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D I A G R A M  R E P R E S E N T A T I O N  O F  T H E  S I N G L E - P H O N O N  

P R O P A G A T O R  I N  T H E  Q U A S I P A R T I C L E - P H O N O N  M O D E L  OF N U C L E I  

G .  K y r c h e v  

A d i a g r a m  technique is proposed for  the quas ipa r t i c l e -phonon  model of nuclei .  R is shown 
that r e s t r i c t i on  to s ingle-phonon and two-phonon components  in the wave functions of the 
excited s t a t e s  of e v e n - e v e n  deformed nuclei is equivalent  to summat ion  of a definite c lass  
of s ing le - loop  d i a g r a m s .  The contr ibut ion of a two-loop d i ag ram is calcula ted.  Fur the r ,  
c losu re  of the h i e r a r c h y  of equations for  the Green ' s  functions yields explicit  app rox ima-  
tions that lead to summat ion  of the cons idered  c l a s s  of g raphs .  

1 .  I n t r o d u c t i o n  

The cons t ruc t ion  of the quas ipa r t i c l e -phonon  model (QPM) of nuclei,  the basic proposi t ions  of which 
a r e  given in the rev iew [1], is based on a concre te  f o r m  model Hamil tonian and on the concept of a many-  
component  o p e r a t o r  wave function (which is a s sumed  expanded in a s e r i e s  with r e spec t  to the o p e r a t o r s  in 
t e r m s  of which the Hamil tonian is exp re s sed ) .  The solutions of QPM equations der ived f rom the var ia t ional  
pr inciple  uniquely de t e rmine  the exci tat ion s p e c t r u m  and the coeff ic ients  of the ope ra to r  wave function, 
which plays an impor tan t  pa r t  in the QPM. However ,  some modern  nuclear  models  use  the language of 
p ropaga to r s  and r ep re s en t a t i ons  of them by means  of d i ag rams  [2-5]. 

The theore t ica l  just i f icat ion [6] and compar i son  [7] of the nuclear  models  now f i rmly  establ ished in 
the theory  of nuclear  s t ruc tu re  become  e v e r  m o r e  topical  p r o b l e m s .  To compare  the QPM with models  that 
use the language of g raphs ,  it is impor tan t  to es tab l i sh  what d i ag rams  a re  taken into account in the f r a m e w o r k  
of the QPM. This  quest ion was r a i sed  in pa r t i cu l a r  in the recent  papers  [8, 9]. In this connection, it is 
n e c e s s a r y  to give an a l t e rna t ive  der ivat ion of the @PM equations based on the f o r m a l i s m  of Green ' s  functions 
[10-12]. F o r  the QPM, this f o r m a l i s m  was used in [13], in which it was shown that the h ie ra rchy  of QPM 
equations is equivalent  to a h i e r a r c h y  of equations for  the cor responding  Green ' s  functions.  

In the p re sen t  paper ,  which is methodological  in nature ,  a p rob lem with ope ra to r  wave function 
containing sing}e-phonon and two-phonon components  [1,14-16] (we shall call this p rob lem the "model"),  
which is solved in the f r a m e w o r k  of the QPM by means  of a var ia t ional  pr inciple  in explicit  fo rm,  is t r a n s -  
lated into the language of d i a g r a m s .  F o r  this model,  the object  that contains all the physical information is 
the per turbed  p ropaga to r  (the in terac t ion  Hamil tonian of the QPM plays the pa r t  of the perturbat ion) ,  for  
which one can cons t ruc t  a d i a g r a m  expansion by the s tandard method.  Compar ison  with the equations der ived 
f rom the var ia t ional  pr inc ip le  [1, 14-16] make it poss ib le  to s epa ra t e  uniquely the c lass  of d i ag rams  contained 
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in the model, which is the aim of the present  paper .  One can a r r ive  at the same answer  by writing down the 
equations for  the two-t ime Green ' s  functions and, closing them in a consistent  manner,  solving them in the 
corresponding approximation.  

