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A METHOD OF CALCULATING MASSIVE FEYNMAN INTEGRALS 

E. E. Boos and A. I. Davydychev 

A general method is proposed for calculating massive Feynman integrals on 
the basis of a representation of the massive denominators in the form of 
Mellin-Barnes integrals. This method is used to obtain expressions for 
some classes of single-loop massive Feynman integrals of propagator and 
vertex type (for arbitrary values of the powers of the denominators and 
dimension of space). The results are presented in the form of hypergeo- 
metric functions, making it possible to investigate different ranges of 
variation of the momenta. 

Introduction 

Because of the need to make numerous different calculations in gauge theories (QCD, 
electroweak model, etc.), it is very important to develop methods that permit exact calcula- 
tion of various types of Feynman diagrams containing both massless and massive particles. 
This is true, in particular, for calculation of interaction cross sections and decay widths 
in various orders of perturbation theory, for the investigation of the coefficient func- 
tions in operator expansions, for the renormalization-group analysis of ~ functions, 
anomalous dimensions, and invariant charges, for study of the behavior of Green's functions, 
the problem of anomalies, etc. In many cases it is most convenient for the calculation of 
the corresponding Feynman integrals to use dimensional regularization [1,2] (see also the 
review [3]), the use of which makes it possible, in particular, to preserve gauge invariance 
at all stages. 

At the present time, the greatest successes have been achieved in the development of 
methods of calculation of massless Feynman integrals of propagator type (i.e., dependent on 
a single external momentum): the method of Gegenbauer polynomials [4,5], integration by 
parts [6], the uniqueness method (see, for example, [7]), and also some other methods 
[8-10] (see also the review [ii]). Massless integrals of vertex type (with two indepen- 
dent external momenta) have a much more complicated structure, and some cases were 
investigated in [12-14]. 

At the same time, for the calculation of many processes, especially those including 
heavy particles, one cannot avoid the use of Feynman integrals with massive denominators. 
However, at the present time not many exact expressions are known for different dimension- 
ally regularized massive Feynman integrals (see, for example, [1,15-17] and the references 
given there). 

In the present paper, we propose a general method for obtaining exact solutions for 
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Feynman integrals containing massive denominators. The idea of the method is to represent 
the massive denominators in the form of Mellin-Barnes integrals with subsequent calculation 
of the corresponding massless integrals. This method makes it possible to obtain results 
for arbitrary values of the dimension of space n and indices of the lines (degrees of the 
corresponding denominators), making it possible to use the obtained expressions in both 
dimensional and analytic regularization. These results can be expressed in terms of 
functions of hypergeometric type, so that different ranges of variation of the momenta 
can be investigated (see below). We note that we can, without loss of generality, consider 
only scalar integrals, since all integrals with Lorentz tensor structure in the numerator 
can be reduced to scalar integrals in accordance with formulas of the type given, for 
example, in [18-19]. 

The paper is arranged as follows. Section 1 is devoted to exposition of the general 
idea of the proposed method, which can be used for arbitrary (including many-loop) massive 
integrals. In Sec. 2, the general technique is illustrated by the example of the calcula- 
tion of massive Feynman integrals of propagator type. In Sec. 3, we calculate some 
classes of massive integrals of vertex type. In the Conclusions, we formulate and discuss 
the main results of the paper. 

i. Representation for Massive Denominators 

Suppose we have a Feynman integral that contains one or several massive denominators 
of the form 

i 
(k2_m~+i0)~, (1) 

where  k i s  t h e  momentum o f  t h e  c o r r e s p o n d i n g  l i n e ,  m i s  a mass  ( f o r  d i f f e r e n t  l i n e s ,  t h e  
m a s s e s  may be d i f f e r e n t ) ,  and ~ i s  t h e  i n d e x  o f  t h e  l i n e  ( t h e  d e g r e e  o f  t h e  d e n o m i n a t o r ) .  
I n  a d d i t i o n ,  t h e  i n t e g r a l  can  a l s o  h a v e  m a s s l e s s  d e n o m i n a t o r s .  The i n f i n i t e s i m a l l y  s m a l l  
a d d i t i o n  ( + i 0 )  d e t e r m i n e s  t h e  u s u a l  " c a u s a l "  method  o f  p a s s i n g  a r o u n d  t h e  s i n g u l a r i t i e s  
in  t h e  p s e u d o - E u c l i d e a n  s p a c e .  I n  what  f o l l o w s ,  we s h a l l  a s sume  t h a t  a l l  s q u a r e s  o f  t h e  
momenta in  t h e  d e n o m i n a t o r s  h a v e  such  a d d i t i o n s  ( i n c l u d i n g  t h o s e  in  t h e  employed  e x p a n s i o n s  
and i n t e g r a l  r e p r e s e n t a t i o n s ) ,  and we s h a l l  n o t  w r i t e  them o u t  e x p l i c i t l y .  

As i s  w e l l  known, t h e  d i r e c t  c a l c u l a t i o n  o f  s u c h  m a s s i v e  i n t e g r a l s  u s i n g  s t a n d a r d  
me thods  ( a  r e p r e s e n t a t i o n  o r  Feynman p a r a m e t e r s )  i n v o l v e s  g r e a t  d i f f i c u l t i e s  in  t h e  
c a l c u l a t i o n  o f  t h e  p a r a m e t r i c  i n t e g r a l s ,  and g e n e r a l  e x p r e s s i o n s  h a v e  been  o b t a i n e d  o n l y  
f o r  t h e  s i m p l e s t  c a s e s .  T h e r e  i s  a n o t h e r  p r o c e d u r e  f o r  o b t a i n i n g  a s y m p t o t i c  e x p a n s i o n s  
of such integrals with respect to parameters of the type m2/p 2 (p is an external momentum) 
associated with the use of the R* operation (see [20-22]). 

