@lopd>minv @ {|opdr
Q.8 2ERHE 9,8
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By virtue of the condition on the potential, min V(z) is attained on the boundary of the
QS
3

balls Q% and Q§, where obviously V{z)=C.h*, C,>0. From this we obtain the required

c, ¢
22 pi-ze 2 dr.
C, g§5 | Cp[

We now consider the variational problem for functions ¢ defined in the balls 2§ and
Q% that is determined by the operators for harmonic oscillators,

Fiw = (B 1Tk VicloF) do. €L @), 19l ap=1. (9.10)
Qs
We denote by %} the minimum of the functional Fj and g%=mﬁn(%ﬂ,giy
LEMMA 7. For the minimal eigenvalue E;, of the problem (9.1) we have
E=&, (14%:) +o, (9.11)
where
w=0(h*), ,=0(h*). (9.12)
Proof. As trial function in the functional % (9.9) we take a function ¢ satisfying

the assumptions of Lemma 6 (such a function exists by virtue of Lemma 5). In accordance
with the results of Lemma 6, we have

2
T NI (A v 2\ dr >
F o)== LR (| Vol +V(x)lcpl)dx/
J=19§
(by virtue of the expansion of V(x) in Taylor series at the points £ and £2 and of the

properties of V(x) and the balls Qg)

RS h? .
\/E S ("Q“IV(Plz—!-VCJ,SC[(p]z)d:c—xz;

=ige
g

(by virtue of Lemma 6)
h2 i . ; . 2 n . -1
(170 + VaseloFjaz(t ) ) {lofde) —>

=33

.
j=1 € Jj=1q.®
Qj 9

by (2 0+ Vi) |

J=1 st
2 ]
Y Ylwpar
. J
This minimum is calculated with respect to functions $£L.(27) and i, %, satisfying the
estimates (9.12). Denoting

(1 + »)min
lbl! U)z

— Yy

S b [P dz =,
.
we can rewrite the last expression in the form
2
(14 smin( 3 gt § e (P - Vel ) d—

j=1 9]_8
where the minimum is calculated with respect to all ¥€L:(Qf), [hll=1 and e;€R!, al’+a,’=1.

Obviously the last expression is equal to

(1+%,) min (c(é;ioa12+é~’zoc22)—nz=(1—%1)%0—'&2.

[N 2T )

The following lemma establishes a relation between the minimal eigenvalues of the

591



operators for the harmonic oscillator in the complete space R” and in the ball Qpf 0<<e<<!/,.

LEMMA 8.

n

h .
828 (1te) = X o) (4hm), w00, 0<e<t,

k=1

Proof. The basic idea is that extension of the region Q% in the functional F; to R"

leads in the least eigenvalue merely to appearance of a factor (1+%). To simplify the
notation, we shall assume £] = 0 and omit the index j.

Consider the functional
» 1 \
F, (W) = 5 ("2— h? l le 12 -+ Vosc! P }2) dz, []¢[|L3(95)=1, I{‘,SC=1/2<$, Atz
QS

Suppose the minimum of F¢ is attained on the function ¢; then y satisfies the Schrddinger
equation

~ R APV, p=8p.
At the same time
~ R
&< — o, (1-F%.), (9.13)
2 h=1

where |%,|<<C(N)h®, N is any natural number, and C(N) is a constant. This last result is
readily seen by choosing as trial function ¢ in the functional F the eigenfunction ¢° (9.3)
of the harmonic oscillator in R"” and taking into account at the same time the estimate

: 1
5 (Thz [Vo P + Voscl@ Iz) dz=0 (h=)
jx|>hE
for € < 4.
We note further that for the function ¢ there is an estimate analogous to the estimate
cf Lemma 6:
{ lvpde<op (9.14)
hW%‘S_TMShE

Indeed, by virtue of (9.13) we have as in Lemma 6

1 ) 1 . ¢
CahPT S Voscl'qjl2 dx}“f min Voge 5 l‘PP dz,
Ix]:=h9/2

h&/e<lxl<h® h&/2<|x|<<hE

from which (9.14) follows immediately.

