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A METHOD OF CALCULATING MASSIVE FEYNMAN INTEGRALS

E. £. Boos and A. I. Davydychev

A general method is proposed for calculating massive Feynman integrals on
the basis of a representation of the massive denominators in the form of
Mellin—Barnes integrals. This method is used to obtain expressions for
some classes of single-loop massive Feynman integrals of propagator and
vertex type (for arbitrary values of the powers of the denominators and
dimension of space). The results are presented in the form of hypergeo-
metric functions, making it possible to investigate different ranges of
variation of the momenta.

Introduction

Because of the need to make numerous different calculations in gauge theories (QCD,
electroweak model, etc.), it is very important to develop methods that permit exact calcula-
tion of various types of Feynman diagrams containing both massless and massive particles.
This is true, in particular, for calculation of interaction cross sections and decay widths
in various orders of perturbation theory, for the investigation of the coefficient func-
tions in operator expansions, for the renormalization-group analysis of B functions,
anomalous dimensions, and invariant charges, for study of the behavior of Green’s functions,
the problem of anomalies, etc. In many cases it is most convenient for the calculation of
the corresponding Feynman integrals to use dimensional regularization [1,2] (see also the
review [3]), the use of which makes it possible, in particular, to preserve gauge invariance
at all stages.

At the present time, the greatest successes have been achieved in the development of
methods of calculation of massless Feynman integrals of propagator type (i.e., dependent on
a single external momentum): the method of Gegenbauer polynomials [4,5], integration by
parts [6], the uniqueness method (see, for example, [7]), and also some other methods
[8—10] (see also the review [11]). Massless integrals of vertex type (with two indepen-
dent external momenta) have a much more complicated structure, and some cases were
investigated in [12-14].

At the same time, for the calculation of many processes, especially those including
heavy particles, one cannot avoid the use of Feynman integrals with massive denominators.
However, at the present time not many exact expressions are known for different dimension-
ally regularized massive Feynman integrals (see, for example, [1,15—-17] and the references
given there).

In the present paper, we propose a general method for obtaining exact solutions for
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Feynman integrals containing massive denominators. The idea of the method is to represent
the massive denominators in the form of Mellin—Barnes integrals with subsequent calculation
of the corresponding massless integrals. This method makes it possible to obtain results
for arbitrary values of the dimension of space n and indices of the lines (degrees of the
corresponding denominators), making it possible to use the obtained expressions in both
dimensional and analytic regularization. These results can be expressed in terms of
functions of hypergeometric type, so that different ranges of variation of the momenta

can be investigated (see below). We note that we can, without loss of generality, consider
only scalar integrals, since all integrals with Lorentz tensor structure in the numerator
can be reduced to scalar integrals in accordance with formulas of the type given, for
example, in [18-19].

The paper is arranged as follows. Section 1 is devoted to exposition of the general
idea of the proposed method, which can be used for arbitrary (including many-loop) massive
integrals. 1In Sec. 2, the general technique is illustrated by the example of the calcula-
tion of massive Feynman integrals of propagator type. In Sec. 3, we calculate some
classes of massive integrals of vertex type. In the Conclusions, we formulate and discuss
the main results of the paper.

1. Representation for Massive Denominators

Suppose we have a Feynman integral that contains one or several massive denominators
of the form
1

(k*—m2+i0)*’ (1)

where k is the momentum of the corresponding line, m is a mass (for different lines, the
masses may be different), and B is the index of the line (the degree of the denominator).
In addition, the integral can also have massless denominators. The infinitesimally small
addition (+i0) determines the usual "causal' method of passing around the singularities

in the pseudo-Euclidean space. In what follows, we shall assume that all squares of the
momenta in the denominators have such additions (including those in the employed expansions
and integral representations), and we shall not write them out explicitly.

As is well known, the direct calculation of such massive integrals using standard
methods (o representation or Feynman parameters) involves great difficulties in the
calculation of the parametric integrals, and general expressions have been obtained only
for the simplest cases. There is another procedure for obtaining asymptotic expansions
of such integrals with respect to parameters of the type m?/p? (p is an external momentum)
associated with the use of the R* operation (see [20-22]).

We expand the considered denominator (1) in a series in m2?/k?:

oo

1 1 1 my 11 N (m
F—my A —mi R (;&)?‘R(B 7?)2 Wﬁﬁjﬂ“ﬁ(ﬁ) LG+i). (2)

If we now formally substitute this expansion in the integrand, we obtain an infinite sum

of integrals in which the massive denominator (1) is replaced by massless denominators.