We expand the considered denominator (I) in a series in m2/k2: 

- , _ - = ~ /  r ( ~ + ] ) .  (2) 
(k2--m2) ~ ( k2 )~ ( t -mVk~)  ~ (k2) ~ ~ (k~) ' F(~) j=0 ]! k 

If we now formally substitute this expansion in the integrand, we obtain an infinite sum 
of integrals in which the massive denominator (i) is replaced by massless denominators. 
It is obvious that if all the massive denominators in the considered Feynman integral are 
expanded in this manner, then it will be reduced to the sum of the corresponding massless 
integrals. In particular, if there is just one external momentum p, then we obtain in this 
manner an expansion in m~/p 2. However, it is easy to see in simple examples that the 
obtained result will be incorrect. This is because the expansion (2) is valid only in the 
region Ik2I > m 2, while the integration is over all k, including the region in which Ik2I < 
m 2. In this region, the expansion (2) must, in general, be replaced by a different one: 

(k~-m~) ~ (-m~)~(t_k~/m~)~- (_m~)~ ~fo~ [ -~  = 

~.,-~-\_-77_2 F(~+]) .  (3) 
( - r o d  ~ r ( ~ )  ~=o j.  m / 

Thus, the correct expansion of the denominator (i) is a combination of (2) and (3) with 
corresponding 8 functions (for further work with such expressions, it is better to go over 
to Euclidean variables). However, the presence of the 8 functions greatly complicates the 
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corresponding massless integrals, and the entire gain from the reduction of the massive 
integrals to the massless ones is almost lost. One of the ways out of the resulting 
situation is to use the procedure proposed in [20-22]. It is as follows. Suppose we use 
for denominators of the form (i) the expansion (2) and compensate the "incorrectness" of 
this expansion in the region [k2! < m 2 by appropriately chosen counterterms (a general 
prescription for the construction of such counterterms is given). This makes it possible 
to obtain correct asymptotic expansions of the corresponding integrals in powers of m2/p 2. 

We propose a different method for calculating massive Feynman integrals. The idea 
of the method is to use the Mellin-Barnes representation for the function iF0, 

ds(-z)~F(-s)F(~+s),  (4) 

where the contour in the complex plane of s separates the "left" series of poles of the 
integrand F functions from the "right" poles (in what follows, all such integrals will be 
understood in precisely this sense). To calculate the integral (4), we can use the 
residue theorem, closing the contour at infinity in the right or left half-plane in order 
to make the integrand decrease (depending on the value of I z l). For example, for I zl < 1 
we must close the contour in (4) on the right, and for [z[ > 1 on the left (and the 
obtained expression is equal to the sum over the residues of F(--s) or F(~ + s), respec- 
tively). In this manner, we obtain the well-known expressions for the analytic continua- 
tion of the hypergeometric functions (see, for example, [23]). Thus, the main formula of 
the method is 

o = ds - 7  ( 5 )  

(we repeat that all squares of momenta contain infinitesimally small imaginary additions: 
k 2 ++ k 2 + i0). The advantage of this method is that formula (5) contains both (2) and 
(3): for k 2 > m 2, we obtain (summing over the residues of F(--s)) the expansion (2), 
and for Ik 2 < m 2 (summing over the residues of F($ + s)) the expansion (3). At the same 
time, we can use the ordinary expressions for the massless integrals, replacing the 
corresponding index ~ by (8 + s). The use of this method also has a number of other helpful 
properties, which will be noted below in the calculation of definite classes of integrals. 

It should be noted that the appropriateness of using the Mellin-Barnes representation 
for the hypergeometric functions (and also the Mellin transform) in the calculation of one- 
dimensional integrals has already been noted (see, for example, [24,25]). In particular, 
it was used in [26,19,13] to study parametric integrals that arise when the ~ representa- 
tion is used to calculate certain Yeynman integrals. In particular, the Mellin transform 
was used in [27] to analyze ~-parametrized integrals in the investigation of singularities 
and the asymptotic behavior of massive Feynman amplitudes. Note also that in [28] a study 
was made of some aspects of the calculation of massive integrals of propagator type by 
using a single Mellin transformation on the square of the external momentum and considering 
the Mellin transforms of such integrals. Our proposed technique of the Mellin-Barnes 
representation directly for the massive denominators differs from these approaches, and 
from our point of view is more convenient for calculating definite classes of massive 
Feynman integrals. 

2. Integrals of Propagator Type 

We now consider examples of the use of the basic formula of the method (5) for 
integrals of propagator type (containing one external momentum). In this section, we shall 
operate with single-loop integrals of the form 

](~, ~; m,, m2)~ ~ d~k (6) 
(k2--m~2) ~ ((p--k) 2--m~2)~ 

where n = 4 -- 2~ is the spacetime dimension (in the framework of dimensional regulariza- 
tion [1,2]). A special case of the integral (6) with ~ = ~ = 1 was considered in particular 
in [15]. 

We give first a detailed treatment of a well-known simple example: m I = 0, m 2 ~ m. 
Applying (5) to the integrand, we obtain 
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d~k 
l((~, ~l; 0, m ) =  ~ (U)~((p_k)~_m~)~ -- 

i,m 

t t ~ ds ( -m~)~F(-s )F(~+s)J  (~ 
r(~) 2~i (7) 

where the symbol ](0) denotes the corresponding massless integral, the result for which is 
well known: 

r d"k 1(~ (~, ~)~s(~, ~; 0 ,o ) :  ] 
(k~)~((p--k/)  ~ 

~"/~i'-" ( / )  ~/~-~-~ F (n /2 -  a) F (n /2 -  ~ ) r (~+ ~ -  n/2) ( 8 ) 