We derive one further auxiliary equation. Suppose ¢ satisfies the inhomogeneous
Schrddinger equation

='W AptV (z) g=E@t],

where Q is a certain region in R” g(z, k) is a certain function, supp géR. We denote ¢,=g¢
and ¢,=(1—g)¢p. We consider the functional

hZ
0u(9)= ] (-Q-IchlzﬂLVlcp!z)dx,
and then

®9=®n(¢1)+®a(¢2)+j [g(i"g)EI(PIZ + (Pf_’_@f_th(Vg)Z'(PIz]dx. (9.15)

To derive (9.15), we transform the expression

R ) _
j (_2_(\/(?1 V@ + VG Vo) +V (95 1F.9.) )dx ==

Q
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(integrating by parts)

X
= .[ [7(_(91A¢2“(P2A$1)+V(,(Ptfﬁz'*'@x@z) ]dx:
a

h? _
” 7(”% (1—g)Ag+29, Vg - V§+.Ag9—(1—g)F:bq +

Q
24, Vg - Vot+$,.A20) +V (0FatPig2) ]dx=

(by .virtue-of the definition of ¢.. and the equation for ¢)

— | Le(1—g) (Elo|*+oF+oD+12V (&) -V (g|*)+2higAg| 9| da=

§ 1e01—0) (Bl o +oF+an 202 (V) g ] dz.

From this (9.15) follows.

In (9.15) we now set V = Vogo, f=0, Q=Q. g=e(|2|/2h*), o=y, ¢.=gp, E=&, where e(y) is

the "cutting off" function defined in Lemma 5. From (9.15)
F’l(lp) >®93((P1)+1,

where

1= Eg(t=g) [p]*—20F (V)| p]")d.

Qe

By virtue of the definition of e, ¥ (9.13), and (9.14), I admits the obvious estimate

[ II <C7h2—25+08h3—4s.
Further, from (9.13)

1= plrao =] [lras+ e [p12de = J 1o, dotr,

Q¢ Q Qe Q¢

From (9.16) and (9.17)

CLI2 N @i " Vogel 94]*)da

=}

e

&= (1—%6) —51,
§ 1017 de

where 0<<u,<CH*~**+C, k"

tion of the lemma.

Combining now Lemmas 7 and 8, assuming '/;<e<<'/,, and choosing at the same time § =

min(3e — 1, 1 — 2¢), we obtain proposition a) of Theorem 9.
We now turn to the proof of proposition b) of Theorem 9.

Consider the functional

hZ
O@)={ (F1V0F + Voselo ) dz. Nol=1,
Rﬂ-

| 5| <<Coht-e,

, 0<ue<<C, A", Since ¢, is a function of compact support, the
domain of integration on the right-hand side can be replaced by R"
equation has a minimum, which is attained on the eigenfunction (9.3) of the harmonic
oscillator in R”, we readily obtain, taking into account the inequality € <

Since the obtained

1

2

(9.16)

(9.17)

the asser-

where Vgyge is the harmonic oscillator potential V='/x<Xz, 4*x>, &, is its minimal value (9.2),

and ¢’ is the eigenfunction (9.3).

LEMMA 9. Let ¢ be a real-valued function possessing the property
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O (9)=8&(110(h")), 1>0. (9.18)
Then |p—g°|<C,.h">

Proof. We denote by ¢, the normalized eigenfunctions of the operator ﬁosc' The sys-

tem {¢,} forms a basis in L,(R"). Therefore, for ¢(z, ) we have the decomposition (p=2 @y,
v=0

a, are Fourier coefficients, and at least g, is real (since &, is not degenerate). We

substitute ¢ in (9.18) and use the properties of the functions y,. As a result, we

obtain the equations

Y e a=matom), Y ja)=t. (9.19)
v=0 v=0
We denote by &  the &, closest to &,: & =E,+hmin (0, ..., ».). From (9.19)

&oa,’+&’ Z ja,|2<&,(1+0(hY)).

v>0

It follows that (&'—&,) (1—a,") <&,-0(F") or 1—a,°<C;;h*/2, and therefore

ll(p—cp°ll2=(1~ao)z+2 [ay|2<2(1—a,?) <Cysh.

v>0

Now suppose the function ¢ satisfies Eq. (9.4) with E=&+0(h'**) (see Theorem 9). Then
from Eq. (9.4), taking into account the estimate &=O0(k), we obtain for the energy
functional & (9.9): F(¢)<C.,h Then by virtue of Lemma 6 for £€(0,!/,) we have for ¢ the
estimate (9.97).