It is obvious that if all the massive denominators in the considered Feynman integral are
expanded in this manner, then it will be reduced to the sum of the corresponding massless
integrals. In particular, if there is just one external momentum p, then we obtain in this
manner an expansion in m?/p2. However, it is easy to see in simple examples that the
obtained result will be incorrect. This is because the expansion (2) is valid only in the
region |k?| > m?, while the integration is over all k, including the region in which (k2] <
m?. In this region, the expansion (2) must, in general, be replaced by a different one:

<’62—1m2>s B <—m2>ﬁ<:—k2/mz>f= - <—fnz>ﬁ | f"%) =
1 1 C 1 (kz

TG 2 ) T (3)

Thus, the correct expansion of the denominator (1) is a combination of (2) and (3) with

corresponding 8 functions (for further work with such expressions, it is better to go over
to Fuclidean variables). However, the presence of the 8 functions greatly complicates the

1053



corresponding massless integrals, and the entire gain from the reduction of the massive
integrals to the massless ones is almost lost. One of the ways out of the resulting
situation is to use the procedure proposed in [20—~22]. It is as follows. Suppose we use
for denominators of the form (1) the expansion (2) and compensate the '"incorrectness" of
this expansion in the region |k2[ < m? by appropriately chosen counterterms (a general
prescription for the construction of such counterterms is given). This makes it possible
to obtain correct asymptotic expansions of the corresponding integrals in powers of m?/p?2.

We propose a different method for calculating massive Feynman integrals. The idea
of the method is to use the Mellin—Barnes representation for the function ,F,,

ico

FolBli)= =t L[ g (Cnyer (o) (), (4)

ioo

where the contour in the complex plane of s separates the "left" series of poles of the
integrand I' functions from the "right" poles (in what follows, all such integrals will be
understood in precisely this sense). To calculate the integral (4), we can use the
residue theorem, closing the contour at infinity in the right or left half-plane in order
to make the integrand decrease (depending on the value of |z|). For example, for lz‘ <1
we must close the contour in (4) on the right, and for |z| > 1 on the left (and the
obtained expression is equal to the sum over the residues of I'(—s) or T'(R + s), respec-
tively). In this manner, we obtain the well-known expressions for the analytic continua-
tion of the hypergeometric functions (see, for example, [23]). Thus, the main formula of
the method is

ioo

1 1 1 1 m?\*
(kz__mz)ﬁ = (kZ)B F(B) EE_-L ds (——Ez‘ ) F(_S)F(ﬁ'l_s) (5)

(we repeat that all squares of momenta contain infinitesimally small imaginary additions:

k? < k2 + i0). The advantage of this method is that formula (5) contains both (2) and

(3): for |k?| > m?2, we obtain (summing over the residues of TI'(—s)) the expansion (2),

and for |k?| < m? (summing over the residues of T(B + s)) the expansion (3). At the same
time, we can use the ordinary expressions for the massless integrals, replacing the
corresponding index B by (B + s). The use of this method also has a number of other helpful
properties, which will be noted below in the calculation of definite classes of integrals.

It should be noted that the appropriateness of using the Mellin—Barnes representation
for the hypergeometric functions (and also the Mellin transform) in the calculation of one-
dimensional integrals has already been noted (see, for example, [24,25]). In particular,
it was used in [26,19,13] to study parametric integrals that arise when the a representa-
tion is used to calculate certain Feynman integrals. 1In particular, the Mellin transform
was used in [27] to analyze a-parametrized integrals in the investigation of singularities
and the asymptotic behavior of massive Feynman amplitudes. Note also that in [28] a study
was made of some aspects of the calculation of massive integrals of propagator type by
using a single Mellin transformation on the square of the external momentum and considering
the Mellin transforms of such integrals. Our proposed technique of the Mellin—Barnes
representation directly for the massive denominators differs from these approaches, and
from our point of view is more convenient for calculating definite classes of massive
Feynman integrals.

2. Integrals of Propagator Type

We now consider examples of the use of the basic formula of the method (5) for
integrals of propagator type (containing one external momentum). In this section, we shall
operate with single-loop integrals of the form

drk
(k*—m*)* ((p—k)*—m,")°
where n = 4 — 2e is the spacetime dimension (in the framework of dimensional regulariza-

tion [1,2]). A special case of the integral (6) with a = B = 1 was considered in particular
in [15].

