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MEAN-FIELD MODELS IN THE THEORY OF RANDOM MEDIA. I 

L. V. Bogachev and S. A. Molchanov 

This paper commences a cycle devoted to analysis of problems in the 
theory of random media by means of the mean-field (nonlocal) diffusion 
approximation with corresponding operator 5v, v~z! This paper contains 
an introduction for the complete cycle with a brief review of problems 
in the theory of random media. Also considered is the problem of 
localization for the operator Hv----Sv+~(x}, where {~(x)} are independent 
identically distributed continuous random variables, IVI + ~. It is 
shown that there is V-uniform localization on the average. 

Introduction 

The central problem in the theory of disordered (random) media, or structures, is the 
interplay of the two main mechanisms of their evolution: the dissipation mechanism 
(diffusion, heat conduction, etc.), which arises because of internal fluctuations ("noise" 
of the medium, and the consolidation mechanism (self-organization), due to external 
factors (potential fields, flows, etc.). 

Such media are described mathematically by means of the equations of mathematical 
physics with random coefficients. It is very important whether or not a medium is station ~ 
ary, i.e., whether or not its physical properties depend on the time. 

We give the most important examples of the problems that arise and will be considered 
in detail later in an approximation that we shall call the mean-field approximation. 

I. 

in which one studies the energy levels and wave functions of the Hamiltonian 

g=- l+o~(x ,  +), 

where A is the lattice Laplacian, 

(2) 

and ;~(x, ~), x~Z ~, is the lattice potential, a collection of independent identically distri- 
buted random variables (say with standard normal distribution N(0,1)); o > 0 is the 
coupling constant. 

The one-dimensional case (d = i) has been well studied, In that case, the operator (i) 
for any o has a purely point spectrum that is everywhere dense on the support of the 
distribution of the potential ~ (on R ' for a Gaussian potential), and the corresponding 
states are exponentially localized. 

The central hypothesis of the multidimensional Mott-Anderson theory (d ~ 3) is that 
there is a phase transition with respect to the parameter o: for o ~ o 0 the spectrum S(H) 
is a purely point spectrum, whereas for o < a 0 two components -- point and continuous -- 
coexist in the spectrum, and they have nonintersecting supports. This hypothesis has been 
partly proved (the pure point nature of the spectrum at large o) in a series of recent 
studies by FrShlich, Spencer, and others. However, the appearance of a continuous com- 
ponent of the spectrum at small ~ (and this is the main point of the Mott-Anderson philo- 
sophy) has not yet been proved. A detailed bibliography on these problems (one-dimensional 
and multidimensional) can be found in the reviews of [2-4]. 

In the language of quantum mechanics, complete localization of the eigenfunctions of 

A classical example in stationary theory is Anderson's strong coupling model [i], 

(1) 

Moscow State University. Translated from Teoreticheskaya i Matematicheskaya Fizika, 
Vol. 81, No. 2, pp. 281-290, November, 1989o Original article submitted June 15, 1988. 

0040-5779/89/8102-1207512.50 �9 1990 Plenum Publishing Corporation 1207 



the operator (i) is equivalent to absence of dissipation in the solutions to the time- 
dependent SchrSdinger problem 

l - - =  He, ~(x, 0) =r 6L~(Zd). 
Ot 

Thi s  l a s t  means f o r  any e > 0 one can f i n d  a volume V = V ( e ) ~ Z  d such  t h a t  

~n [~(x, t)12 < e 

x 6Z d \ V  

f o r  a l l  t ~ O. Th i s  r e a d i l y  f o l l o w s  f rom t h e  F o u r i e r  r e p r e s e n t a t i o n  o f  t h e  s o l u t i o n  ~ (x , t>  
t o  t h e  p rob lem ( 3 ) :  

r (x, t) = E exp (iZ~t) (r ~ )  ~ (x), 
~n@S(H) 

where k~, ~(x) are the energy levels and localized states of the operator H. 