Substituting (8) in (7) and replacing the variable of integration s by (n/2 -- ~ -- ~ -- s) 
(replacements of such type do not violate the condition for separating by a contour the 
right and left series of poles -- all that happens is that "right" and "left" change 
places), we have 

J(~ ~; O, m)=g"/~i~-"(-m~) "/z-~-~ F(n/Z--a) X 
r(~)r(D 

i 
(9) 

2~i _~= m ~ ~ F (n/2+s) 

(here and in what follows, the phase is defined in such a way t h a t  P-"(--m2)"/2=g(m2)"/2). 
Closing the contour of integration on the right, we obtain 

7(a, ~; O, m)=n"/2i ' -"(-m~) "/~-~-~ F ( n / 2 - u )  Z _ l i  (---p__~): r(=+j)r(=+~--n/2+j) _ 
F(~)F(~)~ ji \m ~ F(n/2+]) -- 

r ( n / 2 - ~ ) r ( a + ~ - n / 2 )  F {u ,~+~- -n /2  I ~ / ~"~n/Z~l--n (__n~2) n/Z--O~--~ (lO) 

where 2FI is Gauss's hypergeometric function. If we close the contour of integration in 
(9) on the left, we obtain a result in the form of functions of m2/p=: 

](~, ~; O, m) =n~/~i '-" (/)"/~-~'-~ { F ( n / 2 - a )  F (n/2-~)r (o:§  

r (~) r (~) r (n-~-~)  • 

( 
~-~/2+1 r -~  ~ '- n/2-~+t ] ( t l )  F t ]  " 

N a t u r a l l y ,  t h e  same r e s u l t  can be o b t a i n e d  f rom (10)  by a p p l y i n g  t h e  w e l l - k n o w n  f o r m u l a  
o f  a n a l y t i c  c o n t i n u a t i o n  o f  t h e  f u n c t i o n  2Fa ( s e e ,  f o r  ex am p le ,  [ 2 3 ] ) .  Note  a l s o  t h a t  
o t h e r  f o r m u l a s  o f  a n a l y t i c  c o n t i n u a t i o n  o f  aF! [23] make i t  p o s s i b l e  t o  e x p r e s s  t h e  
o b t a i n e d  r e s u l t  in  t h e  v a r i a b l e s  (m 2 -- p~) /m ~ and (p2 _ m2)/p2 ( and  t h e i r  i n v e r s e s ) .  
Such e x p a n s i o n s  a r e  o f  i n t e r e s t  f o r  i n v e s t i g a t i o n  o f  t h e  b e h a v i o r  o f  t h e  G r e e n ' s  f u n c t i o n s  
n e a r  t h e  mass s h e l l .  In  p a r t i c u l a r ,  go ing  o v e r  t o  t h e  v a r i a b l e  (p2 _ m 2 ) / p 2 ,  we r e p r o d u c e  
t h e  r e s u l t o b t a i n e d  in  [29] by means o f  t h e  ~ r e p r e s e n t a t i o n .  

R e t u r n i n g  t o  t h e  e x p r e s s i o n  ( 1 1 ) ,  we n o t e  t h a t  on f o r m a l  s u b s t i t u t i o n  o f  t h e  e x p a n s i o n  
(2 )  we would o b t a i n  o n l y  t h e  f i r s t  f u n c t i o n  2F1 in  t h e  c u r l y  b r a c k e t s ,  and t h e  r e s u l t  would 
be i n c o r r e c t .  A p p l i c a t i o n  o f  t h e  p r o c e d u r e  [ 2 0 - 2 2 ]  h e r e  r e d u c e s  t o  t e r m - b y - t e r m  r e c o v e r y  
o f  t h e  e x p a n s i o n  c o e f f i c i e n t s  o f  t h e  s e c o n d  f u n c t i o n  2F1, which  in  o u r  a p p r o a c h  i s  
o b t a i n e d  a u t o m a t i c a l l y .  

Note also that the passage to the limit ~ § 0 in (I0) gives 

I(0, ~; O, m)=~"/~i'-"(-m~) ~/~-~ r(p-n/2) (12) 
F(D 

This result agrees with the well-known result of [i]. By means of the proposed method, 
the expression (12) can also be obtained directly by using the property [9] 
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2~ nlz 
](o) (0, nli+i~) =i  ~ n5 (~). 

We now c o n s i d e r  a n o t h e r  i n t e r e s t i n g  s p e c i a l  c a s e  o f  t h e  i n t e g r a l  ( 6 ) ,  when m~ = m~ =- m: 

](a,  [~; m, m)= d.k 
(U--ra2) ~ ((p--k) ~--m~) ~ " ( 13 ) 

Applying the general formula (5) twice to the denominator of (13), and using (8), we obtain 

i i 
J (o~, ~; m, ra)=n~/'~i'-~(pD"/~-~-~ r((z)r(~) (2ai) 2 X 

i *  

- -  F ( - - s ) r ( - - t )  - (14)  
_~ / ~ r ( n - ~ z - [ ~ - s - t )  

Making the change of variable t = n/2 -- ~ -- ~ -- s -- u, and also using Barnes's lemma 
to calculate the integral over s (see, for example, [24,23]), 

2 ~  ds r ( a + s ) r ( b + s ) r ( c - s ) r ( d - s ) =  r (a+e) r (a+d)r (b+c) r (b+d)  
_~  F(a+b+c+d) ' 

we obtain 

(16) 

Hence, closing the contour of integration to the right or to the left and using the well- 
known doubling formula for the F function (F(iz)=22z-i~-V~F(z)F(z+~/2)), we can obtain the 
results 

] (~,  ~; m, m) = ~ / ~ 9  -~' (-m~) ~/~-~-~ r (~+~--n/2)r(~+~) 3F2 [\ ~' ~, ~+~-n /2  I 
p2 

(17) 
(~+~)/2, (~+~+I)/2 ~-~- 

Y(a, ~; m, rn)=~/ii~_~(p~)~/2_~_ ~ - { F(n t i - -a)F(n /2- -~)F(a+~-n/2)  X 
r(~)r(~)r(~-~-~) 

,F~(~+~-~/2, (~+~-~+t)/2, (~+~-~+2)/2 I 4m~ + 
a - n / 2 + l ,  ~ - n / 2 + t  ~ p--F! 