We give first a detailed treatment of a well-known simple example: m; = 0, m, = m.
Applying (5) to the integrand, we obtain

J(oc,ﬁ;mi,mz)Ej (6)
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drk
](G,B;O,m)=j (B ({(p—k)*—m*)* =
I‘zm '271;5 ds (—m?)'T ()T (B+3)] (a0, p+), )

where the symbol J denotes the corresponding massless integral, the result for which is
well known:
p— dnk —_—
(&)= ((p—k)")*
T'(n/2—a)T (r/2—3)T (at+B—n/2)
Fa)T (BT (n—a—B)
Substituting (8) in (7) and replacing the variable of integration s by (nf2 — « — B — s)
(replacements of such type do not violate the condition for separating by a contour the

right and left series of poles — all that happens is that "right" and "left" change
places), we have

T (e, p)=J (e, B; 0,0)= 5

J.l;'nlzii—n (pz)n/z—a—ﬂ

(8)

_ I'(n/2—a)
J(m’ ; 0’ m ______nn/lii»-n (_m?. nflmq—f N 77
0 m) " T ®)
1 2\ s - —
L J’ ds (___p_) I'(—s)I(at+s)(at+p—n/2+s) (9)
2mi 7 m? ['(n/2+s)
(here and in what follows, the phase is defined in such a way that {7 (—m®)*2=i{m?)"/?).
Closing the contour of integration on the right, we obtain
I'(rn/2—a) 1 <p2 )j IF'at+i)T(at+B—n/2+))
] , ’O’ —r /27— (o 2\m/2—a—f "~ 7/ — {s —
) I'(n/2—a) T (a+3—n/2) (oc,oH—E;—n/Z pz)
R/t (g 2)n/R—u—p Va —J, 10
T (=) T'(n/2)T(p) = n/2 | m (10)

where ,F; is Gauss’s hypergeometric function. If we close the contour of integration in
(9) on the left, we obtain a result in the form of functions of m?/p2:

I'(n/2—a) T (n/2—P)T (a+p—n/2)
L ()T (BT (n—a—P)

35)4-(__nf)nn—{Eﬁﬁzzﬁazpi(a,a—n/2+1 nﬂ)}

Iz e r'() n/2—p+1 | p*

Naturally, the same result can be obtained from (10) by applying the well-known formula

of analytic continuation of the function ,F; (see, for example, [23]). Note also that
other formulas of analytic continuation of ,F, [23] make it possible to express the
obtained result in the variables (m? — p?)/m? and (p? — m?2)/p? (and their inverses).

Such expansions are of interest for investigation of the behavior of the Green’s functions
near the mass shell. In particular, going over to the variable (p? — m?)/p?, we reproduce
the result obtained in [29] by means of the o representation.

X

J(a’ B’ O’ m)=nn/2ii—n (pZ)n/Z—a—B{

zFi(orHi—n/Z, a+p—nt+1 (1)

p—n/2+1

Returning to the expression (11), we note that on formal substitution of the expansion
(2) we would obtain only the first function ,F, in the curly brackets, and the result would
be incorrect. Application of the procedure [20—22] here reduces to term-by-term recovery
of the expansion coefficients of the second function ,F,, which in our approach is
obtained automatically.

Note also that the passage to the limit o + 0 in (10) gives
I'(p—n/2)
reg)

This result agrees with the well-known result of [1]. By means of the proposed method,
the expression (12) can also be obtained directly by using the property [9]

J(O, B; O, m).:nﬂ./Zii—n (_mz)n/2—ﬂ

(12)
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n/2

21
(0 ey
JO0, n/2+iE) =i T (/2)

We now consider another interesting special case of the integral (6), when m; = m, = m:_
drk

(K*—m?)* ((p—k)*—m*)®

Applying the general formula (5) twice to the denominator of (13), and using (8), we obtain

1 1
D(a)T(B) (2mi)*

nb(8).

T(cy B mym)=) (13)

It B 1y oy (g

2\ s+t I‘ —— R .
” dsdt(—m—z) ()T (—t) (n/2—a—s)T'(n/2—B—1)T (atp n/2+s+t). (14)
o P I'(n—a—p—s—t)
Making the change of variable t = n/2 — a — 8 — s — u, and also using Barnes’s lemma
to calculate the integral over s (see, for example, [24,231),
1 oa
2 j' ds T (a+s)T (b+5)T (c—s) T (d—s) = T'(a+c)T (a+d)T (b+c)T (b+d) 1
2 " I'(atb+ct+d)
we obtain
J(O!,, B; m, m)=:rc"/2i‘—"(—mz)”’z‘““‘[f‘(oc)l’(ﬁ)]“ X
° 2 © _ —
e jdu(—%) I'(—u)I' (at+u)T(p+u)T (a+p—n/2+u) ) (16)
m I'(o+p+2u)

2mi T

Hence, closing the contour of integration to the right or to the left and using the well-
known doubling formula for the I' function (I'(2z) =2*-'n—"*I'(z)T'(z+'/;)), we can obtain the
results

(17)