(3) 

2. Another interesting group of problems in the theory of stationary media is 
associated with parabolic equations of the form* 

0r 
0-7 = •162 (x, ~) r r (x, 0) =~0 (x) ~0, (4) 

which arise in linearized schemes of chemical kinetics and in the theory of branching 
processes. 

For an initial function ~0(x) one usually considers one of two types of initial condi- 
tion of physical interest. # In the first case, it is assumed that ~0=~,(x, ~) is a 
spatially homogeneous random field that does not depend on the potential $ (in particular, 
~0 = const). The homogeneity property is preserved under the time evolution of the solu- 
tion ~(x,t). In the second case, it is assumed that the function ~0(x) is localized, for 
example, ~0(x)=6(x--x0). Such a formulation is natural when one is studying the effect of 
population of the medium. 

From the expansion of the solution ~(x, t) with respect to the eigenfunctions of the 
operator H on the right-hand side of Eq. (4), it is clear that the main role in the 
asymptotic behavior of ~(x,t) as t § ~ is played by the structure of the spectrum S(H) 
near its right-hand boundary. It was shown in [5] for independent ~(x, ~) with normal dis- 
tribution N(0, o 2) that with unit probability for • there exists the limit 

lim t- '  (ln t) -,i~ In$  (x, t) = (2do 2) ,i,. (5 )  

It is important that the limit (5) does not depend on the diffusion coefficient x. Physi- 
cal arguments (see [6]) suggest that there must exist a more accurate asymptotic behavior 
of the form 

t -~ in ~(x, t) = (2do * In t) '~-C~• (t) ,  (6 )  

where C I > 0 depends only on the dimension d, while the constant C 2 is related to the 
percolation properties of the field ~(x, ~). The proof of the asymptotic behavior (6) is 
an important unsolved problem. 

The same applies to investigation of the asymptotic behavior of the statistical 
moments of the field mv=mv(x,t)=<~(x,t)>,p=i, 2 ..... It was shown in [5] that 

lira t-* In mp (x, t) = ' /2 /o  2. ( 7 ) 

The g rowth  o f  t h e  moments mp, p r o g r e s s i v e  in  t h e  number p and s u p e r e x p o n e n t i a l  in  t i m e ,  
i n d i c a t e s  a c l e a r l y  e x p r e s s e d  i n t e r m i t t e n c y  o f  t h e  f i e l d  ~(x, t) [5 -9 ] .  Th i s  o b s e r v a t i o n  
b r i n g s  l o c a l i z a t i o n  t h e o r y  and i n t e r m i t t e n c y  t h e o r y  c l o s e r  t o g e t h e r  and g i v e s  a r e g u l a r  
o r i e n t a t i o n  o f  n o n s t a t i o n a r y  t h e o r y ,  which  w i l l  be d i s c u s s e d  be low.  In  t h e  f ramework o f  

*The operator on the right-hand side of Eq. (4) is essentially identical to the Hamiltonian 
(i) for ~=• 

tThe remark about the initial condition also applies to the evolution problems of w167 and 4. 
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the development of moment theory of stationary media, it is important to make the asymptotic 
behavior (7) more accurate in the spirit of (6) by establishing the part played by the 
diffusion • in the generation of the moments. 

3. In nonstationary theory (see the reviews of [6-9] and the paper [5]) the moment 
approach comes to the fore. It is particularly effective when the random properties of 
the medium are 6 correlated in time. 

Let us consider, for example, a nonstationary analog of Eq. (4): 

0r 
- ~  = • t, ~)% , (x ,  0) =%(x)~0 ,  

where ~(x, t, ~) are independent (for different x) "white Gaussian noise" processes with 
correlation function 

(8)  

<%(x, t, ~)~(x', #, ~)>=o~6(x-x')6(t - t ' ) .  

