
G A U G E  T H E O R I E S  F O R  G R A V I T Y  O N  A L I N E  

R. Jackiw 

In Memoriam M. C. Polivanov 

i. INTRODUCTION 

Professor M. C. Polivanov and I met only a few times, during my infrequent visits to the Soviet Union 
in the 1970's and 1980's. His hospitality at the Moscow Steklov Institute made the trips a pleasure, while 
the scientific environment that he provided made them professionally valuable. But it is the human contact 
that I remember most vividly and shall now miss after his death. At a time when issues of conscience were 

both pressing for attention and difficult/dangerous to confront, Professor Polivanov made a deep impression 
with his quiet but adamant commitment to justice. I can only guess at the satisfaction he must have felt 
when his goal of gaining freedom for Yuri Orlov was attained, and even more so these days when human 
rights became defensible in his country; it is regrettable that he cannot now enjoy the future that he strived 
to attain. 

One of our joint interests was the Liouville theory [1, 2], which in turn can be viewed as a model for 
gravity in two-dimensional space-time. Some recent developments in this field are here summarized and 
dedicated to Polivanov's memory, with the hope that he would have enjoyed knowing about them. 

We study lower-dimensional gravity both for pedagogical reasons - one expects that the dimensional 
reduction affords sufficient simplification to permit thorough analysis, while still retaining enough use- 
ful content to inform the physical (3 + 1)-dimensional problem - and also, if one is lucky, for practical 
applications, e.g., idealized cosmic strings are described by (2 + 1)- dimensional gravity, while the still 
lower-dimensional models are used in statistical mechanics. 

The drastic dimensional reduction to (1 + 1) dimensions - gravity on a line, i.e., lineal gravity - is not 
1 devoid of interest, provided dynamical equations are not based on the Einstein tensor G~,, = R~,~ - -~g~,,R, 

which vanishes identically in two dimensions. 
In a proposal of several years ago [3], it was suggested that gravity equations be based on the Riemann 

scalar R, the simplest entity that encodes in two dimensions all local geometric information about space- 
time. Moreover, in an action formulation it is necessary to introduce an additional scalar field, which acts 
as a Lagrange multiplier that enforces the equation of motion for R. Thus we are dealing with scalar-tensor 
theories, or - to use the contemporary string nomenclature - "dilaton" gravities. 

Since the initial proposal, various models have been studied. Here I shall describe two that are selected 
by their group theoretical properties: they can be formulated as gauge theories based on groups relevant 
to space-time: de Sitter or anti-de Sitter (in (1 + 1) dimensions both groups are S0(2 ,  1), although the 
geometries are different) and Poincar~. The first of these is the one proposed originally [3]; it is governed 
by the action 

g b  

] d2z v/Z-g~(R - A) . (1) I1 

The second is "string-inspired" and has been recently studied for purposes of modeling (on a line!) black 
hole physics [4]; its action is 
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(Notation: t ime and space carry the metr ic  tensor  g,~ with signature ( 1 , - 1 ) .  The  two-vector x" = (t, x) 
will be frequently presented  in light-cone components  x + - 1 _ ,2~(t :t: x). Tangent  space components  are 

l abe led  by Lat in  let ters  a, b, . . .  , and the  Minkowski metr ic  tensor  h~b = d i a g ( 1 , - 1 )  raises/lowers these 
r " �9 a b  01 indices. Also we use the  ant i -symmetr ic  tensor e , e = 1.) 

in  (1), R is the scalar curvature  built  f rom g,~, r] is a world scalar Lagrange mult ipl ier  related to the 
dilaton, while A is a cosmological constant.  In (2) we temporar i ly  use an over-bar to denote  a differently 
scaled metr ic  tensor  g ~  f rom which R is constructed,  while ~ is the  dilaton. Formula  (5) arises natural ly  
from string theory, res tr ic ted to a two-dimensional  target  space, with  the ant i -symmetr ic  tensor  field iden- 
tically vanishing, tn  the  string context ,  ma t t e r  is taken to couple to g ~ ;  for our  purposes  in the  absence of 
ma t t e r  it is convenient  to redefine variables by g , .  = e2~g~, , r] = e -2~'. T h e n  (5) becomes 

h = / - A) (2) 

but  it is to be r emembered  tha t  because of the redefinition, the "physical" metr ic  tensor is g ~ / ( - 2 r l ) .  Note 
tha t  (2) is imzariant against shifting r] by a constant ,  because x / - ~ R  is a total  derivative. 