T (e, By 1, m) =gV ()t

I'{at+p—n/2) ( a, B, atB—n/2 % )
T(at+p)  * °\(at+B)/2, (atp+1)/2 1ams /)’
F'(n/2—a)T (n/2~B)T (a+B—n/2) <
T ()T (B)T (n—o—p)
3F2(a+ﬁ—n/2, {aFp—nt+1)/2, (atp—n+2)/2 4m2) n
a—n/2+1, p—n/2+1 Pt
(_ﬁzj)"/z‘“ F(a—n/2) 7 (13, (B—a+1)/2, (p—at2)/2
I’ ) °° n/2—o+1, p—a+1 P
m*\"*=% T (B~n/2) a, (a—p+1)/2, (a—B+2)/2 | 4m?
() i )
P ') n/2—B+1, a—p-+1 P
(with regard to the hypergeometric functions encountered in the paper, including ;F,,
see the Appendix). Note that, expanding (17) with respect to € = (4 — n}/2 in the case

o =R =1, we obtain the well-known result (see, for example, [30]) expressed in terms
of elementary functions.

J(a’ B; m, m)zﬂn/zil—n(pz)n/zﬁa—ﬁ {

4m2)+

Finally, we consider the general case of the integral (6). Double application of
formula (5) (with allowance for the expression (8)) gives
1 1
— X
F(e)I'(B) (2mi)?

oty B gy ) =3 () =t

(0 m\° m*\* ['(n/2—a—s)T (n/2—3—1)T (a+p—n/2-+s+t)
”dsdt(— o ) (— - ) I (—s)T(—t) A —— . (19)

Calculating the contour integrals, we obtain

I'(n/2—a)T(at+p—n/2)
T'(n/2)T(B)

Fula, artB—n/2; /2, a—n/2+1| p*/my?, m me?) +

I (o, B3 my, my) =m0 (—my® ) /Aot {
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(—,Pm};zz_)n/z_a I‘(OIL‘_(_Zgz)

where F, is Appell’s hypergeometric function of two variables [31,23] (see also the
Appendix). If we consider the case m, < m;, then in the expression (20) we must make the
substitution (m;, a) < (m,, B). From (19), we can also obtain the result in the variables
m?/p? and m%/p?:

F.(B,n/2; n/2,n/2—a+1}p*/m;’, miz/mzz)}, (20)

I'(n/2—a)I'(n/2—P)I' (a+p—n/2)
()T ()T (n—a—p)
F(ot+p—n/2, at+p—nt1; a—n/2+1, p—n/2+1|m*/p*, m*/p*) +
(_ m,? ) »2— T (g—n/2)
P I'(a)

1|m/p?, mz2/pz)+( —

X

7 (@ By, ) et () Voot {

F (B, p—n/2+1; n/2—a+1, B—n/24

ik )ﬂlz—wl’ (o, 0—n/2+1;

. ING))

(213
a—n/2+1, n/2—p+1 | ms/ p?, m*/p*) }
Thus, for the general integral (6) we have constructed the representation (19), from which
we can obtain the result in the form of hypergeometric functions for different relations
between the masses m; and m, and the momentum p (for example (20) and (21)).

Note that from the expression (20) for a = 8 = 1 and p? = 0 we obtain the well-known
result (see, for example, [21])

(mat) 2t (m 2yt
m,’

I(1,1; my, m,) | prp=—in™T' (1—n/2)

__n',,i2

3. Integrals of Vertex Type

In this section, we consider examples of the application of the proposed technique
to single-loop "triangle' integrals of vertex type (with two independent external momenta)
containing massive denominators (see Fig. 1).

It is obvious that application of formula (5) to massive denominators requires
information about the corresponding massless integrals:

, _ arr
I, v, p)= J () ((p—r)?) " ((g—1)?)"

(as before, we understand the causal method of avoiding the singularities in the pseudo-

FEuclidean space). A general expression for the integrals (22) was obtained in [13] and
can be represented in the form

IO (p, v, p)=a"*' [T () T (v) T (p) T (n—p—v—p) ]7*X
{(B)"=+==0T ()T (uv+Hp—nf2) D (n/2—p—v) T (n/2——p) X
Fi{w, ptvtp—n/2; ptv—r/2+4, ptp—n/2+1|p* /K2 ¢k +
(g)*=** (k) =T (v) T (n/2—p) I'(n/2—p—v) T (ntp—n/2) X
Fi(v, n/2—p; ptv—n/2+1, nf2—p—p+1| PR, ¢°1E*) +
(P*) = (B*)~*T (p) T (n/2—v) T (utv—n/2) T' (n/2—p—p) X
Fi(p, n/2—v; nf2—p—v+1, ptp—n/2+1|p*k?, g*[k*)+ (p?) ™2~ (g®) M*+—0 (k) s—"/2X
I (n—p—v—p) T (#/2—p) T (n+v—n/2)T (u+p—n/2) X
F,(n—p—v—p, n/2—p; n/2—p—v+1, n/2—p—p+1|p*/%2, ¢*/k?)}, (23)

where k = ¢ — p, and F, (as in (20) and (21)) is Appell’s hypergeometric function of

two variables (see (A.2)). In particular, if one of the parameters u, v, p is zero, then
in (23) there remain, respectively, only the first, second, or third terms in the curly
brackets and we obtain the well-known result (8), whereas for u + v + p = n only the fourth
term "survives,'" and we obtain the uniqueness relation (see, for example, [7]). For our