We now show that we can represent the function ¢ up to terms of higher order as a sum
of two terms, each of which will satisfy either the condition of Lemma 9 or be small.
Using the "cutting off'" function e(y) from Lemma 5, we introduce the functions gi =
e(|x — £3|/2nE) and g = g, + g,. It is clear that the supports of g, and g, do not inter-
sect, and g2 = g2 + g2. From the estimate (9.9') for ¢ we directly obtain the equation

loglP=llpg*+leg.|f=1—xsh'>, (9.20)

where »,<C,,.

We calculate the functional & on the function g¢. Integration by parts gives (cf.
formula (9.15))

2 (n2 — o2
F o= { (2 CLE=E0 L gayer)au, (9.21)
R?'l-

Using Eq. (9.4), the estimate (9.20) and the definition of &, we obtain from this

h_Z
F (gw)={ (£(B¢* + @) + 3 (Vg @) do = 8 (1 + i) + g,
Rn
where %y 10<Ci.

On the other hand, by the definition of g, e, and the Taylor expansion of V in the
neighborhood of the points £J we have

F(gp)= S‘

2
rd
b

h? ;
(7 (V@) + Viac(es0)) d + i,
R'ﬂ

where |, |<Ci..

Thus, it follows from (9.20) and (9.21) that

. 2 S (—}Z“ (V (g59) + Vésc<g,~(p>2) dz
j=1gn

. & (1 -+ %ghl—za) + %mhlm + %uhss
| g2 I* 4 || g2 |12 o 1 — nghl-2e
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Assuming e€('/;, '/z), denoting max(l — 2e, 3¢ — 1, §) by y, and, in addition,
a=lgol/Vg.wl*+lg.0l, we obtain

Mot § (G (V0 + Voot d— & (1 - st

Jj=1 RrR®
and at the same time o, +a, =1, |u,|<Cy.
Now, taking into account the inequalities
h? ;
S (’2“ (V‘pj)z + Voscwjz) dx = %)J"
R'I’L

we find by straightforward arguments that: 1) when &,<&5, then o,’<C,h', a’=1Fuh", {uel<Ci,
and

h? ) :
| (5 (Touf + Vosowst | dz = &1 (1 + ), |114] < Can
R™ ’
2) when &,=&,, then
h2 . . .
(G (PR + Visch? ) do= (1 4+ 00, 07| < C
R‘ﬂ

From Lemma 9 in case 1 we immediately obtain go=q'+6’, where [|8°(|<Cs"* ~and in case
2 gp=o,0'ta,p*+0', where |[0|<C;A"? and ¢’ have the form (9.3).

To complete the proof of the theorem, it now remains to note that [[go—q||<<Ch!'-22<
C,2"* and that max (1—2e, 3e—1)=%/..

s<e <tz

10. Laplace’s Method with Estimate of the Remainder Term

We derive the formulas used in the foregoing sections by Laplace’s method of calcula-
ting asymptotic integrals with accuracy estimates. Such estimates are not found in the
well-known guides to this method (see, for example, [40]).

We shall investigate the h + 0 behavior of the integral

I(h)= jf(x)exp{——S(x)/h}dx, (10.1)

where Q is a region in R* k is a positive real parameter, the functions f(x) and S(x) are
real and continuous in @, and f(x) 2 0 in Q.

We first recall the simplest obvious estimate for I(h) [40]: if M<inf{S(z):z2=Q} and
it is known that I(h) converges for h = h,, then I(h) converges for all he=(0, k) and at
the same time

I(h)<exp{—M/h}exp{M/h}1(h). (10.2)
To obtain a more accurate estimate, we introduce further assumptions:

a) the function S(x) attains its minimal value in @ at a unique point z,=Q, and
there exists a compact neighborhood U of the point x, in & such that for every convex
neighborhood U’ < U of the point x,

inf{S(z) : zeQ\U'}=min {S(z) : z=0U'}; (10.3)

b) x, is a nondegenerate point of minimum of the function S(x), i.e., the matrix
S”(x,) is positive definite;

c) S(x) is thrice continuously differentiable in U;
d) I(h) converges for h = h,.

