
SHOCK WAVES IN ONE-DIMENSIONAL MODELS 
WITH CUBIC NONLINEARITY 

R. F. Bikbaev 

Shock waves are described qualitatively for a class of one-dimensional models with cubic nonlinearity (of the type of the modified 
Korteweg--de Vries equation): ut-6u2ux+3,Uxxx=J, Uxx . Both the integrable and the nonintegrable case are considered. The 
behavior of a shock wave in the limit t--,oo is considered. 

INTRODUCTION 

The analytic description o f  shock waves is a classical problem of  mathematical physics that goes back to Riemann. 

Traditional examples apply to gas dynamics. In these examples, the mathematical representation of  a shock wave is a 

discontinuous (generalized) solution u(x, t) of  a partial differential equation. 

From the physical point of  view, such solution behavior is characteristic for models without dispersion and without 

viscosity, for example, for the ordinary wave equation utt-Uxx=O. In the wave equation, discontinuities present in the initial 
condition propagate with constant velocity, but "new" discontinuities are not formed. The reason for this is the linearity of  the 

wave equation. 
In nonlinear problems of  gas dynamics and hydrodynamics, the formation of  new discontinuities is associated with the 

phenomenon of  "breaking." 
As an illustration, we consider the modified Hopf equation 

U~ - 6u2u~ = 0 (1) 

with a smooth initial condition monotonic in X having the form 

u(z ,  0 ) . ~  u+, z ~ +oo, (2) 

0 _< u_ < u+, u+ -- const. (3) 

It is readily seen that after a finite time t the solution u(x, t) of the Cauchy problem (1)--(2) "breaks," and a shock wave of 

finite amplitude , 4 = u + - u _  is formed and propagates "to the left" with the constant velocity 

k = - 2 . u ~ - - u  3 - .  (4) 
u+ -- u_ 

If the inequality in (3) has the opposite sign, O_<u_ > u+, the solution goes over with the passage of  time to the self-similar 

regime u=u(x / t ) ,  i.e., it becomes a "rarefaction wave" or a "simple Riemann wave" (the terminology adopted in gas dynamics 
[1]). 

For the numerical and analytic study of  shock waves in gas dynamics and hydrodynamics the method of  "vanishing 

viscosity," is used, i.e., to the original (as a rule, hyperbolic) system of equations a viscosity term of  the type UUxx, ~>0,  is 

added, and the limit ~ is investigated. The idea behind this method is that viscosity "smooths" a discontinuity, and one can 

hope for approximation of  a shock wave by smooth solutions of  a dissipative system (see [1]). 
For Eq. (1), the viscosity regularization has the form 

u ~ -  6u2u~ = ~ u ~ ,  ~ > 0! (5) 

This is the modified (cubic nonlinearity) form of the well-known Burgers equation (MB) (see [2]). 

It is easy to show that the MB equation (5) in the case (2), (3) has smooth solutions of  the traveling-wave type u ( x - k t )  
with the same velocity k < 0  as in (4). In accordance with the results of  [3], the solutions up(x, t) of  the MB model approach 

St. Petersburg Branch of  the V. A. Steklov Mathematics Institute, Russian Academy of  Sciences. Translated from 
Teoreticheskaya i Matematicheskaya Fizika, Vol. 97, No. 2, pp. 191-212, November, 1993. Original article submitted July 7, 
1992. 

1236 0040-5779/93/9702-1236512.50 �9 1994 Plenum Publishing Corporation 



certain solutions of  (1) in the limit v--,0. 
Equations (1) and (5) are models without allowance for dispersion. Allowance for dispersion introduces qualitative changes 

into the shock-wave structure. This was first noted in the fifties by Sagdeev. Gurevich and Pitaevskii (see [4]) studied in more 

detail the effect of  "dispersion" oscillations (collisionless shock wave) for the simple example Of the Korteweg--de Vries (KdV) 

equation. 
For our original equation (1), the corresponding dispersion regularization is 

u~ - 6u~u,: + 7 u ~  = 0. (6) 

For ~ = 1, this is the canonical expression of  the integrable modified KdV equation (MKdV) [4]. The shock waves in the model 
(6), (2) inherit many qualitative features of  KdV theory. However, there are also differences, and these will be described below 

(see also [5,6]). 
Finally, one can make a "synthetic" regularization of  the model (1) by taking into account both dispersion and viscosity 

effects (see [7]): 

ut - 6u2u~ + u~:~ = v u ~ ,  v > 0. (7) 

This is the MKdV--Burgers model. We must expect that, depending on the choice of  the parameter u, the solutions of  the 

model (7), (2) will preserve certain features of  the models (5) and (6). This expectation will be made more precise in the text. 
This paper is devoted to study of  the qualitative structure of  shock waves* in the models (5), (6), and (7) and clarification 

of the specific features that are introduced (compared with the KdV case) by the cubic nonlinearity in the behavior of  shock 

waves. We shall pay particular attention to the asymptotic behavior as t--,oo. The simple self-similar regime established at long 

times can be interpreted as an attractor of  our system; such an interpretation is valid not only in the dissipative but also in the 

integrable case [6,8,3,5]. 
We note that the case of  the opposite sign of  the nonlinearity, which leads to a different picture o f  shock waves, was 

investigated earlier in [5]. 
Because all the considered models are invariant with respect to the substitution u - , - u ,  we shall assume throughout that 

u_ > O. (8) 

This does not affect the generality of  our analysis. 