It is seen tha t  the two models  (1) and  (2) differ in the placement  of the Lagrange mult ipl ier  with the 
cosmological term: in (1) r] multiplies A; in (2) the r / factor is absent f rom A. Of course in the limit A = 0, 
the difference disappears.  

We now describe the interest ing gauge group s t ructure  of (1) and (2) which we name  (anti) de Sitter 
gravity and extended Poincar~ gravity, respectively. 

2. (ANTI) DE SITTER GRAVITY 

The  equat ions  of mot ion  tha t  follow from varying r] and g ~  in (1) are 

R = A  

T~ 2 A 
- )7  + = 0 . 

(a) 

(4a) 

The second equation,  with  :D, the space-t ime covariant derivative, can be decomposed  into traceless and 
trace par ts  

(T~:D, - ~g,~T~2)rl = 0 (4b) 

(~D 2 - A)r / = 0 . (4c) 

The  above geometr ic  dynamics  may  be presented in a gauge theoret ical  fashion [5]. To this end one uses 
the (anti) de Sit ter  group with Lorentz generator  J and t rans la t ion generators Pa satisfying the  S0(2 ,  1) 
algebra (for a ~; 0) 

A 
[Pa, J ]  = eabP6, [Pa,Pb] = - -~eabJ  �9 (5) 

The  gauge connect ion one-form is in t roduced  A = A ,  dx ~ and expanded in terms of the generators,  

A =eaPa + w J  , (6) 

where e~ is the  Zweibein and w~ is the spin=connection. The  curvature  two-form 

F = dA + A 2 (7) 
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becomes 

F :  f~Pa + f J = (De)~Pa + (dco-  ~eA =e~beb,)j 

(De) a =_ de ~ + e"bcoe b 

(8) 

(9) 

It is seen that dw is the scalar curvature density and fa  is the torsion density, each expressed in terms of 
e ~ and co, which at this stage are independent variables: 

The Lagrange density 

2 

/2~ = E r]AFA = r/~(De)~ + r/2 (dco - A--eaeabe b) 
4 

A = 0  

r A = ( f ~  f ) ,  = (Va, 

( l o )  

is gauge invariant: the three field strengths F A transform covariantly according to the three-dimensional 
adjoint representation, while the Lagrangian multiplet triplet r]A transforms by the coadjoint representation. 

The equation obtained from (10) by varying r]~ gives the condition of vanishing torsion and allows 
evaluating the spin connection in terms of the Zweibein 

w=e~(haaeU~O, ebv)/dete . (11) 

The equation which follows upon variation of r]2 regains (3) once (11) is used. Variation of e ~ and co 
produces equations for the Lagrange multipliers r]~ and r]2, respectively, the latter of course coinciding with 
r] in the geometric formulations (1), (3) and (4) 

A 
dT]a + eab w rib -- -~eabr]2e b = 0 (12a) 

dr]2 + r]aeab eb = 0 . (12b) 

Upon taking a space-time covariant derivative of (12b) and using (12a) to eliminate r;~, we recover (4). 
Finally we see that when w is eliminated from s with the help of (11), so that the torsion (9) vanishes, 
what remains is the Lagrange density of (1), expressed in terms of Zweibeine. 

Thus the geometric formulation of this gravity theory is contained within the (anti) de Sitter group 
theoretical framework for solutions with det e # 0, but see below. 

Explicit classical solutions to the equations are easy to find. Working within the geometric framework, 
we use coordinate invariance to choose a conformally flat metric tensor 

g , .  = huu exp 2cr . (13) 

Then (3) becomes the Liouville equation, 

A 
[-](r = -~ exp 2~r (14) 

studied in [1]. Its general solution depends on two arbitrary functions of the two light-cone variables, F(x+),  
a(x-), 

exp2~r = F ' ( x + ) G ' ( x - )  (15) 

whose derivatives fulfill the consistency condition F'G' > 0. But the residual coordinate invariance within 
the conformal gauge allows choosing F ( x  +) = z +, G ( x - )  = x - ,  hence 

1 
exp 2~ -- (16) (i_  x2)2 
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In conformal gauge, (4b) reduces to 

O,V~ + O~V u - hu~h~O~V~ = 0 (17) 

where V, is defined by 
V~ exp 2a = Our ] . (18) 

Equation (17) is just the (flat-space) conformal Killing equation with solutions in terms of arbitrary functions 
of a single light-cone variable: 

v _  = v +  = . ( 1 9 )  

Finally, the remaining equation (4c) together with (18) restricts these functions, so that the solution for 77 
takes the form 

A 2 
r] = c~x ~ + ~2(1 + ~x ) (20) 

1 - ~x 2 

where ~a is a constant two-vector and ~2 is a constant scalar. 
The Zweibein and spin connection of the gauge theoretical formulation are given by related formulas. 