Equation (8) is to be understood in the sense of It6 (although a Stratonovich interpretation 
[i0] is also possible; see the detailed study of [ii] for a discussion of the relationship 
between It6 and Stratonovich integrals). It can be shown (for the details, see [6]) that 
the moment functions mp(x~, ...,x~, t)=<@(x~, t)...~(xp, t)>, p=l, 2,..., satisfy many-particle 
equations of the SchrSdinger type 

P 

~---F-= • A~+~ ~(x~-xj) m~, m,(xl . . . . .  x , ,0)=<~o(x , ) . . . ,0 (x~)>,  (9)  
i=i i~#  

and that there exists the limit 

lim t-~ln m~(x~ . . . .  ,xv, t) =?p(•  

with ?p(• the upper bound of the spectrum of the operator on the right-hand side of 
Eq. (9). 

One can also show (see [6]) that with unit probability there exists the nonvanishing 
limit l imt - l ln~(x , t )=~(•  

The calculation of the functions ?p(•215 and the study of their properties are very 
difficult problems. Hitherto, their behavior has been studied in detail only for small 
• [5-7]. A plausible picture (though in many details not properly founded) is shown in 
Fig. 1 (for the case d ~ 3). An important additional question is associated with the 
calculation of the fractional moments mp, particularly in the intervals p6(0,1),pe(i, 2). 

4. The final group of questions that we wish to mention in the theory of nonstationary 
random media concerns phase transitions in heteropolymers. In Lifshitz's well-known 
studies (see, for example, [12]) the problem was reduced, in essence, to a problem of 
Lyapunov exponents in a nonstationary scattering scheme. Mathematically, we are concerned 
(in the simplest model) with calculation of the limit limt-~In~(x,t)=?(• for the solution 

~(x,t) to the problem 

0~ 
- • ~)r ?(x, 0) =?o(X)~0, 

0t 

where ~(t, ~) is a random process that is homogeneous in time and has rapidly decreasing 
correlations. A phase transition is here understood as the existence of a critical value 
z=• such that 7(• for ~<z0 (globule state) and ?(• for • (coil state). 

Of particular interest is the behavior of the exponent 7(• (which is the free energy 
of the heteropolymer) in the neighborhood of the critical point • and also the geometrical 
structure of the solution %(x, t) for •215 The physical essence of the globule-coil 
phase transition has been completely clarified (see, for example, [13]), but as yet there 
are no mathematically rigorous results, and still less models with explicitly calculated 
free energy. 

The aim of this paper is to solve the problems of w167 for a model that we call a 
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random medium with mean-field diffusion.* 
has the significance of local averaging, is replaced by an operator of averaging over a 
large volume VcZd: 

A v / ( x ) =  [ - ~  ~ ( / ( , ) - / ( x ) ) = f v - / ( x ) .  
y6V 

One can here drawn an analogy with the well-known Curie-Weiss model (see [14]) in which 
a local interaction potential (of Ising type) in the Hamiltonian 

3~=J ~ s.sy, sx=• x6Z d, 
ly--xl~l  

is replaced by a weak long-range potential inthe mean-field Hamiltonian 

In this model, the diffusion operator (2), which 

(I0) 

7 Va  
~ . . . .  7 ,  s~s~, V c Z !  

Although the limit operator A (as IV[ § ~) is not defined, one can speak of a limiting 
behavior of the solutions to the evolution problems of w167 in the limit t + =, IVI § ~. 
The effects associated with the dimension of space Z d are to a certain degree captured 
by the consistency condition 

[ V I - #  ~, t ~ .  (11) 

T h i s  c o n d i t i o n  i s  m o t i v a t e d  by t h e  f a c t  t h a t  t h e  t y p i c a l  p a t h  o f  a random walk  a s s o c i a t e d  
w i t h  t h e  l a t t i c e  L a p l a c i a n  A t r a v e l s  d u r i n g  a l a r g e  t i m e  t t o  a d i s t a n c e  o f  o r d e r  4~ f rom 
t h e  i n i t i a l  p o i n t .  