We denote by d and D, respectively, the smallest eigenvalue and determinant of the
matrix S7(xy); let

O=max{f(z) : z€U}, C;=max{]

S'”(J:) ” : xEU}
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(IS (%) is the norm of $”(x) as a polylinear functional in R"*). We fix p=(/s'/.) and an
arbitrary 8§ > 0, and set

Us(h) ={z=Q: (8" (20) (z—2,) , 2—2,) <h®}

(the ellipsoid Uﬁ(h) is obviously contained in the ball of radius v1/dhP in @ with center
at Xg).

LEMMA 10. Let h £ h, be such that UB(h) ¢ U and, in addition,

exp {'/oh P~ =B} < (2mb) PRI, (10.4)
1,Cod-"hP-1< 1, (10.5)

then
I(h)<exp {—S(2,)/h} (2nk)™*e* [ D" +R'**I(ho) exp {S (zo)/hoe}]. (10.6)

Proof. We split the integral I(h) into the sum I,(h) + I,(h) of integrals over the
regions Ug(h) and @\Ug(h), respectively. Since the e111p501d UB(h) is obviously contained
in the ball of radius ¢1/ hP in Q with center at x,, for z=U,(h)

S(z)=8(20) +'/2(S" (o) (x—120), z—20)F0(x), (10.7)

where
1
{o(x) isgCad"”h”, (10.8)
and hence, by virtue of (10.5), |o(z)|/h<'/,, and therefore
, 1
I, (R) <O exp{—S(a.)/h}e" j exp{— 2—h(S” (z0) (x—20), 2~4) }dzs
Uglh)
(25h)™*D="Qe" exp{—S(z,)/h}. (10.9)
Turning to the estimate of I,(h), we note that in accordance with (10.3)
inf {S(z) 1 2€Q\Ug(h)} =min {S(z) : 269Uy(h)}. (10.10)
Using now for xz60Uy(h) the representation (10.7), we obtain from (10.8)

inf{S{x): JJGQ\Ug(h)}>S(Z0)+'—'hZB—%TC -1, (10.11)

Hence and from the general estimate (10.2) it follows that

1
L)< exp{——h—( S(aco)—l——;—hZﬁ —%Cad—“/‘h“‘>} exp{ ! (S(ac(,)-%ihzfs ——1—C d*’lzh“)}x

5 fx)exp{—S(x)/ho) <exp{—S(xz:)/h} exp{—"/.h*'}1(h)e" exp{S(z,)/ o} exp {’/zhom_1 }.

\U (k)
From the estimates obtained for I,(h) and I,(h) and the condition (10.4) Lemma 10 follows
directly.

THEOREM 10. Suppose that in addition to the conditions of Lemma 10 there exist in U
continuous derivatives f’, f” of the function f and the fourth derivative of the function
S. We denote by &,, %,, C,, respectively, the maxima of the norms in U of the polylinear
mappings f(z), f/(z), S“(z). Then for h satisfying the condition of Lemma 10

I (h)=(2nh)"*D"%(f(2,) +a(h) k) exp {—S (x)/h}, (10.12)
where a(h) satisfies the estimate
o (R) | <Ya0,d-" /i DC,2d="n (1) (n+2) +
1 1
(4—' Cuf (zo) + —Q—Caﬂ),)d‘zn {(n+2)+7(z,) (2he)**h® + €"D*h" exp{S (x.)/h}I(hs).
Proof. We represent I(h) in the form
I (k) =exp{—S(zo) [} (Lo(h)+1,(R)+1,(R)+1:(h)),

where
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1, (k) =f(z,) j eXP{“é‘%(S”(‘ZO) (z—1), -r“fo)}dz,

Ugth)

1L,(h)= j (f(x)"f(xo))exp{_ "2%(5”(1"0) (z—x4), x*xo)}d-ﬂ

Uglh)

I, (h)= j f(x)(exp{—g(x—)}»1>exp{—é%(S”(xo)(:c—xo),x——xo)}dx,

h
Tgh)

rw= | f@exp{ - (@5 }d.

AU (h)
The function o(x) in the integral I, is defined in (10.7).
We shall denote by BV(R) the ball of radius R in R” with center at ytR". As we have
already noted, Uy(h)<B, (V1/dh).