The former, the "square root" of the metric tensor, becomes (apart from an arbitrary Lorentz transformation 
on the tangent-space indices) 

1 
a a _ a ( 2 1 )  e u = 5 u exp cr A 2 5U ' 

1 - ~ x  

while the latter is 
w. = 0z . (22) 

The Lagrange multiplier r]2 coincides with r], while Eq. (12) for r]a is solved by 

r]~ exp cr = e~ '0ur  ] . (23) 

Of course the general solution is an arbitrary coordinate transformation of the above. 
Finally we observe that the gauge theoretical formulation allows an alternative group theoretical pre- 

sentation of solutions. The field equations following from (10), upon respective variation of r]A and A, 
a r e  

r = 0  (24) 

dH + [A,H] = 0 ; (25) 

A, F and H = r]ahabp b -~- 2r]2J belong to the S 0 ( 2 ,  1) algebra (the factor 2 /h  is a consequence of the group 
metric)~ Equation (24) implies that A is a pure gauge given by an arbitrary element U of the S 0 ( 2 ,  1) 
group, 

A = U - l d U  , (26) 

while the Lagrange multiplier is then determined by (25) to be 

H = U- I ,~  U , (27) 

where ~ is a constant element in the algebra. The explicit group and algebra elements that correspond to 
the above solution, Eqs. (20)-(23), are 

= Pb + J) (28) 

and 
= 2   obp - 2J (29) 

A 
U is unique up to a constant gauge transformation. 

Within the gauge theoretical framework, an even simpler solution to (24) and (25) is available: A = 0, 
H = ~5 which makes no sense geometrically: not only det e, but both the connections e" and w vanish! 
But' in fact, use can be made of such solutions: when presented with a geometrically singular configuration, 
perform any gauge transformation producing non-singular connections, for example, with the group element 
U above. So we see that the group theoretical framework, even in its det e = 0 sector, contains adequate 
information for encoding the gravity theory. 
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3. E X T E N D E D  POINCARI~ G R A V I T Y  

Equations of motion of the string-inspired gravitational theory (2) are, from varying r 1 

R = o  (30) 

and from varying g ~  

which is equivalent to 

A 

A 
:D,~D, rl = ~-g~v . (31b) 

Note that (31a) differs from (4a) by the absence of r 1 in the last term. 
To give a gauge theoretical formulation [6], we make use of the centrally extended Poincar6 group, 

whose algebra is 
[P~,J]=%bpb, [Pa,Pb] =e~bI (32) 

where the central element I commutes with P~ and J. Consequently the connection A and curvature F 
now become 

A = e~Pa + w J  + aI 

F = dA + A 2 = f~P~ + f J  + gI 

= (D )aP  + d.,J + (da +   a obd)Z 

(33) 

(34) 

Here a and g are the additional connection and curvature associated with the central element in the algebra�9 
This magnetic-like extension of the Poincar6 group may be viewed as an unconventional contraction 

of the de Sitter group: The ordinary Poincar6 algebra (Eq. (32) without the central element) is the A --* 0 
contraction of the S0(2, 1) algebra (5). However, owing to the well-known ambiguity of two-dimensional 
angular momentum, in (5) one may replace J by J - 2I/A before taking the A ~ 0 limit, which then leaves 
(32). 

The extension reflects a 2-cocycle in the composition law for representatives of the Poincar6 group. If 
the group acts on coordinates x" by 

X a ) -~a = . A ~ a b x b  _~ qa, (35a) 

where 2td is a finite Lorentz transformation 

M a b = 6 a b cosh a + e a b sinh a (35b) 

and qa is a finite translation, the composition law for these is 

M(12) = M 1 M 2  (36a) 
q(12) = ql + M l q 2  (36b) 

However, the composition law for a representation G(.M,q) containing the extension (32) in its algebra 
acquires a 2-cocycle 

~-q;eab(.A/[lq2) b G(M1M2, + .Adlq2) G(MI,ql)G(M2~q2) = exP{2 } ql (37) 

(I  is represented by i = ~ZT).  
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A finite gauge t ransformat ion ,  generated by the gauge funct ion 0 ,  

O = OaP~ + o~J + 3I  , (38) 

produces the following t ransformat ions  on the connections: 

ea ---~ -~a = ( . ,~-- l )ab(eb 2r - s ~ ~_ dOb) 

a --~ -g = a - O a e a b e  b - -  J'o2W -t- d3 + l_doA%bOb 
2 2 

(39) 