An a d d i t i o n a l  j u s t i f i c a t i o n  o f  t h e  model  w i t h  m e a n - f i e l d  d i f f u s i o n  i s  t h e  c i r c u m s t a n c e  
t h a t  t h e  p r o b l e m s  o f  w 1 6 7  t h e m s e l v e s  a r o s e  as  t h e  r e s u l t  o f  t h e  s i n g l e - p a r t i c l e  (mean-  
f i e l d )  a p p r o x i m a t i o n  in  m a n y - p a r t i c l e  p r o b l e m s  ( s e e ,  f o r  e x a m p l e ,  [ 1 5 ] ) .  

The p a p e r  c o n s i s t s  o f  t h r e e  p a r t s .  P a r t  I i s  d e v o t e d  t o  t h e  l o c a l i z a t i o n  p r o b l e m  in  
t h e  s p i r i t  o f  w P a r t  I I  t o  t h e  a s y m p t o t i c  b e h a v i o r  o f  i t s  s o l u t i o n  and o f  i t s  moments 
f o r  a s t a t i o n a r y  medium ( w  and P a r t  I I I  i s  d e v o t e d  t o  n o n s t a t i o n a r y  med ia  (w167 and 4 ) .  

I n  t h e  l a t e r  p u b l i c a t i o n s  we i n t e n d  t o  c o n s i d e r  more  r e a l i s t i c  mode l s  w i t h  n o n l o c a l  
d i f f u s i o n .  I n  p a r t i c u l a r ,  we s h a l l  be  v e r y  i n t e r e s t e d  in  t h e  s o - c a l l e d  h i e r a r c h i c a l  model  
in  which  t h e  d i f f u s i o n  o p e r a t o r  has  a h i e r a r c h i c a l  s t r u c t u r e  d e f i n e d  in  an i n f i n i t e  s y s t e m  
o f  m u l t i p l y  embedded v o l u m e s  by means o f  t h e  m e a n - f i e l d  a p p r o x i m a t i o n .  I n  t h i s  m o d e l ,  
the limit operator is defined, and the presence of a symmetry group of high order permits 
reduction of the problem to nonlinear integral equations. Continuing the analogy with 
statistical physics, we note that the hierarchical model plays in the theory of random 

*Some of our results were announced in the review of [7]. 
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media the same role as Dyson's well-known model in the theory of phase transitions in 
ferromagnetic systems (see [16]). 

i. Localization Problem 

Let V={x} be a finite set,* and N be the number of its elements. Let ~(x), xGV, be 
independent identically distributed random variables with continuous distribution. We 
study the spectral properties of the operator # Hv=Av§ which acts on the space of 
functions [(x)~L2(Y), where AV is defined by Eq. (I0). We shall seek the eigenvalues of 
the form h -- i. From the equation Hv~=(%-l)(p we obtain 

~(x) =~ (~-~(x))-' (12) 

Averaging (12) over xEV and dividing by ~Pv,** we arrive at the equation 

~ = N - ~ " ~ -  x (13) ,~. - ~ (  ) 

We arrange the random variables ~(x), xEV, in ascending order and denote by ~(~)< ... <~(~) 
their order statistics (with probability i, all inequalities are strict). It is obvious 
(see Fig. 2) that Eq. (13) has precisely N real roots h I < ... < hN, and 

~(o<%~<~(2)<~2<... <~N--~<~(N~<~ N. (14) 

Remark. From (14), using the law of large numbers, we readily deduce that there 
exists the integrated density of states 

dV()O =lira N-~ 2 1, 

with ,A~(%) equal to the distribution function F(h) of the random variable g. If the 
distribution ~ has density p(h), then there also exists the density of states 
d,/V ( )~ ) / d)~=p ( ~ ) . 