(22)
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purposes, it will be convenient to use the representation

IO (v, p)=a™?it =" (B*) 2= [T (W) T (W) T (p) I'(n—p—v—p) ]~ (2 )Zj.fdsdt( )

(—q;zz) t ['(—=s)T ()T (n/2—p—v—8)T'(n/2—p—p—) T (pt+s+) I'(u+v+p—n/2+s+t), (24)

from which we can readily obtain both (23) and the corresponding expressions in terms of
functions of other dimensionless momentum variables. We note that representations of
such type were used in some special cases (for n = 4) in [26].

We now consider vertex integrals with one massive denominator:

d°r
Ti(p,v,p;m)= :
o J F=m) (") (a1
Use of the basic formula (5) of the method gives

foo,

du(—m*)T'(=u)T (utu)J® (utu,v,p).

(25)

11

]1(”‘1’\7 P,m) ( ) 23_[

Substituting here the representation (24) and going over from the variable u to
(nf2 —p~—v=~—p—s— 1t — u), we obtain

Ji(w, v, p5 m) =" (—m?) "> =* [T (W) T (v) ' (p) ]-*X
1 " pZ 8 qz t kz u s
~(2—ni)~3 j_imjds dt du(—ﬁ) ( ——’;2-5) (—-;;2) U(—s)I' (=) (—u) ' (n/2~v—p—u) X
r (p.-rv—f—p~n/2+s+t+u)I‘(v+s+u)F(p+t+u)
I'(n/2+ts+titu)

Note that here we have two series of poles in the right half-plane of the variable u (due
to IT'(—u) and T(n/2 — v — p — u)). Calculating the integrals (26), we obtain the result

Nptvtp—n/2) 1 (n/2—v—p)
(W I'(n/2)

[rvteon/ame | B8Ry DT 2 Do)
n/2; vtp—n/2+1l m*’ m*’  m? 2

(26)

Jo(py v, ;) =21 (— ) W/ Eev—o {

m Fv)T(p)I (n—v—p)
{w n/2—p, n/2—v |p* qz k-z]}
1 T Y ’ 27
¢ [ n—v—p; n/2—v—p+1 I m*’ m? m? (27)

where ¢, is a function of hypergeometric type that can be expressed in terms of Lauricella’s
generalized function of three variables (see (A.4)):
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q) [a’h aZv as
1
¢, d

J,zzsz3j3 (ai)jx+jz+j3 (dz) Jt+is (aS) Jatjs
Ziy Z, 23 . =

3=0 ji=0 J_Q]i’]2!]3! (C)jx+jz+j3 (d)jz

g 0[ (a,:1,1,1), (a:01,0,1), (as:0,1,1)
HEEL (ert,1,1): (d:1)

where (a);=T(a+j)/T'(a) is the Pochhammer symbol. Note that the general formula (26) makes
it possible to go over to other dimensionless variables (for example, m?/p2, m?/q?, etc.).
Note also that for u = 0 formula (27) corresponds toc the well-known result of (8) (as

it must).

Ziv ZZ,ZS ]1 (28)

It is sometimes of interest to consider symmetric deviation from the mass shell with
respect to two ends of the corresponding Feynman diagram, q2? = p? (see, for example,
[19,13]). Then the function &, can be represented as a generalized hypergeometric

function of two variables:
o, [ @y, G, A3 ] Z 2 T (@) 51 (8276 83) 5121 (a5) ¢ (aa),

& d PR (€) i1 (aytas) s (d),

2:0; 2 (01:1, 1)7 (a2+a3:172):(a2:1)1 (as:i)
F‘°2[ (1. 1): (ayta:2), (d:1) ‘Z ]

Because the sum over j in (29) represents the function ,F;, we can here (as in the
expression (10)) readily obtain, by means of the formulas of analytic continuation [23],
expansions with respect to the variables 1/z, (1 — z), (z — 1)/z, etc., which are often
used to investigate asymptotic behavior in different regioms.