The mult iplet  of curvatures  F A = (f~, f,  g) t ransforms by the adjoint  4 x 4 representa t ion of the  extended 
group, 

f= __.+ 7 ~ = ( . / ~ - l ) a b ( f b  + ebcOCf) 

f --* 7 = f (40) 

g --+ ~ = ~ - O~e~bf b - ! 0 2 f  
2 

or 

FA ---+ ---ffA = E ( U - 1 ) A B  F B '  U = 1 0 (41) 
B = 0  \ 0%cd3/ldb - -02 /2  1 

The upper  left 3 x 3 block in U comprises the adjoint  representat ion of the conventional  Poinca% group 
with q" of (35) identified wi th  -e"~0 c, while the four th  row and column arise from the extension. Note that  
in the above realization of the  gauge action on F ,  the extension is not visible: I is represented by O. On 
the other hand ,  an addi t ional  connect ion and curvature (a, g) are present.  

In this representa t ion,  the  ex tended  algebra possesses a non-singular  Killing metric,  which is unavailable 
wi thout  the  extension 

hAB = 0 0 - 1  (42) 
0 - 1  0 

It is t rue tha t  TUhU = h; this allows raising and lowering the indices (A, B). 

r?A, 

An invariant Lagrange density is now const ructed  with an extended mult iplet  of Lagrange multipliers 

3 

s : E r~AFA----rla(De)aA-rDdw-4-r13(da "4-~eaeabe c) 
A=O 

FA = ( fa ,  f ,  g), r], = (rla , rl2 , rj3 ) , 

(43) 

which obey the  coadjoint  t ransformat ion  law, 

3 

7]A ~ -~A = E r]BUBA 
B=0 

(44) 

or in componen ts  

l"]a ~ ~a : (T]b -- ~3CbcOC) "/~ba 

?']2 --4" ~2 -~" r]2 -- I]a~ab Ob -- 2T]3 02 

7 /3~f f3=773  �9 

(45) 
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Using the invariant metric (42), other group invariants may be constructed 

3 

y 2 =  Z *FAhABFB (46) 
A,B=O 

3 2 

A,B=O 

1 _#lJL.A where *i mA is the 0-form ~e r~v , dual to the 2-form F A. 
We recognize in (43) the torsion (De) a mid curvature dw densities, which vanish as a consequence of 

varying r/~ and r/2, respectively. Thus Eq. (30) is regained. The Lagrange multiplier r] in (2) corresponds 
to r/2 in the present formulas and the equation for it, obtained by varying w, is as in the (anti) de Sitter 
model, (12b), 

dr/2 + r/~e~be b = 0 , (48a) 

while the equation for r/~, obtained by varying e ~, differs from (12a), 

d ~  + eabcorlb + ~3s eb -~ 0 . (48b) 

We need a value for r/a to close the system (48). The equation for that multiplier is obtained by varying a, 

dr/a = 0 , (48c) 

and a constant, cosmological solution 

renders (48b) similar to (12a), 

A 
(48d) 773- 2 

A ~ 0 (48e) drl~ + e~bwr/b -- ~e~be = 

except that there is no factor of r/2 in the last, cosmological term of (48e). This, of course, has the 
consequence that when (48a) and (48e) are combined as before, the second-order equation that emerges for 
rl = r/2 reproduces (31). 

The remaining equation of the gauge theoretical formulation, obtained by varying r/a 

da= 1 (49) --  - -ea  ~ab eb 
2 

and allowing evMuation of a, has no counterpart in the geometric formulation. Equation (49) can always 
be locally integrated because the right side is a two-form, hence closed in two dimensions. However, in 
general, there will be singularities in a, since upon integrating (49) over a two-space, the right side gives the 
total "volume," which could be a well-defined non-vanishing quantity, while the left side always integrates 
to zero if the manifold is closed and bounded, and a is non-singular. 

Note that upon eliminating w in L:~ with the zero-torsion equation (De) ~ = 0 and evaluating rla at 
-A /2 ,  L;~ coincides with the Lagrange density in (2), now expressed in terms of Zweibeine, apart from the 
total derivative - A / 2  da, which does not contribute to equations of motion. 

Thus, here again, the group theoretical formulation reproduces the geometric one for solutions with 
det e r 0, but again see below. However, the former is more flexible: Eq. (48c) is satisfied with vanishing 
r/a; this corresponds to a vanishing cosmological constant. Thus the gauge theory built on the extended 
Poincar6 group possesses as a solution a non-eztended system. It is interesting therefore that here the 
cosmological term is an integration constant, and not inserted a priori into the theory. 

