
t-~=e~(t+i)-l~--t+o)(t+l), q-~t=e~/~q~q+(o)/2)q. 

Then instead of (18) we have different C O and C: 

P_~q Co=-(t+l) ,z+ c = - ( t + O  + + 
2 ' 

t h i s  b e i n g  m a n i f e s t e d  on t h e  r i g h t - h a n d  s i d e  o f  (13)  in  t h e  a p p e a r a n c e  of  t h e  domain o f  
i n t e g r a t i o n  [0 ,  e ~ -- 1 ] .  

We thank  G. Y. L a v r e l a s h v i l i ,  B. A. Magradze ,  h.  V. S h u r g a y a ,  and M. h.  E l i a s h v i l i  
f o r  h e l p f u l  d i s c u s s i o n s .  
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HAMILTONIAN FORMALISM OF WEAKLY NONLINEAR HYDRODYNAMIC SYSTEMS 

M. V. Pavlov 

A study is made of systems of quasilinear equations that are diagonalizable 
and Hamiltonian and have the condition 8ivi ~ 0, where u~ = vl(u)u~, i = 

i, ..., N. The conservation laws of such systems are found, together with 
the metric and Poisson bracket. For definite examples it is shown how 
solutions are found. The conditions for the existence of solutions and 
continuity of commuting flows are found. 

The fundamentals of the Hamiltonian formalism for systems of quasilinear equations 
were first laid in [i] for the description of averaged analogs of completely integrable 
problems (Korteweg-de Vries equation, sinh-Gordon equation, etc.). This therefore led 
to the identification of a class of equations possessing a Hamiltonian and Poisson 
bracket. The further development of this mathematical formalism occurred in [2], where 
it was shown that if the original system is also diagonalizable then it possesses an 
infinite set of conservation laws. Moreover, it was also shown that for this conditions 
of semi-Hamiltonicity are sufficient (see [2]). However, examples of application of the 
developed theory did not exist. 

All the necessary basic definitions are given in [I-4]. The condition given in [2], 

a.( am, ~_ / a., \ 

is called semi-Hamiltonicity of the system. 

For the existence of a Hamiltonian formalism, it is also necessary for the metric to 
have zero curvature (see [i]). As was communicated to the author by S. P. Tsarev, the 
only identically nonzero components of the Riemann tensor are R~k i =0 in the notation 
of [5] or [6]. 

The notation in the present paper corresponds to that of [1,2]. 

i vi(u)u~ we seek conservation laws in the form For the system u t 

of a (fvg,  
Ot Ox 

(i) 

L. D. Landau Institute of Theoretical Physics, USSR Academy of Sciences. Translated 
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where fi = fi(u). After differentiation with respect to x and t, we obtain 
N 

l , ~ * v  - - -  =0. 
Ott ~ 0 u ~ 0 a ~ / = 

(2) 

Each term in this sum is equal to zero. Since we consider Hamiltonian systems, it follows 
from (2) that 

]i=l/g,,%,(U~), k=/=i, (4) 

where gii is the metric that occurs in the definition of the Poisson bracket (see [I] or 
[2]), and Pi(u i) is an arbitrary function. We recall 

DEFINITION. A weakly linear system is defined as a diagonal system of quasilinear 
equations with the condition 8ivi - 0 (see, for example, [7]). 

It can be seen from this that conservation laws of the form (i) exist only for weakly 
nonlinear systems. Thus, 

N N 

g E - 0. H= ~/-~tk(a~), G= ~g~tk(~h)Vk(U), where  o r =  0---~ (5)  

i = v i ( u ) u ~  i = 1, . . .  N, where ~i v i  ~ O. is a conservation law for the system u t , , 

As can be seen from (5), the condition of Theorem 3 of [2] on the completeness of the 
hydrodynamic integrals is satisfied. The integrals we have found generate a complete set 
of commuting flows in the given system. 

A characteristic feature of weakly nonlinear systems is the possibility of performing 
the calculations in many cases explicitly and completely. 

We consider the system of two equations (see [2]) 

Fiki = O~V~ = O~ln~g~. (6) 

In  our  c a s e ,  t h i s  r e l a t i o n  i s  r e a d i l y  i n t e g r a t e d ,  whence 

g,= ~(a) g== B (v____~) (7) 
(v+.-vO ~' (v~ -v~)  ~ ' 

p and ~ are found from the condition Rkk ii = 0, 

H= A(a)+B(v) (8)  

where A and B are arbitrary functions. 

The s i m p l e s t  example  o f  a s y s t e m  o f  N e q u a t i o n s  i s  u~: = v i ( u ) u  , where v~(a)= u~--a~. 

O~v'=O, k=i,  (3)  

For it, 
fr 

~'(u') =E  A~(uD g ,  = -.. H ( 9 ) 

Hydrodynamic systems with rational v i, as, for example, (9), are more readily obtained as 
the semiclassical limit in the sense of [8] of the original equation rather than as the 
averaged equations from [i]. 