~2 n/2--c~ 

r(~) ~/2-~+I, ~-~+1 ~ } +  

(_~_$)~/2_~ F ( ~ - n / 2 ) 3 F 2 ( a ,  ( ( z -~+i ) /2 ,  ((z--~+2)/2 4m2~] r (18)  
F(~) n /2- -~+L ~- -~+i  p~ ~ /  

( w i t h  r e g a r d  t o  t h e  h y p e r g e o m e t r i c  f u n c t i o n s  e n c o u n t e r e d  in  t h e  p a p e r ,  i n c l u d i n g  ~Fi ,  
s ee  t h e  A p p e n d i x ) .  Note  t h a t ,  e x p a n d i n g  (17 )  w i t h  r e s p e c t  t o  g = (4 -- n ) / 2  in  t h e  c a s e  
a = ~ = 1, we o b t a i n  t h e  we l l - known  r e s u l t  ( s e e ,  f o r  example ,  [ 3 0 ] )  e x p r e s s e d  in  t e r m s  
o f  e l e m e n t a r y  f u n c t i o n s .  

F i n a l l y ,  we c o n s i d e r  t h e  g e n e r a l  c a s e  o f  t h e  i n t e g r a l  ( 6 ) .  Double  a p p l i c a t i o n  o f  
formula (5) (with allowance for the expression (8)) gives 

1 i J (ct, ~; mi, rn2) =~/zi~-~ (p~)n,'~-~-~ - -  X 
F(~)F(~)  ( iai)  ~ 

m~ ~ . . . .  m~2~ ~ F( s ) F ( t )  F ( n l i - a - s ) F ( n l i - ~ - t ) F ( o ~ + ~ - n l i + s + t )  (19)  

Calculating the contour integrals, we obtain 

{ ] ( a ,  ~; mi, mz) - -~ ' /~ i ' -~ ( toO)  n/~-~-~ F(n/2-a)F(o~+~-n/2)  X 
F (n/2) F (~) 

F4 (a, ~+~--n/2; n/2, o~-n/2+ i lpi/m~ ~, m, Vm22) + 
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( F(cz-n/2)-F,(},n/2;n/2, n /2-a+t  p ='m/2,2 m,/2"rn 22,))/ , (20) 
~-s r(~) 

where Fu is  A p p e l l ' s  hypergeomet r i c  f u n c t i o n  of  two v a r i a b l e s  [31,23] ( see  a l so  the  
Appendix).  I f  we cons ide r  the  case  m~ < mz, then  in the  exp re s s ion  (20) we must make the  
s u b s t i t u t i o n  (m~, a) ++ (m=, [3). From (19) ,  we can a l s o  ob t a in  the  r e s u l t  in the  v a r i a b l e s  
m~/p 2 and m~/pf: 

] (~, p; m,, ~ )  =a~/~ ~-~ (~D ~/~-~-~ { F (~ /2 -~)  F (, , /2-}) F (a+}-n/2) 
r(~)r(.~)r(n-~-~) • 

F~ (a+~--n/2, ~+~--n+ i; a-n~2+ ~, ~--n/2+ I I m~2/P% m22/P ~) + 

( - - m ~  ~ F, (}, }--n/2+i; n/2--~z+i, ~--n/2q" 
P (a--n/2) 

p~ / r ( a )  
( m f )  ~n-~ r (~-nl f  ) 

t lrn~Vp% m~Vp~)+ -- ~ F,(ot, a-n /2+~;  
F(}) (21) 

a-n/2+ l, n/2-~+l l m~Vp% m221p ~) ~. 
Thus, f o r  the  g e n e r a l  i n t e g r a l  (6) we have c o n s t r u c t e d  the  r e p r e s e n t a t i o n  (19) ,  from which 
we can o b t a i n  the  r e s u l t  in the  form of  hypergeomet r i c  f u n c t i o n s  fo r  d i f f e r e n t  r e l a t i o n s  
between the  masses m~ and m2 and the  momentum p ( f o r  example (20) and (21) ) .  

Note t h a t  from the  exp re s s ion  (20) f o r  ~ = ~ = 1 and p~ = 0 we o b t a i n  the  well-known 
r e s u l t  ( s ee ,  f o r  example, [21]) 

I?Z22--r/Z~ ~ 

3. Integrals of Vertex Type 

In this section, we consider examples of the application of the proposed technique 
to single-loop "triangle" integrals of vertex type (with two independent external momenta) 
containing massive denominators (see Fig. i). 

It is obvious that application of formula (5) to massive denominators requires 
information about the corresponding massless integrals: 

] (~ (~, v, p )~  ~' d~r (22) 
(rf) ~ ((p--r) ~) ~ ((q--r) 2)~ 

(as before, we understand the causal method of avoiding the singularities in the pseudo- 
Euclidean space). A general expression for the integrals (22) was obtained in [13] and 
can be represented in the form 

]~0~ (~, ~, p) = ~ / w _ ~ [ r  (~) r (~) r (p) r (n-~-~-o) ] - ' x  

{ (k ~) ~/z-~-'-0F (~) e (~+~+p-n/2) P (nl2-~-v) F (n /2-~-p)  X 

F,,(~, ~§ ~+v--n/2§ ~+p-nl2§ qf/kZ)+ 

(qD ~/~-~-~ (k 2) -~r (v) r (n/2-p) r ( n / 2 - ~ - v )  r (~+p-n/2)  • 

F, (% n/2-p; ~+v-n/2+t, n / 2 - ~ - p + t  Ip~/k 2, qf/kf) + 

(p2) =/2-u-~ (k 2)-pF (p) F (n/2-~) F (~+~-n/2) r (n /2 -~-p)  X 

F~ (p, n/2-~; n/2--~-v+t, ~ + p - n / 2 + t  Ip2/k a, q2/k2) + (p2)"/2-"-~(qZ)"/~-~-P(k2)"-=/2X 