We investigate the integral I,(h). We represent it as a difference of integrals over
R" and over R"\Uy(%#). The integral over the whole of R® is tabulated: as is well known, it
is (2nh)™*D7*f(x,). Making then in the second integral a change of the variable of integration
in accordance with the formula V@y%x—ﬂ%%=y, we obtain

I ()=f(a) D7 [yt ( expi— |y /2mdy |-
R™\ By(rb)

For the integral here we can obtain an upper bound in accordance with formula (10.2) in
terms of

exp (— 1o+ 37577} | exp (— |1y [2/2ho} dy = (22 exp (— Voh® exp (1/0h3 ).
RTL

As a result, using (10.4), we obtain
I, (h)y=(2rh)""* D" (f(x,) Ta(h) R), (10.13)
where

[y ()| <) (2mhy) /R0, (10.14)

We turn to the integral I,(h). Expanding f(x) in a Taylor series to the second term
and noting that the integral of an odd function over a symmetric region is equal to zero,
we obtain

1 1
I, < - D, J {|x—a,||? exp{— ﬁ(S”(:CO) (z—x0), 2—0) }dx.

Ug(h)

Making the substitution VS (z,)(z—z,)=y and noting that || (z,)'|=d™* we arrive at the
estimate
1< D 4d g [Pexp (— 1y 12720} dy.
Bo(hf)

Using now the well-known formula

ﬂ;n/Z

S Iy " exp {— |y I1?/2h} dy =

R’ﬂ,

I‘(”_er__k_) (2h)mh)r2 (10.15)

(which is readily derived by going over to spherical coordinates) for k = 2, we obtain the
estimate

L.(h) <'/,0,D-"d~* (25h) " *hn. (10.16)

We estimate the integral I,;(h). For this it is also necessary to divide it into a
sum of two integrals: I (h) = I;(h) + I3(h). Here

I (k) =Upj(‘h) f(x)(exp{ - G(hx) }—— 1+ o(hx) ) exp{——z%(S”(xo) (x-xo),x—xo)}dx,
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”(h)'— S iz )( (x) )exP{—g-};(S”(xo)(x—xo),x—xo)}dx.

Ug(h)
In the proof of the lemma we obtained the estimate |o(z)/h|<!/; in UB(h)' Hence and from the

1
estimate ]0(z)]<&756;Hx~xd] it follows that

o S}y ) (e (e, )

O(x) 2 ( Yy 4 A “x xo” i Yy 67,2
' n 9re™ — 3 )<9 (3’) Tz /,Cs%e"||z—a0||°hF,

and therefore

1
I (h)<Y,Cl20e"h* ‘[ [|z—20l|® exp{ — (87 (xq) (2—2o), x—2s) }dx

v 2h

Making now, as above, the substitution ¥S” () (z—z,)=Yy, we obtain
1y () <H.C2 D41 { |y |F exp (— [y [7/20) da.
Rﬂ
n n n

Using (10.15) for k = 6, and also the equation F(??+-3)==2 ( -Fl)( %-Z)F(Ef), we
obtain

I, (R)<',(20uh) "’ D-4DC 2e"d~"n (n+2) (n+4). (10.17)

To estimate I we note that in U

<Z1‘!“CAH$—$0“A-

Jo(@) 58 (@) (a2’

Bearing in mind that the integral of an odd function over a symmetric region is zero, we
have

1= exp| 28" (@) (-2, 2w | X

Uglh)
[ (- 22+ L 25 @) e20) + G120 (- 22

and therefore

L"(h)< 5 (—Z'—Clj(:co)-l— 1 C.0, )Hx —x,||*h~? exp{———(S”(xq) (z—x4), z— xo)}dx
Uyt

Making as above the change of variable and using (10.15) for k = 4, we obtain
1 .
1,7 (h) <(—j—'vcéf(x.,)+§cami ) (27h)"*D-d~"n (n+2). (10.18)
The integral I, is estimated in the same way as in the proof of Lemma 10. Thus
I (B)y<e®(2ah)™*h* exp {S(zo) [ho} I (o). (10.19)
From the estimates (10.13), (10.14), (10.16)—(10.19) we obtain Theorem 10.

Remark 5. If we do not require the existence of f” and S* in U, then the formula for
I(h) in Theorem 10 is changed — it will no longer be possible in general to represent the
remainder term in the form O(h), but only in the form O(R*').

Remark 6. Somewhat different, '"more uniform with respect to the dimension" estimates
of the remainder term a(h)h can be obtained if one calculates the main term, not from an
integral over a ball (or ellipsoid), as in our arguments, but from an integral over a
cube.
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