1. M O D I F I E D  B U R G E R S  E Q U A T I O N  

In this section, we investigate traveling shock waves 

u = u o ( z -  kt), r := z -  kt, (9) 

with asymptotic behavior (2) for the model (5). Substitution of  the ansatz (9) in (5) leads after one integration to the equation 

vu~. = F(u), F(u) = - 2 u  3 - ku - A, A = const. (10) 

Taking into account the boundary conditions (2), we find that the velocity k is given by the expression (4). It follows from 

(10) that u+ and u_ are two neighboring zeros of  the function F(u) and that the sum of all three zeros is u+ +u_ +uo=O. In 

addition, on the solution Uo(r ) we necessarily have 

sign F(u) = sign(u+ - u_).  (1 l) 

It follows from this and the form of the function F(u) that the position of  the zeros u+ and u_ in the graph of  F(u) is determined 
by one of  two possibilities (Figs. 1 and 2). 

With allowance for Figs. 1 and 2, it is more convenient to formulate the condition (1 l) in the form of  the inequality 

F'(u)[ . . . .  _ O. (12) 

We then obtain 

Proposition 1. Equation (5) has a solution o f  the type o f  a traveling "shock" wave (2), (9) in one o f  two cases: 

u+ > u_,  (13.1) 

*In all that follows, we understand by "shock wave" a solution u(x, t) with discontinuous asymptotic behaviors (2) as x--• ~ .  
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u+ < - 2 u _ .  (13.2) 

The function u(r) is monotonic and smooth with respect to r (Figs. 3 and 4). 

We shall not describe here other types of  shock waves for the MB model (5). 
The traveling shock wave considered above possesses the property of  "orbital" stability. More precisely we have 

Proposit ion 2. Consider the following perturbation of the wave (9), (13): 

u(z, O) = uo(z) + v(x), v(z) -+ O, Izl --+ o o .  (14) 

The function v(x) is assumed to decrease rapidly. Then the solution of the Cauchy problem (5), (14) has asymptotic behavior 

u(x, t) --+ uo(7 + C), C = const, (15) 

where CE R is determined by the condition 

f f f  (.(=, 0) - .0(~ + c))  d~ = 0. (16) 

The proof  of  this theorem follows from the general results of  [3]. We shall not give it here. We merely mention that the 
very fact of  nontrivial stability "up to a shift" can be readily deduced from the following heuristic argument. 

We consider a small perturbation of  the solution Uo: 

The linearized MB equation is 

u(x,t) = uo('r) + Ev(7"), c << 1, v(7") ~ 0, t71 ~ o~.  

We seek a solution of  it by the Fourier method: 

Then for the function w(z) we obtain 

By means of  a Liouville transformation 

v, - kv~ + 6 ( . ~ ) r  = . v ~ .  (17) 

v = e-~%(r). (18) 

( - ~  + 6(~]) . )  ~ + (6.g - k)w~ = ~ w _ .  

( 1  ff(6~0~ _ k)dr) w = r  ~uu o 

this equation can be reduced to the ordinary Schr6dinger equation 

with potential 

(19) 

(20) 
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v(T) = ((6%~)~ + ~ ( 6 . ~  - k)~) -~ ; •  > o, ~ ~ + ~ .  

It is known from quantum mechanics that the wave function ~b0(T) corresponding to the minimal eigenvalue X o does not 
have zeros (see, for example, [9]). On the other hand, such a function ~b o is well known - -  it corresponds to k o = 0  and can 

be calculated in accordance with the expression (19) from the solution Vo(Z ) =w(z) of  the linearization (17): 

~0(T) = o~0(~).  (21) 

[For complete rigor, we should also verify that the constructed function ~b0(r ) belongs to L2(l~), but this is an elementary 
calculation.] Since the function Vo(Z ) and, therefore, fro(7) does not have zeros on the axis T, it follows that Xo=O is truly the 
minimum eigenvalue, and therefore v0(z ) is the unique Fourier harmonic (18) that does not decrease as t ~ +  oo. However, by 
the very definition the vector Vo=OUo/O-r , which belongs to the tangent space to u0(~'), is responsible for only a phase shift 
r--,-r+ C (see [10])!. 