F (n--~--~--p) F (n/2--~) F (~+v-n/2)  F (p+p--n/2) • 

F~ (n-i~-~--p, n/2-~; n /2-~-~§  n/2-~--p+l ]pf/kf, r =) }, ~23) 

where k ~ q -- p, and F 4 (as in  (20) and (21))  i s  A p p e l l ' s  hype rgeomet r i c  f u n c t i o n  of  
two v a r i a b l e s  ( see  (A .2 ) ) .  In p a r t i c u l a r ,  i f  one of  the  parameters  ~, v, p i s  ze ro ,  then  
in (23) there remain, respectively, only the first, second, or third terms in the curly 
brackets and we obtain the well-known result (8), whereas for p + v + O = n only the fourth 
• "survives," and we obtain the uniqueness relation (see, for example, [7]). For our 
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k -f 

Fig. 1 

purposes, it will be convenient to use the representation 

J(~ (2 i) ~ dsdt --~ X 

V-k~ J F ( - s ) F  ( - t )  F ( n / 2 - ~ - v - s ) F  ( n / 2 - ~ - p - t ) r  (~+s+t) r (lx+v+p-n/2+s+t),  (24)  

f rom which  we can  r e a d i l y  o b t a i n  b o t h  (23)  and t h e  c o r r e s p o n d i n g  e x p r e s s i o n s  in  t e r m s  o f  
f u n c t i o n s  o f  o t h e r  d i m e n s i o n l e s s  momentum v a r i a b l e s .  We n o t e  t h a t  r e p r e s e n t a t i o n s  o f  
such  t y p e  were  u s e d  in  some s p e c i a l  c a s e s  ( f o r  n = 4) i n  [ 2 6 ] .  

We now c o n s i d e r  v e r t e x  i n t e g r a l s  w i t h  one m a s s i v e  d e n o m i n a t o r :  

;~(~,v,  p; m)-~ ~. 
d,~r 

(r~--ma) ~ ((p--r)~)" ( (q--r)a)~ (25)  

Use o f  t h e  b a s i c  f o r m u l a  (5 )  o f  t h e  method g i v e s  

�9 t I r 
J~(~'v 'P;m)= F(~t) 2~i ~ j da(-m~)"F ( - a )  F (~+a) g(o) (p~+a, v, p ). 

Substituting here the representation (24) and going over from the variable u to 

(n/2 -- U -- ~ -- ~ -- s -- t -- u), we obtain 

]i (~, ~, p; m) =~r -~ (-rod n/s-~_~_~[r (~) r (~) r (p) ]-'• 

F ( - s )  F ( - t )F( - -u )  F (n /2 - - v -p -u )  X 
(2~i) a _~-. ~TI \ - ~ /  \ - - ~ /  

F (~+v+p-n /2§  F ( v §  ~) F ( p § 2 4 7  ( 26 ) 
F (n/2+s+t+y.) 

Note  t h a t  h e r e  we h a v e  two s e r i e s  o f  p o l e s  in  t h e  r i g h t  h a l f - p l a n e  o f  t h e  v a r i a b l e  u (due  
t o  F ( - - u )  and F ( n / 2  -- v -- p -- u ) ) .  C a l c u l a t i n g  t h e  i n t e g r a l s  ( 2 6 ) ,  we o b t a i n  t h e  r e s u l t  

{ F  (~+~+p- -n /2 )  g ( n / 2 - ~ - p )  
J~ (~, v, p; m) = ~ / h  ~-n ( - m  ~) ~/s_~-~_~ I" (~) P (n/2) X 

+ ~--- x 
n/2; v + p - - n / 2 + l  ms' m ~' mW 

n--~--p; n/2--~--p+l ms' m ~' m 2 , (27)  

where  ~a i s  a f u n c t i o n  o f  h y p e r g e o m e t r i c  t y p e  t h a t  can  be e x p r e s s e d  in  t e r m s  o f  L a u r i c e l l a ' s  
g e n e r a l i z e d  f u n c t i o n  o f  t h r e e  v a r i a b l e s  ( s e e  ( A . 4 ) ) :  
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~l [ ~lt a2~ a3 I ]~ s , s  s ~lJlz2J2~3 ja (iT/i)Jlzcj~§ (~z2)jl-kJa (a3) j2+ja 
c; d &,z2, z~ ~=~ ~=o j~-oJ llj2!ja! (c)~,+j=+~(d)~= 

e:ioO:oO!O[(ai:t,t,l), (az : t ,O, i ) ,  ( a , :O , t , i )  z~, ] 
, ,l (c:t,  1,1): (d: t )  z2,za , (28)  

where  (a)j~F(a+])/F(a) i s  t h e  Pochhammer s y m b o l .  No te  t h a t  t h e  g e n e r a l  f o r m u l a  (26)  makes  
i t  p o s s i b l e  t o  go o v e r  t o  o t h e r  d i m e n s i o n l e s s  v a r i a b l e s  ( f o r  e x a m p l e ,  m2/p 2, m2/q 2, e t c . ) .  
Note  a l s o  t h a t  f o r  ~ = 0 f o r m u l a  (27)  c o r r e s p o n d s  t o  t h e  w e l l - k n o w n  r e s u l t  o f  (8 )  ( a s  
it must). 