Finding explicit solutions is straightforward. In the geometric formulation, (3) is solved by a flat metric 
tensor 

g . .  = h . . .  (50) 
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Then  (31) immedia te ly  gives 

A (51) = M - - 

with M and x0 being integrat ion constants,  the former reflecting the . - t rans la t ion  invariance ment ioned 
earlier. 

Interest  in the  model  [4] derives precisely f rom the above "black-hole" solution with mass M [in 
terms of the "physical" metr ic  g u ~ / ( - 2 . ) ] ,  located at x0. An arbi trary coordinate  t ransformat ion  of this 
configuration produces  the general solution. 

The  gauge theoret ical  counterpar ts  of the above are a flat Zweibein (apart  f rom a constant  tangent-  
space Lorentz t ransformat ion)  

e .  " =5". (52) 

and a vanishing spin connect ion 
~ - 0  . 

Taking in (48c) the cosmological solution for .3 allows solving (48@ for . .  

(53) 

A 
?]a ~- ~ S a . (  xtt  -- X'~O ) (54) 

and from (48a) .2 = ~ is recovered to be as in (51). Finally (49) is solved for a 

1 
a.  = (55) 

with a pure gauge cont r ibut ion  O.X left arbitrary. The  potent ia l  in (55) corresponds to a constant  "magnetic  
field," as is appropr ia te  wi th  our "magnetic-like" extension of translat ions.  

Note the  two invariants defined in (46) and (47): y2  vanishes since F A does, while M is recognized as 
the "black hole" mass. 

The  gauge theoret ical  solution may, of course, also be presented in a group theoret ical  fashion, since 
the equat ions are of the  same form as in (24) and (25), with all quanti t ies belonging to the extended algebra 
and group. The  explicit formulas, corresponding to the "black hole" solution, Eqs. (50) - (55), are as 
follows. The  group element  U tha t  leads to the pure gauge connection A = U - l d U  is 

U = exp x a p .  (56) 

up to a constant  gauge t ransformat ion.  The  constant  algebra element �9 tha t  gives H = .ah"bpb  -- . a Y  - 
U~f = u - l q ~ u  is (placement  of r]2 ar_d .3 dic ta ted by the group metric (42), viz. r] A = h A B . B )  

A A M Ax2" 
4 0 ] I .  (57) 

As in the  (anti) de Sit ter  model ,  we see tha t  after a fur ther  gauge t ransformat ion  we pass to the 
geometrically singular  configuration A = 0, H = ~. This gives an especially succinct account of the  relevant 
geometric information:  @ encodes the integrat ion constants,  which characterize the intrinsic geometry  - 
the cosmological constant  A, the "black hole" mass M and location x0. A geometry  is built  wi th  these 
characteristics once a gauge t ransformat ion  is performed,  say with the  above U, to obta in  non-singular 
connections. 

4. C O N C L U S I O N  

The  two models  considered here are special: their  geometric  dynamics  possess a gauge theoretical  
formulat ion.  The  extended Poincar~ model  exhibits the  intr iguing possibility of a cosmological t e rm that  
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is an integration constant, as are the "black hole" mass M and location x0; all three are encoded in the 
Lagrange multipliers of the theory. 

Both models can also be obtained by dimensional reduction from (2 + 1) dimensions: To obtain 
(anti) de Sitter gravity in its geometric formulation one begins [3] with the Einstein theory/Hilbert action 
(with cosmological term), suppresses dependence on the third dimension, sets g,2 to zero for # = 0, 1 and 
g22 to r/2; for the gauge theoretical formulation one starts with the Dreibein-spin connection form of the 
theory, which also is equivalent to a Chern-Simons, 0(2,  2) or 0(3,  1) model [7]. Extended Poincar5 gravity 
can be similarly constructed, but the higher-dimensional theory has to be suitably extended by an Abelian 
ideal. Indeed it is found that both the (anti) de Sitter and extended Poincar4 (1 + 1)-dimensional theories 
arise as different dimensional reductions of a aingle, extended (2 + 1)-dimensional gravity [8]. This and 
another interesting topic - the coupling of matter consistently with the gauge principle [9] - are beyond 
the scope of our review. In yet a further investigation one could study non-topological theories in which 
invariants (46) and/or (47) are added to the Lagrange density (43). 

In conclusion, we note that dynamics determined by a group has been familiar in physics since the 
invention of the Yang-Mills theory. However, the examples described here offer a new possibility: in the Lie 
algebra that determines a gauge theory one can allow an extension. This gives rise to richer dynamics within 
the same group theoretical structure, and in the gravity model studied above produces the cosmological 
constant. 
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