Proposition 2 shows that a solution of  the type of a traveling shock wave is an attractor of  the dissipative MB system. 

2. T H E  M K d V - - B U R G E R S  M O D E L  

We now discuss the structure of  the shock waves in the model (7). As before, we restrict ourselves to the class of 
traveling waves u = u ( x - k t ) .  Substituting the ansatz (9) in (7) and integrating once, we obtain 

-uu~  + ur~ = - F ( u ) ,  (22) 

where the function F(u) has the form (10). It follows from this, first, that the velocity k is, as before, given by (4). Second, 
making in (22) the substitution r----~', we obtain the equation 

u~r = Ou t,u~, U = - + T + Au , A = consL (23) 

which describes motion (with friction) in the field of  the potential U(u). The boundary conditions are 

The last condition is obviously identical to (12). 
dispersion. Thus, we have 

u - - + u _  , r ~  + o o .  (24) 
(+) ( - )  

The graph of  the potential U(u) is shown in Fig. 5. 

It is obvious that for fulfillment of  (24) u+ and u_ must coincide with points of  extrumum of  the function U(u), and the 
point u_ must be a minimum, i.e., 

U"(u) . . . .  _> 0. (25) 

It is interesting that the criterion (12) does not depend on the presence of 

Proposition 3. The conditions f o r  the existence o f  traveling shock waves (2), (9) in the model (7) are the same as f o r  (13), 
i.e., there are two different types o f  shock wave depending on the choice o f  u+ in Fig. 5. 

We discuss the nature of  these solutions u0(r ). It is to be expected that for v~, 1 the function Uo(Z ) resembles the monotonic 
shock waves shown in Figs. 3 and 4. On the other hand, for v,~ 1 we must expect the appearance of  the oscillations typical 

for dispersion problems. This does occur. The graphs Uo(Z ) in the cases u >_ •cr and p < Vcr are shown in Figs. 6 and 7 in the 

case u_ < u+.  Of  course, such behavior of  the function Uo(Z) is readily predicted on the basis of  the mechanical interpretation 
of (23). 

We calculate the value ~'cr o f  the critical viscosity. Linearizing (7) on the background of  the constant u=c,  we obtain 

u = c + ~ v ( ~ ) ,  c<<1, c =  (u+,u_}.  

The characteristic exponents of  this equation are 

u -4- X/V 2 + 4(k + 6c 2) 
A1,2(c) = 2 (26) 

It follows from this that ~'1,2(u-) E R, while k 1,2(u+) E R for p >__ Vet and have nonvanishing imaginary part when ~,< get, where 
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Ucr = 2~/16u~ + kl. (27) 

I f  in (7) we change the sign of  the dispersion term Uxxx, then the condition for the existence of  a shock wave is changed 

(see [5]). However, the value of  the critical viscosity Vcr in this case is equal to (27). (In [5] it was incorrectly stated that 

VTr> Ver.) 
It would be interesting to prove a theorem on the attractor nature of  the solution Uo(X-kt ) as we did above for the MB 

model. That the result is true, at least for v_>Ver, is intuitively clear (and, in the case of  the KdV--B model, it has been 
rigorously proved [8]). The most interesting case is that of  low viscosity, v <  Ver, and the limit v-,0, since for v = 0  the shock 
waves acquire a qualitatively new nature (collisionless or dissipationless shock waves). We now turn to the description of  them. 

3. THE MKdV MODEL. SCATTERING THEORY 

The integrable model (6)with 3,= 1 admits the Lax representation 

~ = U(A)~, ~, = V(A)~ (28) 

with U--V pair of  operators of  the form [4] 

( 0 i 0 )  ' ( 1  O )  V(A)=4A2U(A)+AVI+Vo. (29) U ( A ) = - i A a a +  -iu , ~ a : =  0 1 ' 

We do not need the precise expressions for V 1 and V O. As before, we attempt to find a solution of the type of  the traveling 
shock wave (2), (9). Repeating the arguments of  See. 2, we arrive at the equation of motion of a material point in the field 
0(u): 

Or(u) (30) 
U r r  = - -  OU 

Since there is no "friction" in this case [v=O in (23)], the only type of solution u(r) with boundary conditions (2) for u+ # u_ 
corresponds to a "transition" from one peak of  the potential O(u) to the other peak (see Fig. 5); moreover, in accordance with 
the conservation of  energy 

O(.+) = O(u_), 

where u+ and u_ are the coordinates of  the maxima of  U(u). A simple analysis taking into account (23) shows that this is 
possible only if A = 0  and 

u+ = - u _ .  (31) 

Thus, the only type of  traveling shock wave u0(r ) in the MKdV model 
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ut - 6u~u= + u==,~ = 0 (32) 

has the kink form (31). It is also easy to find an explicit expression for this solution (see, for example, [11]). In the spectral 

interpretation, this solution uo(r) corresponds to the point ),=0 of the discrete spectrum for the U operator (29) with potential 
of the form (2), (31). 