It was shown in [2] that semi-Hamiltonian (and, afortiori, Hamiltonian) diagonalizable 
hydrodynamic systems are described by the implicit formula 

w~(u) = x +  v~(~) t, ( 10 ) 

where w i i s  a commuting f l o w .  However,  i t  was n o t  n o t e d  in  [2] t h a t  in  t h e  c a s e  o f  weak ly  
n o n l i n e a r  s y s t e m s  ( t h i s  i s  t h e  o n l y  e x c e p t i o n  t o  Theorem 6) f l o w s  w i t h  8 i  wi ~ 0 do n o t  g i v e  

i and u~ become i n f i n i t e  the solutions (i0) since u x 
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PROPOSITION. A weakly nonlinear system has solutions generated by commuting flows 
with the condition 8iwi ~ 0. 

The proof is by parallel differentiation of (I0) with respect to x and t. 

We consider in more detail example (9). The Born-Infeld equation can be written in 
the form 

{ u ~ = ~ s  ( i I ) 
U 2 UI~ 2 t ~ x. 

Systems of two equations identically satisfy the condition of semi-Hamiltonici~y, and 
therefore the metric has the form (7). From the requirement Rkk i = 0 and the definition 

of the metric we obtain up to a constant for the Hamiltonian system (Ii) 

g.=-g~=~/(~,-~)~. (12) 

Since the operation of covariant differentiation is defined, w i = viViH, where H in (8) and 
(9) (see [2]), we can find the commuting flows 

w'=(a~-u~)A ~ ( ~ ) - A '  (a,)-B' (~),  w ~=- (u~-u~)B" (~z)-A' (a,)-B'(~z). (13)  

T a k i n g  w i = v i ,  we f i n d  A~ and B ~  i . e . ,  t h e  H a m i l t o n i a n  o f  t h e  s y s t e m  ( 1 1 ) :  

H= A~ ~ Ao ~ o Bo 
a, - -a ,  ,, A ( a , ) = - - ~ - u , ,  B ( a ~ ) = - ~ - a 2 ,  A o + B o = - t .  

From the condition 3i wi ~ 0, we find a restriction on the commuting flows for the system 
(11): 

A"(a,)*O, B "  (u2) ~0 .  (14) 

It can be seen that the system (ii) is a special case of the system (9) for N = 2. It is 
natural to consider the multicomponent case 

t t j ~ ( 2  t~k-t~u)ux ~, Fik i ~ - -  
1 m(u ~) 

Ig~ -- 17, h 

i From the condition Rkk i = 0 for N = 3 we find that ~i, ~j, Ok are constants related by 

+--I =0, <is) 

i . e . ,  t h e  m e t r i c  i s  a o n e - p a r a m e t e r  f a m i l y .  For  N > 3,  we can  r e a d i l y  show t h a t  m e t r i c s  
o f  z e r o  c u r v a t u r e  do n o t  e x i s t ,  i . e . ,  t h e  s y s t e m s  (9 )  a r e  s e m i - H a m i l t o n i a n  b u t  do n o t  h a v e  
a H a m i l t o n i a n  f o r m a l i s m .  

We consider the two systems 

u / =  (u%~ ~) a f  , 

u, j =  ( u~ + u ~) u2, 
u, ~= (u~+u ~) u2, 

UtJ~ UlUktX.~ 

Both systems are a generalization of (ii) to the three-component case. 
goes over into (ii) for u k = O, and (16b) does so for u k = i. For them, 

g r,~ 1 ~, A~(u i) 
= g~ H = 

U~--U k 

'=' 1[ (~m-~,) 

The commuting flows have the form 

w ~ ~- I A , " ( a ~ )  (~ , -u j )  (u , -u~)+lA, ' (v?)  (u~-u;,l- 
tx~ Ixk 

(16a) 

(16b) 

The system (16a) 
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---i A/(uJ) (~--uh)----J-i A/ (u  ~) (~+u~-2u~)+ 2--A,(a~)+--2A~(~J)+2--Ah(uk). (17) 

As in the previous example, the restriction on the commuting flows is A~(u i) ~ 0, etc. 
Both systems (16a) and (16b) are weakly nonlinear, and therefore from Aq(u i) ~ 0 we obtain 
for the Hamiltonian of the systems (16a) and (165) 

A, (~') =N,~, (18) 

where N#~,+Nj/~j+NJ~k=i (in case (16a)), and 

M~ u z A, (u') =-~- ~, (19) 

where M~/~i+Mj/~+Mk/~k=t (in case (16b)). 

It can be seen from (13) and (17) that if the arbitrary functions A i are twice 
differentiable then the flows are also twice differentiable functions. 

I thank S. P. Tsarev for friendly assistance in the preparatory stage of this work, 
P. G. Grinevich for numerous and helpful discussions, and S. P. Novikov for stimulating 
interest in the work. 
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