Using formula (12) for h = hi, we find the form of the eigenfunction %(x), normalized 
by the condition II%H=I: 

qD~(x) = (~,-~(x))-' [ E ()~-~ (y))-~ ] -'~' (15) 
y@v 

We fix the point xo~V and consider the spectral measure d~ (x), which is concentrated at 
the points hi, i = I, ..., N, with mass ~=(6~0, %)z, where 6~0(x)----6(x-x0). Substituting (15), 
we find 

[r ] ~ = q ~  (Xo) = ( ; ,~-~ (Xo)) -~ ( ~ , - ~ ( y ) ) - ~  . ( 1 6 )  
Y6V 

Note that by virtue of Parseval's equation 

~ , + .  . . +~'=I I~o lP=t ,  (17) 
i.e., the total variation of the measure d~ (~) is i. 

The central problem of localization theory is the behavior of the spectral measure dw ~) 
as N § ~. In realistic models, there exists the weak limit limd~(N)=d~t, and localization 
means that the limit measure d~ is a purely point measure, i.e., consists of atoms 
distributed everywhere densely on the spectrum of the limit operator H = lim H V. In our 
case, as we have already noted, there exists neither the limit operator nor the limit 
spectral measure. Nevertheless, here too we can pose the localization problem, understanding 
localization as absence of dissipation of the measure d~ (~) as the volume V becomes larger. 

*It can be assumed that V=Z~, though the topology of the lattice is unimportant for what 
follows. 

#Without loss of generality, we have set o = i. 

**With unit probability, ~v~0. For if we had yv=0, then by virtue of (12)~(x).(~-~(x))~0, x~V. 
But the factor %-~(x) vanishes at not more than one point x0, since ~(x)~$(y) with probability 
1 for x~y. Then either ~(x)~0, or ~(x)#O at precisely one point x0, and then ~v~0. 
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This last means that the measure d~ CN) in the limit N + ~ remains basically concentrated 
(in some sense) in a finite number of leading atoms. 

The concept of volume-uniform localization is made more precise by the following 
definition. 

DEFINITION. We denote 
h 

i = 1  

where ~i,N are  the  atoms (16) ,  a r ranged in dec reas ing  order :  
say that there is (uniform in N) localization: 

a) on the average, if 

lim lim inf<ah ~> = t 
h - + ~  N - + o a  

(here, <...> is the symbol of averaging over the distribution ~); 

b) in probability, if for any s > 0 

lim lim inf P{oh N>l--e} =1; 

c) almost certainly, if 

UI,N ~ ' ' '  ~ ~N,N" We shall 

P{limliminfoh,~=t}=l. 

I t  i s  easy to show t h a t  (18) and (19) are  e q u i v a l e n t  to  each o the r  and, in t u rn ,  
follow from (20). 

LEMMA i.i. The mathematical expectation of any atom (16), i = I, ..., N, does not 
depend on i, and <~i > = N -I. 

Proof. We fix i and denote the atom ~i by ~(x0) to emphasize the dependence on x0. 
Note that by virtue of (16) 

E ~,(x)=t 
x 6 V  

(18) 

(19) 

(20) 

and that the distribution of the random variable tz~(x), and, hence, the mean <~(x)>, does not 
depend on xEV. Therefore 

s <~ (x) >=N<~ (x0) >=1, 
x ~ V  

whence <~(Xo)>=N-'. 

Note that Lemma i.i in no way indicates dissipation of the measure d~ (~). It merely 
shows that in the case of localization the main mass must be concentrated not at fixed 
but at leading (randomly distributed) atoms. 

We denote by ~ the (random) number that the random variable ~(x0) obtains when the 
random variables {~(x)} are arranged in ascending order: 

~(Xo) =~ ( . ,  ~ = )--~ I(~ (Xo) ~ (x) }. 
x O v  

It is obvious by symmetry that the random variable v does not depend on the order statistics 
of {~(o} and 

I p{~=~}=~, n=1, .,N (21) 

By means of (16) we readily understand that the leading atoms are grouped around ~v- 