It can be shown that this solution is an attractor as t---oo for the model (32) with the boundary conditions (2), (31) provided 
there are no other points of the discrete spectrum of the U operator. The proof of this fact is standard for soliton theory [4] 
and is based on the observation that the solitonless part of the solution is damped at large times. 

The question arises of how we describe other [different from (31)] types of shock wave. For example, how do we describe 
the simplest shock wave (2) of the form 

u+ > u_ >_ O? (33) 

The numerical experiment of [11] showed that the behavior of the solution u(x, t) of the Cauchy problem for the model (32) 

with initial condition u(x, 0) of the type (2), (33) qualitatively resembles the KdV case, namely, there arises a region of 
oscillations that expands in a self-similar manner with increasing t. 

What is the asymptotic behavior of the solution u(x, t) as t--,+ co? Some results on the behavior of the shock wave u(x, 

0 in the neighborhood of the wave front (in the region of large-scale, solitonlike oscillations) were obtained in [12]. The 
problem of obtaining a uniform asymptotic behavior (for all x) remained open. 

In this section, we describe the leading term of the uniform (in x) asymptotic behavior of u(x, t) as t+co in the absence 

of a discrete spectrum. Our exposition is based on the methods developed in the theory of the KdV equation [13] and the 

nonlinear Schr6dinger equation (NS equation) [14]. 

In agreement with the general philosophy of the inverse scattering method, we first construct a form of scattering theory 

for the U operator (29) with potential (2), (33). For this we determine the Jost solutions r  and r  which are vector solutions 
of the system (28) determined by the asymptotic behaviors 

r  ~ e+, z --+ i o o ,  e +  = 
(-) 

1 
( - A + z  + ) 

(-) 
t t  + 

(-) 

Here, 

exp (34) 

z + (~) = ~ - u2+ 
(-) (-) 

are equations of spectral curves F+ and F_ of genus zero. We stipulate that 

Imz > 0 
2f .  - -  

(-) 

on the upper sheets P+ of these Riemann surfaces. We make the natural identification of the upper F + and also lower F -  
sheets on the curves P +, P_.  

It can be shown in the standard manner [4] that the function ~+(k) is analytic on the lower sheet F - \ ~  - ,  and the function 
r analytic on F+\oo +. On the continuous spectrum E_ 

we have the scattering relation 

r (P) = r  (P)a(P)  + r  (crP)b(P), ), e E_.  

Here, P=(k,  z_) is a point of the curve F_,  a is the involution that interchanges the sheets; 
scalar functions. It is readily seen that 

(35) 

and a(P) and b(P) are certain 

a(P)a(o-P) - b(P)b(o'P) = ~ - ( P ) ,  A E E_,  

and that 

1241 



a(P) = {r  r  b(P) = - {r  r  (36) 

where {~, r  =detOp, r 
It follows from (36) that the function a(P) can be analytically continued to the sheet F - ,  and that 

a(P) ---> 1, b(P) ~ 0 as P --+ oo +. (37) 

The function a(P) may have on F -  a finite number of  simple zeros that belong to the interval ] - u _ ,  u_[  and form the discrete 

spectrum of  the U operator (29). In this paper, we assume that a(P) # 0 on r - ,  which corresponds to consideration of  the 

solitonless section. 

We shall assume that in the neighborhood of  the ends of  the spectrum E_  the function a(P) has a simple pole 

(in the local variable a(P) ~ 1/k, ,~(P) ~ + u_ k = ~ ) .  (38) 
(-)  

In accordance with (36), this corresponds to the general situation. The condition (38) is usually called the condition of  "absence 
of  virtual roots." In terms of  the reflection coefficient r(P), 

the condition (38) has the form 

r(P) := b(P)/a(P), 

r(+u_) = -1 .  (39) 

Let r be the antiinvolution of  complex conjugation, which does not interchange the sheets I ' _ ,  i.e., z: ),--,X. It is easy 
to show that 

a(P)  = b(rP),  

r(P)r(rP)  = 1, A(P) e E,,  (40) 

on the simple branch of  the spectrum E, =E_kE+.  In addition, we have the inequalities 

0 <_ r(P)r(aP) < 1, A(P) E E+. (41) 

Note that for X(P)EE+ the operations r and a act in the same way: rP=oP. 
Besides the fairly familiar (see [12,14]) symmetries r and a, our model has a further symmetry - -  the reflection 

We stipulate that 7r does not change the sheets F. 
reduction of  the Jest functions ~b: 

with some nondegenerate function 

The obvious ~r symmetry of  the U--V pair (29) leads to the following 

a2r + ( z P ) . =  r - (P)m _ (P), (42) 
(-)  (+) (+) 

m _  (P), 
(+) 

which does not depend on x and t. Here and in what follows, oi, i=1 ,  2, 3, are Pauli matrices. The reduction (42) entails the 

~r symmetry of  the scattering coefficients a(P), b(P), but we do not need these expressions. 