(29)

We now consider a vertex integral with two massive denominators and the same mass m:

drr
B =) A

Application of (5) to the massive denominators gives

(30)

ico

1 D w
I (, v, p; m)= )T (o) (2 0 fjdvdw( m*) e X

(=)' (=w) T (vto) T {p+w) /' (u,v+v, ptw)

Substituting, further, the expression for J© (24), going over to the variable u by means

of the substitution w =n/2 — gy — v — p — s — t — v — u, and calculating the integral
over v by means of Barnes’s lemma (15), we obtain

Lo, v, p; m) =it (—m?) 2o [P ()T (v) T (p) 171 X

@103jffdsmdu(—-—)s(—£g>t(—%?)3w—ﬁrc~nrpﬁwx

I'(pt+vF+p—n/2+stet+u) (ut+s+t) T'(vtstu)T(p+i+u)T (n/2—ptu)
I'(n/2+s+ittu) I'(vtp+stit+2u)

Hence, closing the contours with respect to the variables s, t, and u on the right, we can
obtain the expression

(31)

U(ptvtp—n/2)T(n/2—p)

I2 (1, v, p; m) =a™/*it =" (—m?) n/2-n-v=p

T'(vtp)I(n/2)

ptvtp—n/2, p, v, p; ' kz]

o | voe e
2 n/z, ’V+p mzv mz’ mz E] (32)

where the function ®, can also be expressed in terms of Lauricella’s generalized function
of three variables (see (A.4)):

q)z [ah Aoy A3y A b
Ci, G

2y, 29y Z3 ]=
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Z 2 Z ]‘Z jzz3js (ai) ftjatds (az) Jit-ie (as)j1+.is (aé)iﬁﬂ's (b)]':s _

Jy=0 =0 j;=0 JRYANA (ci)ii+7'z+ia(CZ)J'«+jz+zja
piagy [ @140 @000, @00, @OLOIGD | L] (33)
(e421,1,1), {c221.1,2)

In the case of symmetric deviation from the mass shell (q? = p?), and bearing in mind that

in our case ¢, = a; + a, = v + p, we can represent ¢, in terms of Kampé de Feriet’s function
(see (A.3))

[ Ay, Ay, as, ak; b
2
cy, ayta,

7. 2.% ]_ Z S‘ 2250 (@4) 550 (@2); (@)1 (@) (b),
)y Py A3 T H i =
: 120‘7:0 jri (€1)ir (astay),,

Fii3[ @1ily; @y, i, b \ ﬁ]
o Cl:(a’3+a&)/27 (a3+a4+1)/2 "4 A

(34)

where we have also used the doubling formula for the I' function. As in the case (29), the
sum over j represents ,F, and can be analytically extended to other variables.

Finally, we consider a vertex integral with three massive denominators when all the
masses are the same:

: ar
A(Mvﬁnmjz‘{(ﬁ—mﬂ““?—ﬂ;~mﬁvﬁq—ﬂz_mﬁp. (3>)

Using formula (5), we can express it in terms of the already considered integral J,:

ieo

1 1
L(wvwnm)=iquzaf dv (—m*)°T (=0) T (utv) Jo(utv, v, 0;m) .

Subsfituting here the representation (31) and again using Barnes’s lemma (15), we obtain
the expression
Iy (u,v, o5 m)=a/it =" (—=m*) e [T ()T (V) T (p) 17X
1 ’ pz s( qz u( kz )u
_Eﬁﬁyjjjﬁd“m(_??) v_g) —— ) T ENT ()X

m

M(utvtp— rUZ+s+¢+u)F(u+$+¢)P(v+s+u)F(p+¢+u)

36
I'(ptv+pt+2s+2t+2u) (36)
Hence, proceeding as in the previous cases, we obtain the symmetric result
[ (ut+vtp—n/2)
J .V, ;m =nn/2ii—n __mZ n/Z—p—v—p
o (1, v, 05 m) (—m?*) BT
tvtp—n/2, p, v, > S .
@3[11 vtp—n/2, W, v, p l%’_gn __], (37)
utvtp m? m? m?
where &, can also be represented in terms of a generalized hypergeometric function of
three variables (see (A.4)):
Qy, Gy, A3, Q4 Z1J‘Z Jzzah (a Ji+]z+.‘la(az) .71+Jz(a3)11+]3 (ak)Jz+J
0] [ ’ » 22 Z]
? ¢ o ’ ? ;;;}]1‘ ]2' ]3 (C)ZJt+2n+2]a
F:ﬁo 00 00 [ ((11: 17 1’ 1)7 (QZ: 19 17 0)3 (aﬂ: 17 07 1)7 (a-i:O) 13 1) Zh Zz, Za] —
(c:2,2,2)
F:g : g [ (a1:17 17 1)7 (a2:17 17 0)7 (a3:17 Ov 1)7 (a‘s:oy 17 1) !Zi, Zay Z;,»] (38)
(¢/2:1,1,1), ((et1)/2:1,1,1)

(here we have also used the doubling formula for the T function). In particular, when
p? = ¢2 = k2 = 0, we obtain the well-known result (12) (in which § = u + v + p).