It is sometimes of interest to consider symmetric deviation from the mass shell with 
respect to two ends of the corresponding Feynman diagram, q2 = p2 (see, for example, 
[19,13]). Then the function ~l can be represented as a generalized hypergeometric 
function of two variables: 

O, [ a,, a2, aa z, ] s s z~z' (a,),+,(azq-aa)~+a(a2)z(aa), 
c; d z, z~ = /!l~ (c)~+,(a2+a,)2,(d), -- j~O l~O 

' (c: i , l ) : (a=-Faa:2) ,  (d: t )  

Because the sum over j in (29) represents the function 2FI, we can here (as in the 
expression (I0)) readily obtain, by means of the formulas of analytic continuation [23], 
expansions with respect to the variables i/z, (i -- z), (z -- l)/z, etc., which are often 
used to investigate asymptotic behavior in different regions. 

We now consider a vertex integral with two massive denominators and the same mass m: 

1~ (~, v, p; m) ~S  d~r (30)  
(rZ)"((p--r) z--rn~)~((q--r) 2 - - m 2 )  t~ " 

Application of (5) to the massive denominators gives 

J2(~t, v, p; m) 
(2 0 

F(-v)  g ( - w )  g(v+v) P(p+w)](~ (~, v+v, pew). 

S u b s t i t u t i n g ,  f u r t h e r ,  t h e  e x p r e s s i o n  f o r  ] (~ (24), g o i n g  o v e r  t o  t h e  v a r i a b l e  u by means 
o f  t h e  s u b s t i t u t i o n  w = n / 2  -- ~ -- v -- p -- s -- t -- v -- u ,  and c a l c u l a t i n g  t h e  i n t e g r a l  
o v e r  v by means o f  B a r n e s ' s  lemma ( 1 5 ) ,  we o b t a i n  

]~ (,u, v, p; m)=n~/+i*-++(-rn~) ~/~-~ .... P[F (~)F (v)P(p) I - i X  

1 ~y~dsdtdt t ( - -  P- - -~z)~( - -~z) t ( - -~z )~F(-s )F( - t )F( -u)X 
(2ai) ~ _ .  

F (~*+v+p--n/2+s+t+u) F (~+s+t) F ( y e s + a )  F ( p + t + ~ ) F  (n /2-~+t~)  (31 ) 
F (n/2+s+t+u) P ( v + p + s + t + 2 ~ )  

Hence, closing the contours with respect to the variables s, t, and u on the right, we can 
obtain the expression 

]2 (~, v, p; m) =nn/~P -~ ( - m  2) n/2-~_~_p F ( b t + v + p - n / 2 )  F (n72-bQ X 
F (v+p)  F (n/2) 

[ ~ + , + p - n / 2 ,  ~, v, p; n/2-~  lp 2 q2 k2] 
092 n/2, v+p  rn 2' r iP'  ~ ' ( 3 2 )  

where the function ~2 can also be expressed in terms of Lauricella's generalized function 
of three variables (see (A.4)): 

@2 [ ai' a2' a~' a~; b zi, ] ~2~ f'3 Ci~ C2 
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F~!:oO;oO)o, [ (a~:i, l, i) ,  (a~:i, t, 0), (a3:1,0, t) ,  (a,:0,],  l ) : ( b : l )  I ] (33) 
' "  (c,:I ,  I, 1), (c..:l. L i )  z , , z ~ , z ~  . 

In  t h e  c a s e  o f  symmet r i c  d e v i a t i o n  f rom t h e  mass s h e l l  ( q :  = p i ) ,  and b e a r i n g  in  mind t h a t  
in our case c 2 = a a + a 4 = v + p, we can represent r in terms of Kamp~ de Feriet's function 

( s e e  (A. 3 ) )  

(I)2 [ al, ai, as, aA; b I ] Z i  ~J~3 l (at) j+z(a2)j(aa)l(aa)t(b) t  
c,, a~+a~ z,z,z~ = ][ l[ (c,)j+z(a3+a~)iz -- 

t l . 3 [  a~:ai; a3, a ~ , b  I z3] F,.o.'2 z, (34) 
' c~: (a3+a,~)/2, (a3+aa+l)/2 4 -  ' 

where  we have  a l s o  u s e d  t h e  d o u b l i n g  f o r m u l a  f o r  t h e  r f u n c t i o n .  As in  t h e  c a s e  ( 2 9 ) ,  t h e  
sum o v e r  j r e p r e s e n t s  iF1 and can be a n a l y t i c a l l y  e x t e n d e d  t o  o t h e r  v a r i a b l e s .  

Finally, we consider a vertex integral with three massive denominators when all the 

masses are the same: 
[, 

d,r 
4(~ ,v ,p ;  m)~- J (r~--m~)" ((p--r)~-m~) ~ ((q-r)  ~--m~) --i " ( 35 ) 

Using formula (5), we can express it in terms of the already considered integral Ji: 

]3 (l~, V, p; m) = 1 I J" dv(_m~)T(_v)i,(~+v)j~(~t+v,v,p;ra)" 
F(~) 2~i _,~ 

S u b s t i t u t i n g  h e r e  t h e  r e p r e s e n t a t i o n  (31)  and a g a i n  u s i n g  B a r n e s ' s  lemma ( 1 5 ) ,  we o b t a i n  
the expression 

J~ (~t, v, 9; m)=~"/ii~-"(-m~)'u'z-.~-~-~ X 

q2 ~ k'z u 

(2~i) ~ _~ 

F (~+v+ p-n/2+s+t+a) F (~t+s+t) F (v +s+~) F (p+t+u) ( 36 
I' (~t+v+p+2s+it+2~) 

Hence, proceeding as in the previous cases, we obtain the symmetric result 

, 2  ~ 2 ~ F(tx+v+p-n/2) 
7~ (~, v, 9; m) =r~ ~' ~ -~ ( - m )  ,u~-.-~-~ • 

r (~.t+v+p) 
[ p~+v+p--n/2, ~t, v, p I p~ q~ k 2] 