4.  T I l E  M K d V  M O D E L .  M A T R I X  R I E M A N N  P R O B L E M  

The general scheme of  [13,6] for investigating shock waves for integrable systems with real spectrum is based on solution 
of the inverse scattering problem in the form of  a matrix Riemann problem. We formulate the Riemann problem that we need 

for our purposes. + 
1. Let ~'(P) be a 2 •  matrix that is a piecewise analytic function on C and as P -+ co(-)  has asymptotic behavior of 

the form 
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( ) (  ) V(-)  
�9 (P) --r A + I + + 0()/-2) exp (+)i)~o'a(x + 4A~t) 

(-)  

(43) 

A + =  (__01 ; ) ,  A_ = d i a g ( ( - 2 A ) - l , ( - 2 A ) ) .  

2. Suppose that outside the spectrum E_ the function ~(P) is analytic and on the cut E_ has discontinuity of the form 

(r (+)(rP) z(_+)(P) ~ 
~i(P - iO) = O(P + iO)G(P), P E E_, G(P) = - r(P)r(rP)--I . (44) A+)(p) "(+)(P)) 

Here, the superscript (+)  means the value on the lower edge of the cut E_.  It follows from (40) that the matching matrix G(P) 
becomes an upper triangular matrix on the simple branch of the spectrum E.. 

3. det ~t'(P) = 1 and ~(P) is a regular (without singularities) function on C. 
Proposition 4. The solution u(x, 0 of  the Cauchy problem (2), (33)for the MKdV equation (32) can be found from the 

solution qZ(P) of  the above Riemann problem by means of  the formula 

u(x, t) = VI~ , (45) 

where V-  is the matrix coefficient of the expansion of the function ~ (43), 
To prove Proposition 4, we note that the exact solution of the Riemann problem is given by a matrix formed from the Jost 

functions: 

:= (r r  ) 0\1), A =  {~+(crP), r  ; P E F + (46) q~(P) 

The properties (43)--(45) can be verified by direct calculation. 

Proposition 5. The solution ~I(P) of the above matrix Riemann problem is unique. 
The proof follows immediately from Liouville's theorem and the asymptotic behaviors (43). 

Thus, we have reduced the investigation of the original Cauchy problem for u(x, t) to an auxiliary linear matching problem. 
We show that the Riemann problem admits an explicit asymptotic solution as t-*+ oo. 

In this solution, an important role is played by a Whitham deformation F of the curve F_ into the curve F+ with a 
dependence of the deformation on the deformation parameter 

= z / t ,  ~ ~ ~, 

and the explicit expressions of finite-gap theory for the MKdV equation are also important. Bearing in mind that these 
expressions have not apparently been published hitherto, we give them in the following section. 

5. THE MKdV MODEL. REAL FINITE-GAP SOLUTIONS 

The model (32) is the summit of "third order" in the integrable NS hiererachy (see [4]). Therefore, there are many 
similarities between the finite-gap expressions for the NS equation and MKdV equation. However, there is also an important 
difference. The fact is that in order to identify real solutions of the model (32) it is necessary to take into account the additional 
symmetry 7r of the spectral Riemarm surface I'. This additional reduction can be made in various ways. One can make the 
substitution ~--~X in the U--V pair (28) and construct a spectral "finite-gap" curve P, as two-sheeted covering of the curve 
z=~X (see [151). 

Here, we prefer to take a different route, namely, modifying in the necessary manner the well-known finite-gap expressions 
for the NS equation (the lowest representative of the integrable hierarchy), we use the technique of [16] to satisfy the additional 
symmetry ~r. 

We now turn to the detailed exposition. Let I' be a nonsingular hyperelliptic curve of even genus g =2k that admits the 
symmetries ~r and r and is given by the equation 

2k+1 

j = l  

We choose the canonical basis (ai, hi) , i= 1 . . . .  , g, of one-dimensional homologies on I' in such a way that 
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I a= a~ 7 b : - b ~  

7ra = ~Za, rob = ~rb. 