If we consider the case q? = p? (z; = z, = z), then we readily obtain the result in
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the form of a generalized hypergeometric function of two variables (see (A.4)):

a’h a21 aﬂ: a,

o ©

7.2.2 ]_____ ZZ 225 (ai)i+l(a3+a4):‘+zt(az)j(as)z(%)z _

¢ j0 T ! n (0)2,“; (as+a,),
T R e N I LT EREY (39)
L 2, (eR)/2i0); (actar2) 17 E

Note that reduction formulas of the type (29), (34), and (39) can be readily obtained
from the corresponding Mellin—Barnes representations (26), (31), and (36) by means of
Barnes’s lemma (15).

We consider a simple special example of application of the general formula (37). If
p?2 = q2 = 0, then from (37) and (38) (or from (39)) we find that

']3 (“’1 v, p; m) lp2=q2=0=ﬂn/2il—n (__mz)n/Z—u—’V—p ><
T'(utv+p—n/2) { utvtp—n/2, v, p k? )
I'(utvtp) (ptvtp)/2, (ntvtot1)/2 1 4m* /-

Such integrals are needed, in particular, in the calculation of the diagram corresponding
to production of the Higgs boson in the process of the synthesis of gluons through a
heavy~-quark loop (see, for example, [32]).

(40)

For example, for the specific integral with g = v = p = 1 we can go to the limit
n > 4, and we obtain

in2 k2
13(1,1,1;m)£z:;qa=0=—_m]‘(m),
where
1, 1,1
z Esﬁ’( T y
(OCFA RV

Using the formulas, given in [33], we obtain

27t arcsin® Vz, 2>0

b

f@)—'{—a‘ﬂnWVI:z+V—zL 70

Concluding this section, we note that we have represented the results for the integrals
(25), (30), and (35) in the form of hypergeometric functions of the variables p2/m2?, q2/m?,
and k?/m? (27), (32), (37), since in these variables the obtained expressions take their
most compact form. Expansions with respect to other variables can be obtained from the
general representations (26), (31), and (36).

Conclusions

In this paper, we have considered a general method of calculating Feynman integrals
that contain massive denominators. The Mellin-Barnes representation (5) enables us to
reduce the massive Feynman integrals to massless ones. At the same time, in contrast to
the expansions in the series (2) and (3), the representation (5) is true for all relations
between the momentum and the mass. If we know an expression for the massless integral
with arbitrary index of the line corresponding to the massive denominator, then the massive
integral can also be calculated. Note that we have calculated the integrals in pseudo-
Euclidean space; however, it is clear that the transition to the Euclidean case does not
present difficulties.

The method makes it possible to calculate the integrals for arbitrary line indices
and dimension of space, and therefore it can be used in both dimensional and analytic
regularization. In particular, this makes it possible to express by a single formula all
results for the class of Feynman integrals in the most interesting case of integer indices
(in practice, such integrals can be calculated recursively). In addition, expressions
for integrals with arbitrary line indices can be used in an investigation of the compati-
bility of solutions of power-law form with dynamical integral equations for Green’s
functions (for example, in investigation of the infrared behavior of quantum chromodyna-
mics). Note also that the method may be helpful in the case when massless singularities
are regularized by the introduction of a small mass.
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As a rule, the obtained expressions for the integrals can be represented in the form
of hypergeometric functions of dimensionless combinations of squares of the momenta and
masses. This is extremely helpful, since, using the formulas of analytic continuation,
it is possible to go over from certain variables to others and investigate different
ranges of variation of the momenta. In particular, to investigate processes with heavy
particles it is convenient to use functions of arguments of the form p?/m?, and for light
particles functions of arguments of the form m?/p2?. It is also possible to investigate
regions near the mass shells of the particles, and also the behavior near threshold values
of the momenta.

In the present paper, we have illustrated the application of the proposed method for
the example of classes of single-loop massive Feynman integrals of propagator and vertex
type. So far as we know, some of the results have been obtained for the first time. For
definite (integer) values of the powers of the denominators, and also after expansion
with respect to € = (4 — n)/2, the general formulas simplify appreciably; at the same
time, it is convenient to use the formulas given in the reference book [33]. Great
simplifications are also achieved by various subsidiary conditions (for example, vanishing
of some line index or square of a momentum, treatment of certain momenta on the mass
shell, etc.). TFor the known limiting cases of such kind, the obtained formulas give the
correct results.

It is clear that the considered examples by no means exhaust the results that can be
obtained by the proposed method. In particular, it can be used to calculate many-loop
integrals with massive denominators, vertex integrals with larger number of external lines,
integrals in the axial gauge, etc. We hope that continuation of investigations in this
direction will make it possible to increase the number of exactly calculable diagrams in
quantum field theory.