@~ l~+v+p m~ , m~ , m ~ , (37 

where ~a can also be represented in terms of a generalized hypergeometric function of 

three variables (see (A.4)): 

Zi: Z3 ~:  
C 

F~:o ,~ :~176176 ! o ; o  (c:2,2, 2) z~,z~,z~] = 

~:o. o, o [ . ,  (a~: ~, ~, l ) ,  (~ :  ~, ~, 0), (ao: ~, 0, l ) ,  (,w 0, L ~)I1~" ~, z~j ] ( 38 )  
F~.o.'o; o (c/2:1, 1, i),  ( ( c+1) /2 : t ,  t, ~) 

(here we have also used the doubling formula for the F function). In particular, when 
p~ = q= = k ~ = 0, we obtain the well-known result (12) (in which $ = ~ + v + p). 

If we consider the case q2 = pn (z~ = z 2 - z), then we readily obtain the result in 
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the form of a generalized hypergeometric function of two variables (see (A.4)): 

z , z , z ~  = ' ] ! l !  ( c ) ~ j + 2 ~ ( a ~ + a ~ ) ~  - 
C i=o z=o 

F2:~,~[(a,:t,l), (a,+a,:i, 2):(a~:l); (a~:l), (a,:t)[ z z,] (39) 
~:~ (c /2 : l , l ) ,  (@+1)/2:1, t ) ;  (a~+a,/2) - 4 - - 4  

Note t h a t  r e d u c t i o n  fo rmulas  o f  t he  t y p e  (29 ) ,  (34 ) ,  and (39) can be r e a d i l y  o b t a i n e d  
from the corresponding Mellin-Barnes representations (26), (31), and (36) by means of 
Barnes's lemma (15). 

We consider a simple special example of application of the general formula (37). If 
p2 = q= = 0, then from (37) and (38) (or from (39)) we find that 

4(~ ,  v, p; m) [ r  (-m~)~/~-~-~-~ X 

F (~+v+p-n /2)  F 

(~+v+O)/2, (~+v+p+t ) /2  

Such i n t e g r a l s  a r e  needed ,  in  p a r t i c u l a r ,  in  t he  c a l c u l a t i o n  of  t he  diagram c o r r e s p o n d i n g  
to  p r o d u c t i o n  of  the  t t iggs boson in t he  p r o c e s s  o f  the  s y n t h e s i s  o f  g luons  t h rough  a 
heavy-quark loop (see, for example, [32]). 

For example, for the specific integral with ~ = v = p = 1 we can go to the limit 
n § 4, and we obtain 

~ . (  k 2 \ 

where 

Z . 

~/2, 2 

Using the formulas, given in [33], we obtain 

z -i arcsin 2 Vz7 z~0, 

/ ( z ) =  t_z_,ln2(~i~z+~_z) ' z~O. 

Concluding this section, we note that we have represented the results for the integrals 
(25), (30), and (35) in the form of hypergeometric functions of the variables p2/m2, q2/m2, 
and k2/m 2 (27), (32), (37), since in these variables the obtained expressions take their 
most compact form. Expansions with respect to other variables can be obtained from the 
general representations (26), (31), and (36). 

Conclusions 

In this paper, we have considered a general method of calculating Feynman integrals 
that contain massive denominators. The Mellin-Barnes representation (5) enables us to 
reduce the massive Feynman integrals to massless ones. At the same time, in contrast to 
the expansions in the series (2) and (3), the representation (5) is true for all relations 
between the momentum and the mass. If we know an expression for the massless integral 
with arbitrary index of the line corresponding to the massive denominator, then the massive 
integral can also be calculated. Note that we have calculated the integrals in pseudo- 
Euclidean space; however, it is clear that the transition to the Euclidean case does not 
present difficulties. 

The method makes it possible to calculate the integrals for arbitrary line indices 
and dimension of space, and therefore it can be used in both dimensional and analytic 
regularization. In particular, this makes it possible to express by a single formula all 
results for the class of Feynman integrals in the most interesting case of integer indices 
(in practice, such integrals can be calculated recursively). In addition, expressions 
for integrals with arbitrary line indices can be used in an investigation of the compati- 
bility of solutions of power-law form with dynamical integral equations for Green's 
functions (for example, in investigation of the infrared behavior of quantum chromodyna- 
mics). Note also that the method may be helpful in the case when massless singularities 
are regularized by the introduction of a small mass. 
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As a rule, the obtained expressions for the integrals can be represented in the form 
of hypergeometric functions of dimensionless combinations of squares of the momenta and 
masses. This is extremely helpful, since, using the formulas of analytic continuation, 
it is possible to go over from certain variables to others and investigate different 
ranges of variation of the momenta. In particular, to investigate processes with heavy 
particles it is convenient to use functions of arguments of the form p2/m2, and for light 
particles functions of arguments of the form m2/p 2. It is also possible to investigate 
regions near the mass shells of the particles, and also the behavior near threshold values 
of the momenta. 

In the present paper, we have illustrated the application of the proposed method for 
the example of classes of single-loop massive Feynman integrals of propagator and vertex 
type. So far as we know, some of the results have been obtained for the first time. For 
definite (integer) values of the powers of the denominators, and also after expansion 
with respect to e = (4 -- n)/2, the general formulas simplify appreciably; at the same 
time, it is convenient to use the formulas given in the reference book [33]. Great 
simplifications are also achieved by various subsidiary conditions (for example, vanishing 
of some line index or square of a momentum, treatment of certain momenta on the mass 
shell, etc.). For the known limiting cases of such kind, the obtained formulas give the 
correct results. 