Here, a = ( a  1, ..., ag) T, b = ( b  1, ..., bg)T; I? is the permutation matrix/?ij =6i g+l - i  (see Fig. 8, g=2) .  
We normalize the holomorphic differentials w 1 . . . . .  cog by the condition ~ j  wi = aij; the corresponding B matrix 

BiJ = ~b wj, i , j =  l , . . . ,g ,  
3 

determines the Riemann theta function 

(47) 

O(z) = ~ exp (~ri(2{z, m) + {Bin, m})). 
mEZ9 

We define the Abelian integrals fli(P), i =  1, 2, 3, which have vanishing a periods and singularities of  the form 

f2a(p)--+q:(A+wl), ~=(P)--+q:(4Aa+w2),  ~a(P)--+:F(ln)~+w3),  P - -+oo  +. (48) 

The expression for the complex finite-gap solution v(x, t) of  the model (32) has the form (cf. [14]) 

v(x, t) = O(ft + d - n) e_~a (49) 
+ d)  " 

Here 9 = ( V x +  Wt)/27r, where V and W are the vectors of  the b periods of  the integrals 91(P) and flz(P); 

n= f ; + w =  f ,w ,  

where the path 3' does not intersect the basis cycles. 
Note that (49) can be obtained from the expression (6) of  [14] if it is noted that by virtue of  the r symmetry w 1 = w  2 =0. 

We now formulate restrictions on the phase vector d that enables us to separate real solutions: v=O. As in [16], we can 

show that 

o(z) = = (50) 

and, in addition, 

~f~ = f~, h = - n  =/?n.  (51) 

From these identities, after obvious calculations, we obtain 
Proposition 6. We choose the phase vector dERg in such a way that 

~'d = d + M, M E Z g. (52) 

Then (49) determines a real finite-gap solution of the MKdV problem (32). 
It should be noted that by virtue of  the symmetry 7r the g-dimensional theta function O decomposes into a sum of  products 

of  theta functions of  dimension k=g/2 (see [17]) and the dynamics with respect to x and t is restricted in accordance with (51) 

to the "even" part o f  the torus Jac(r),  which is the k-dimensional toms ql "k. 
It was precisely this torus that arose in our case as Jacobian Jac(r0) of  the curve r o of  genus k in the construction of  finite- 

gap solutions by a method analogous to that of  [15]. 
To conclude this section, we note that expressions for the corresponding potential v(x, t) of the Baker--Akhiezer r function 

e(x, t) has the same form as in (14) (at the same time f l= l ) ,  and therefore we do not give them here. 
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6.  W H I T H A M  D E F O R M A T I O N S  

We consider the following ansatz of the solutions u(x, t) of the MKdV model: 

,,(~, l) = v (~, t I r(~),  6) + 0(~), c << 1, ~ = x/t, (53) 

i.e., we assume that in the leading order in e the solution is a weakly modulated finite-gap solution. A necessary condition for 
uniform boundedness of the correction in (53) is the (Whitham) system of equations on the bifurcation points X/- of the curve 

r(~):  

@ +s()q I ,~)) 0(Ai = 0, i =  1 , . . . ,g .  (54) 

Here, s (N~ ) is a rational function of h E  C. The function s(X)-,4X 2, X~oo, and therefore the number of its zeros in C exceeds 
by two the number of poles. At the first glance, this circumstance hinders the transfer of the technique of [14] to the case of 

the model (32). The function s(X) is not monotonic on the spectrum E (the union of the hatched regions in Fig. 8). We note, 

however, that the function s(X) is even: 

,(a)  = 4 -A) .  (55) 

Therefore, it is sufficient to investigate its properties for k_>0. Repeating the arguments of [14], we prove 

Proposition 7. Suppose that for some ~ =(o  the bifurcation point Xj in (54) moves: 0~xjl~=~o#O; then: 
1) the bifurcation point X=Xj moves to the left: O~Xj[~=~o<0; 
2) the bifurcation point h = -Xj  moves to the right; 
3) all other bifurcation points are fixed. 
We define the stationary point P0 E E as solution of the equation 

(da , (P ) (  + da2(P))lp=po = 0. (56) 

It follows from (55) and Proposition 7 that the points aP0, 7rPo, aTrPo, which together with Po are stationary points, form a 
complete set (there are no other stationary points). The following analog of Lemma 1 of [14] is helpful for what follows. 

Proposition 8. We consider for P E r  +, X_>0 the function 

f (P)  = Im (fla(P)( + a2(P)) .  