We thank B. A. Arbuzov and V. I. Savrin for interest in the work and support, and also
V. A, I1’in, A. L. Kataev, S. A. Larin, A. A. Pivovarov, V. A. Smirnov, F. V. Tkachev,
N. I. Usyukina, and K. G. Chetyrkin for helpful discussions and critical comments.

Appendix

In this Appendix, we give definitions of the hypergeometric functions encountered in
the present work (more detailed information about these functions can be found, for
example, in [23,24,31,34,35]). Note that expansions of these functions in other ranges
of variation of the variables can be obtained by means of analytic continuation (for this,
it is convenient to represent the corresponding functions in the form of Mellin—Barnes
integrals).

The generalized hypergeometric function of one variable is defined by

[Z RN VY
AFB
by, ... by

oo

Z)= (ai)j-'-(aA)j i, (A.l)
(b1);... (bs); !

mn

where (a); r(a + j)/r(a) is the Pochhammer symbol.

Appell’s hypergeometric function of two variables F, has the form

it 32 () ditda F1gyle
Fu(a, by c, d|5, 22) = ZZ @ierinOaeesn 20007 (A.2)

(€)51(d) 52 jal jo!

i1=0 ja=0

A more general hypergeometric function of two variables (Kampé de Feriet’s function)
is defined by

el aty ey sl B by L, b
Fé;g.’g, ! A7 B 71 B 21,32 | =
’ C],...,Ccid],...,dD;d]',...,dD/
oo -5 y ’ . .
— (al)j1+j2"'(aA)J'1+jz(b])j1'"(bB)jl (b])]-z...(bB,)J-2 21712572 (A.3)

" - R
J'f—;ré JF"-OJ (cl)jr"jz' - (Cc)j1+jz (dl)jt e (dD) J4 (dl )jz et (dD')jz ]]I]z'

For example, it is readily seen that F¢=F;ff

Finally, the generalized Lauricella function of N variables [35] has the form
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N). p(N
FA-B(l) _____ B(%) [[a . OL(l), e oL(N)] . [b(l):ﬁ(l)]; b( ). ﬁ( ) . ZN]'—‘-‘
¢:p(;...; V) [e:y®, ...,y @] [d®: 0y . [
A B(1) B(N)
(1) (V)
o o II(a) ; NY; II(b )(D] . II (63 ) gy ; . j
S-‘ y‘ i—1 ® a§1)11+,..+ong )]N i1 B i1 B'L N Zlh. .. ZNN (A. 4)
= "J_N_:O c p® D) AT
g = N
11 €y p iy I (d“’)5<1> e I @00,
i=1 K * i=1 i=1 *
where we have used the notation
fa:a®, .., a™M=(a:a®, ..., aM),. ., (ag:aP, . o0, &)
M — . aM M _
(B0 g = D : B, . . ., (2 - ﬁB(M) M=1,..., N;
[e:9®, . v =y, .., V§N>), con (gt yg), R ygv));

[ : s(D] = @@ : 6D, . . ., (4 o : 5<M> by M=1,.., N.

In (A.4), it is understood that all «, B, v, § are non-negative integers, although this
formula can be generalized to all non-negative values of these parameters if all the
Pochhammer symbols are represented in terms of the corresponding I' functions (see, for
example, [34—35]). Note that for N = 2 the function (A.4) is sometimes called the
generalized Kampé de Feriet function.
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FRACTALS IN QUANTUM THECORY: ANALYTICAL AND NUMERICAL APPROACHES

P. XK. Silaev, E. N. Tyurin,
and 0. A. Khrustalev

Quantum systems whose evolution has a fractal nature are considered for
the example of the evolution of a wave packet in quantum mechanics.
Quantum states in which the evolution of the expectation values of
certain operators are described by fractal curves are constructed. The
fractal dimensions of these curves are calculated. The presence of an
exact analytical result makes it possible to compare the different
methods of calculating the fractal dimensions.

1. Introduction

In recent years, many papers have been devoted to the random behavior of quantum sys-
tems, the dimensions of quantum-mechanical trajectories, and other related questions. Some
papers have been devoted exclusively to quantum-mechanical systems [1,2]. It has been
shown that in the general case the dimension of a trajectory in quantum mechanics varies
from d = 1 to d = 2. The maximal value d = 2 is achieved in the essentially quantum case,
while the value d = 1 corresponds to the classical limit. Other papers have considered the
quantization of classical systems in which there is already chaotic behavior [3]. Unfor-
tunately, it was found that the quantum dynamics of the considered systems is quasiperiodic.

It has also been suggested that in the case of quantization of systems with degenerate
energy levels (such as a potential with two minima) chaotic behavior of the expectation
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