It is clear that the considered examples by no means exhaust the results that can be 
obtained by the proposed method. In particular, it can be used to calculate many-loop 
integrals with massive denominators, vertex integrals with larger number of external lines, 
integrals in the axial gauge, etc. We hope that continuation of investigations in this 
direction will make it possible to increase the number of exactly calculable diagrams in 
quantum field theory. 

We thank B. A. Arbuzov and V. I. Savrin for interest in the work and support, and also 
V. A. Ii'in, A. L. Kataev, S. A. Larin, A. A. Pivovarov, V. A. Smirnov, F. V. Tkachev, 
N. I. Usyukina, and K. G. Chetyrkin for helpful discussions and critical comments. 

Appendix 

In this Appendix, we give definitions of the hypergeometric functions encountered in 
the present work (more detailed information about these functions can be found, for 
example, in [23,24,31,34,35]). Note that expansions of these functions in other ranges 
of variation of the variables can be obtained by means of analytic continuation (for this, 
it is convenient to represent the corresponding functions in the form of Mellin-Barnes 
integrals). 

The generalized hypergeometric function of one variable is defined by 

~ " ' ~  ~ (A.1) AFB (b ,  . . . . .  bBI ) = ~  ' (a,)~...(aA)j ~ 
j=0 

where  ( a ) j  - F (a  + j ) / F ( a )  i s  t h e  Pochhammer s y m b o l .  

Appell's hypergeometric function of two variables F 4 has the form 

~ (a) Jt+j2(b) it+J2 ztJlz2~z (A.2) 
F~(a,b;c,d[z,,z2)= (c)j,(d)j~ h!]2[ 

A more  g e n e r a l  h y p e r g e o m e t r i c  f u n c t i o n  o f  two v a r i a b l e s  (Kamp6 de F e r i e t ' s  f u n c t i o n )  
i s  d e f i n e d  by 

C:D;D'  c], . , c  C :d l , �9  �9 . , d  D ; d l ' ,  ., d'D" z l , z~  = 

~'-'J ~'~o (al)J~+'i~" " " (aA)'i~+j2 (bl)'i' " " " (b B) ' i '  (bl")J~ " " " (b B')  Y2 "zlJ~z~]' (A.3) 
j,=0J,= (Clb,+~. �9 (%)j~+j~(d~)j~ . (dD)jl (d~'b~ (a~,)j, ]J~J~: 

2:0'0 
For  e x a m p l e ,  i t  i s  r e a d i l y  s e e n  t h a t  f,=f0:~;'t. 

F i n a l l y ,  t h e  g e n e r a l i z e d  L a u r i c e l l a  f u n c t i o n  o f  N v a r i a b l e s  [35] h a s  t h e  fo rm 
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FA:B(1)....  B ( N )  I [ a :  (Z(1) . . . . .  ~(]V)] : [b(1). ~ ( 1 ) ] ; . . . ;  [b(N): ~(N)] g ] 
C:D(1)I"'ID(N) _ [ c :  V (1), ., ?(N)] : [d(1): ~(1)]; .; [d(N):5(N)]I  1 . . . . .  ZN = 

A B (1) B (N) 

�9 "" c D ( i )  D ( N )  h ! . . . . i N !  ' 

i = 1 i~ l  i=1 

where we have used the notation 

[6t: (Z (1) . . . . .  (Z (/~r)] ---- ( a l :  Gsil) . . . . .  (ZIIV>) . . . . .  ( aA:  (Z(~ > . . . . .  ~(AN)); 

(A.4) 

[b(M) : ~(M)] ~ ( b lM)  : ~(1M)), .  / b (M)  : g~(M) "~. M = t ,  N ;  
� 9  ~ B ( M )  P B ( M ) / '  �9 . . ,  

. . . .  , %  ~" ) ) ;  [c : ~(1),  -,  ~ ( lv ) ]  ~ (c~ : ~(1),  . ,  ~ (N) )  . . . . .  ( co  : ~ c  . . . .  

[d(M) : ~(M)] ~ (d (M)  :~(M)), [d (M) : (5 (M) "~" M = t ,  N .  
. . . , ~  D(M) D(M)  j '  " . . ,  

In (A.4), it is understood that all ~, ~, u 6 are non-negative integers, although this 
formula can be generalized to all non-negative values of these parameters if all the 
Pochhammer symbols are represented in terms of the corresponding F functions (see, for 
example, [34-35]). Note that for N = 2 the function (A.4) is sometimes called the 
generalized Kamp~ de Feriet function. 
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FRACTALS IN QUANTUM THEORY: ANALYTICAL AND NUMERICAL APPROACHES 

P. K. Silaev, E. N. Tyurin, 
and O. A. Khrustalev 

Quantum systems whose evolution has a fractal nature are considered for 
the example of the evolution of a wave packet in quantum mechanics. 
Quantum states in which the evolution of the expectation values of 
certain operators are described by fractal curves are constructed. The 
fractal dimensions of these curves are calculated. The presence of an 
exact analytical result makes it possible to compare the different 
methods of calculating the fractal dimensions. 

i. Introduction 

In recent years, many papers have been devoted to the random behavior of quantum sys- 
tems, the dimensions of quantum-mechanical trajectories, and other related questions. Some 
papers have been devoted exclusively to quantum-mechanical systems [1,2]. It has been 
shown that in the general case the dimension of a trajectory in quantum mechanics varies 
from d = 1 to d = 2. The maximal value d = 2 is achieved in the essentially quantum case, 
while the value d = 1 corresponds to the classical limit. Other papers have considered the 
quantization of classical systems in which there is already chaotic behavior [3]. Unfor- 
tunately, it was found that the quantum dynamics of the considered systems is quasiperiodic. 

It has also been suggested that in the case of quantization of systems with degenerate 
energy levels (such as a potential with two minima) chaotic behavior of the expectation 
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