We assume that there exists PoEE. Then the function f(P) does not change sign within each of the gaps of the spectrum: 

1, A(P) > A(Po), 
sign I ( P )  = for ,~(P) ~ ~ +  \ E. (57) 

21, A(P) < A(e0), 

We now discuss at the qualitative level of rigor the application of these results to our problem of the shock wave in See. 
4. In accordance with the numerical results of [11] there is at long times a (-dependent region of transition from u_ to u+ that 
is filled with oscillations. We assume that these oscillations can be described by a solution of the form (53), where F(() is the 
curve of See. 5 of  genus g=2 .  Then the bifurcation points X/of these curves satisfy the system (54). It is readily seen that 

by virtue of Proposition 7 there exists a unique curve I '(() possessing the natural properties 

r (O -+ r •  ~ -+ +oo,  (58) 

where r +  and r _  are the curves of genus 0 of See. 4. 
rearrangement): 

r _ ,  

r (O = r(~),  

F+, 

This deformation r_~r+ has the form shown in Fig. 9 (Whitham 

< ~i = -6(2~,~_ - ~,~_), 

C [~i,~fl, (59) 

r > ~f F -4 (  u2 - -F u~/2). 

The bifurcation values ~i and (f can be readily calculated using (54) and (59). (In [5] there is a misprint in the expression for 
~f and (i-) The qualitative picture of the solution u(x, t) is shown in Fig. 10 (MKdV shock wave). 

As follows from this figure, the nature of the shock wave (2), (33) is analogous to the KdV case [13] for u_ < u+. In the 
neighborhood of/~ =~Ji low-amplitude, almost harmonic oscillations develop, and they grow with increasing ~ up to the point 

=(f ,  where the solution can be approximated [12] by a train of solitons. It is important that u_-u+ >__0. If  the inequality has 
the opposite sign, the solution contains the traveling wave of kink type discussed at the beginning of See. 4. 

The above analysis of  the Whitham rearrangements can be readily applied to other choices of u+, u_. For example, in 
the case u+ > u_ _>0 it is easily shown that the deformation r_--if '+ can be made in a "regular" manner, without increasing 
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the genus of  the curve P(~) in the transition region [18]. The corresponding asymptotic solution u(x, t) has the form of a 
rarefaction wave for the dissipationless equation (1), and this is in agreement with the numerical experiment of  [11] (see also 

[5]). 

7. CALCULATION OF THE PHASE OF THE SHOCK WAVE 

The qualitative analysis of  Sec. 6 is neither rigorous nor does it permit calculation of the shock-wave phase d(x, t). Indeed, 
Whitham's theory describes modulation of  the "action" type variables X i and does not provide a method for calculating the phase 
variables. To solve the problem of  the phase, and also to establish the obtained asymptotic behavior, it is necessary to analyze 
the Riemann problem of  Sec. 4. 

Technically, this asymptotic analysis is not simple, but conceptually it follows the course of  [13], and therefore in this 
section we adopt a more laconic style of  exposition. 

We present an explicit construction of  the asymptotic solution @A(P) to the Riemann problem formulated in Sec. 4. We 
shall assume in what follows that 

this corresponding to consideration of  the most nontrivial Whitham oscillation zone. The function ff'A(P) has the form 

k~a(p)= ( "(crP) ) 
z_(crP) '  ~ ( P )  ' P E F+(r (60) 

Here, I '+  is the upper sheet o f  the Whitham curve I ~ of  genus g = 2 ,  

where ot(~) is a moving bifurcation point, uniquely determined by the condition (54): 

(~ + s(a))  = 0, u_ < a < u+. (61) 

The function ~(P) is given by an explicit expression in terms of  a Cauchy-type integral on the curve r :  

1 /L M(P,Q)f(Q). (62) ,~(P) = ~_(P) + ~ o~+ 

The contour of  integration L is symmetric with respect to the involution ~r: k ~ - k  and the involution a: z-->-z: 
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rrL = - L ,  ~rL = L. (63) 

To determine L, it is sufficient to say that L is generated by a group with generators 7r and z from the contour Y0: 

70 = [a+, u+], 70 E F+. (64) 

Here, the superscript denotes the upper sheet of  F +; 0F + is the boundary of the upper sheet, i.e., a contour that passes around 
the cuts on I '  in such a way that the sheet F+ remains on the left. 

The analog of  the Cauchy kernel, M(P, Q), has the form 

M(P,Q) = dA(Q) . {g_(P),~_(erQ)} 
A ( Q ) -  A(P) {g_(Q),~_(crQ)}'  

The Baker--Akhiezer function ~_(P) is constructed on F and has simple poles at the branch points k =  +u ,  i.e., has a phase 
shift d o [see (70)]. 

The funct ion](P)  is given by the expressions 

- r ( P )  (A(o'P)~((TP) + B(aP)~(P)), P E OF +, 

I(P) = (1 + r(+)(P))  A(P)e(P), P E 7o U crr7o, 

(1 - r(+)(rP)) A(P)~(P), P E a7o U rTo. 