PROPOSITION i.i. Let F(x) be the distribution function of the random variable g with 
density p(x), and 0 < C I s p(x) s C=, where C l and C 2 are constants. Then 

l imlimsup< s ~ > = 0 .  (22) 
~ ~ I i - v l ~  
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Proof. We consider the "right tail" of the sum in (22) and write it in accordance 
with  t he  formula  f o r  the  t o t a l  ma thema t i ca l  e x p e c t a t i o n ,  us ing  (21) ,  in t he  form 

/V--h 

i ~ v + k  n = t  i ~ n + l ~  

(23) 

where <...>~=~ is the conditional mathematical expectation under the condition {v = n}. Sub- 
stituting here (16) and taking into account the fact that v does not depend on the order 
statistics of ~(,),...,%(N) (which enables us to go over from the conditional mathematical 
expectation to the unconditional expectation), we obtain, using (14), 

<~>~=~ \ ~ i  i $(i)-~(,~) ' (24) 

We consider random variables u i with distribution uniform on [0, i], setting u i ='F(~i) , 
i = 1 ..... N (then ui~)=F(~(0)). By hypothesis, the derivative F'(x) = p(x) is bounded 
and separated from zero, and therefore 

> (25) 

To c a l c u l a t e  the  ma themat i ca l  e x p e c t a t i o n  on t he  r i g h t - h a n d  s i de  of  (25) we use the  w e l l -  
known fact (see, for example, [17], Chap. 3) on the identity of the distributions of the 
random vectors (u(~),.,.,u<~)) and (SJS~+~,...,SN/SN+~), where S~=N~+...+~]~, N~,...,N~+~ are 
independent identically distributed random variables with exponential distribution. 
Bearing in mind that S i has a gamma distribution with density Pi(X) = xi-~e-X/(i -- i)!, 
we obtain 

2 2 ~ 2  

(26) 

Thus, by v i r t u e  of  ( 2 4 ) - ( 2 6 )  

const 
<~>~=~ 

U - n - l )  (i--n-2) " 

Substituting in (23), we obtain 

<Z> limsup ~ ~ < l i m ~ = O .  

The "left tail" of the sum in (22) can be treated similarly. 

Remark. The proof of Proposition i.i can be readily extended to a more general case, 
for example, when the density p(x) is continuous and positive on (a, b), where a=inf{x:F(x)> 
0}, b=sup{x:F(x)<1}. For this, it is merely necessary to prove the estimate (25). Note that 
for any e > 0, setting N o = [sN], we can assume that 9 ~ No, and the index i in (23) varies 
in the range N o ~ i ~ N -- N o (at the same time, by virtue of (21) and Lemma I.I, the 
error does not exceed 2e). But by virtue of the law of large numbers ~(~0)~F-1(g)>a,~(x_~01~ 
F-1(1-e)<b, and therefore for N o ~ i ~ N -- N o + 1 all ~(0 lie with high probability in a 
certain segment, and there, by virtue of the continuity and positivity of p(x), the 
inequalities C I ~ p(x) ~ C 2 do hold. 

Thus, Proposition i.I establishes the fact of volume-uniform localization on the 
average for our model. The more subtle problem of almost certain localization still 
remains open. However, the following model example gives grounds for expecting a negative 
answer. 

Example (for details, see [18]). We consider a random measure d~ (~) with atoms di = 
CNU~ 2, i = i, ..., N, normalized by the condition ~z + ... + ~N = i. Here, uz, u 2 .... 
are independent identically distributed random variables with uniform distribution on 
[0, i]. It is easy to show that for this measure Lemma i.I and Proposition I.i hold. 
In addition, one can show that for the maximal atom ~l,N = max{~1, "'', ~N} the following 
limit relations hold with probability i: 

limsup ~,N~I, liminf ~,~=0. 
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This means that, on the one hand, almost certain localization holds with respect to some 
(random) subsequence N' § ~ and is expressed very strongly, since the entire mass is 
concentrated in one atom. On the other hand, there exists another (also random) subse- 
quence N" + ~ with respect to which the measure d~ (N) dissipates, since all the atoms ~i 
are uniformly small. 
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