B(P) = -r(P)A(c~P)H (A2(p) _ )~(P0)) ,  P E 0F +, 
(65) 

f ~(P + i0) = ~(+)(P), P e L, 
A(P) I l imp,_,p c~(P'), P E 0F +, P~ E l~ +. (66) 

Here, H(x) is the Heaviside function, ~(P) is the Baker--Akhiezer function with phase shift d (71), and Po is the stationary point 
determined in Sec. 6; the superscript ( + )  denotes transition to the upper edge of the contour; 

(~(P) = O(P)exp ( -  ~---~Z ~uop+ M(P, Q) lng(Q)) �9 

Here, a~/(P, Q) is a multivalent analog of a Cauchy kernel: 

(67) 

A E M(P, Q) = m(P', Q), 
o o  

where re(P, Q) is a meromorphic bidifferential normalized by the conditions (q is a local parameter) 

It follows from this that 

dq(P)dq(Q) p ~ Q. 
,(P) rn(P,Q) = O, m(P,Q) ... (q(P) _ q(Q))2, 

fb,(e) re(P, Q) = 2rriwj (Q). 

The factor O(P) in (67) can be found from the condition that the function ce(P) be single valued on I" and from the asymptotic 
behavior 

c~(P) --+ 1, P + co :i: , (68) 

Here, d o is a constant vector of  the form 

~)(P) = const (69) 
O ( f :  + w + do) " 

(: fZ) u+ + w K, do = - 
kick+ + 

(70) 

K is a vector o f  Riemann constants on f' ,  and the integration part does not intersect the basis cycles. The expressions (69) and 
(70) mean that the function ~(P)  has simple poles at the branch points k =  + u + .  

The expression for the phase vector d E  R 2 has the form [see (67) and (69)] 
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1 fa (lng(Q))~(Q). (71) d = do - ~-~ P+UL 

The function g(P) is given by the expressions associated with (65), 

1 - r ( P ) r ( r P ) H ( A 2 ( P ) - A 2 ( P o ) ) ,  P E 0 r  +, 

g(P) = -r(+)(P), P E 70 U a~rT0, (72) 

r(+)(rP), P E ~rT0 O ~rTo. 

It follows from these expressions and from (67) that the function A(P) does not have singularities at the branch points X= _+u+. 
The zeros of  the function A(P) suppress the poles of  ~_(P), so that the function @(P) does not have singularities at these points. 
In addition, we note that cb(p) satisfies on the contour OI '+ UL the matching condition 

a ,  (P) = a+(P)g(P), P E cOF + U i .  

Here, as in (66), 

+ { c~(P(+)i0), P E L, 

~(,-)(P) = - (73) 

limp,._,p c~(P'), P E OF +, P' E F(+). 

From the requirement of  fulfillment of  the matching condition (44) for the function ~ZA(P ) and the property of  absence of a 
virtual level, (39), it follows that the function O(P) has zeros at the branch points X= + u _  on the transition from the lower sheet 
of  F - .  Therefore, the first column of  ~IA(P) does not have zeros at these points [see (60)]. 

It turns out that the matrix matching conditions (44) are indeed satisfied in the limit t ~ +  oo for our ansatz SA(P). More 
precisely, we have the following proposition. 

Proposition 9. The function ~I A(P ) solves asymptotically (as t~+ oo) the Riemann problem of Sec. 4. In particular, 

r~ A(P + iO)G(P)~ AI(P - iO) = I + 5(P,~,t),  (74) 

where the "small" perturbation ~ has the structure 

{ O ( ( P - P o ) t - ~ ) ,  ,P-Po[>_t  -~, / /  
5(P, ~, t) = drlS(rl, t) <_ C . t -~. 

O(1), [ P - P 0 1 _ < t - ~ ,  e > 0 ,  oo 

These expressions enable us to obtain (see [13,14]) the following estimate for the true ff function, i.e., the solution of the 
Riemann problem: 

�9 (P) = (1 + O(t- ' ) )  qtA(P), i i m t9[ > gl > O. (75) 

Returning now to the expressions of  See. 4 [see (45)], and summarizing the above results, we obtain our final proposition. 
Proposition 10. The leading term in the t--,+ o~ asymptotic behavior of the solution u(x, t) of the Cauchy problem for the 

MKdV model with boundary conditions of the shock-wave type (2), (32) under the condition of absence of a discrete spectrum 
is given by the Whitham-modulated two-gap solution v(x, t [ [ '((),  d(~)), where the curve F(~) is described in Sec. 5, and for 
the phase shift d the expression (71) holds. 

In general, the correction to the asymptotic behavior v(x, t) decreases as a power with respect to t: 

u(z, t) = v (z, t I F(~), d(~)) + 5(~, t). (76) 

In particular, ~ = O(t- 1/2) for ~ < ~i and ~ = O(t-N), VN> O for ~ > (f  (see [13,14]). 
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