The paper is a r ranged as follows. The problem is formulated in Sec.2 .  In Sec.3,  we analyze the 
d iagram ser ies  of the single-phonon propagator ,  which makes it possible to deduce which graphs are  taken 
into account in the model [1,14-16].  In Sec.4,  the same resul t  is obtained by approximate solution of the 
h ie ra rchy  of equations for  the Green ' s  functions. The adequacy of the Green ' s  function fo rmal i sm for  the 
model is noted in Sec. 5. 

2 .  F o r m u l a t i o n  o f  t h e  P r o b l e m  

The model of an even-even  deformed nucleus with wave function of the form 

' ~  + t t-~D, [ ,,1) 
t ~ t  i gg' 

has been studied in detail in a number of papers [1, 14-16]. The notation is as follows: n is the number of 
the root of the excited state with give n values of the spin projection K onto the symmet ry  axis of the nueleus 
and pari ty n; g~- (L~ 0-= (gi); Q~+ is the opera tor  of creat ion of a phonon with multipolari ty ~" with number i; 
m 0 is the number of phonons of mult ipolari ty g0; Q~l ~0>=0. 

When considering the model with wave function of the form (1) it is convenient to express  the OPM 
+ 

Hamiltonian solely in t e rms  of the phonon opera to rs*  Q~ Qe" Under the assumption of validity of the quas i -  
boson approximation the QP1V[ Hamiltonian can be given the form 

H~=Hv+Hvq, (2) 

Hv= E ~ (3) 
g 

where the energies  wg of the noninteracting phonons are  obtained f rom the solution of the secular  equations 
of the random phase approximation (RPA) [1, 14], 

Hvq = - ~--~ "[ r 1 / , [  I ~- U~r Qg'+ Q~, Qg + .__~Vg~.~,,Qg+Qg,+Qg,,l+[h.e.]~.t + J - (4) 
tl/2 g g ' g "  

The s y m m e t r y  proper t ies  of U~'e" and V eel'' a re  

g/ , g , ,  g , t g ,  ~ . ~ -  - -  

U~ , V gg'~'' V ~'~''~ V ~' 'g '~-V Cd' .  (5) 

By virtue of (4), Ufg"=--~<TolQgHvqQg,+Q~,lTo>, i . e :  Uff g" is the amplitude of transit ion of the s ingle-  
Y9 

phonon state g into the two-phonon state (g 'g" ) .  The explicit fo rm of U~'g" is given in [14, 15] and is not 
needed in what follows. 

F o r  the normalized wave function (1), the variat ional  principle gives the following sys tem of 
equations [1,16]: 

m~ 

U~, D~, (g0) = 0, " - ~' ((0~,--n,)C,"(~0)- 2 g" " - ((%-{-or ZU-~:i C,"(g0)=0. 

The secular  equation for  the energies  of the excited states is obtained [1,15, 16] in the form 

"-" % + o ) r  = 0.  
gg" 

(6) 

(7) 

Solving (6), we can readily show that 

* For this purpose,  it is necessa ry  in the interaction Hamiltonian of the quas ipar t ic le-phonon model, which 
has the s t ructure  ot+er(Q++Q), to express  opera tors  of the type (~ +~ in t e rms  of phonon opera tors  (see [14], 
p.391).  
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where  M~(~0; ~) is the cor responding  mino r  of the de te rminan t  in (7). 

Equations (6)-(8) will be essen t ia l ly  used in the following exposi t ion.  

The point of depar tu re  for  cons t ruc t ing  the d i ag ram represer~tation of the single-phonon propaga tor  
in the QPM can be taken to be the well-known fo rmula  [11, 12]: 

Here ,  Q ; ( t )  and Qz( t )  a re  the o p e r a t o r s  of c rea t ion  and annihilation of phonons in the in teract ion 
represen ta t ion ,  i . e . ,  

Qg(t)=e~n~'Qge-iH,t=e - ~ ,  Qg+(t)=s i~t, (10) 

T is the t i m e - o r d e r i n g  ope ra to r ,  Hv~=e~rrv~Hvqe -~H~t, and the subscr ip t  con indicates that only connected 
d i ag rams  a re  taken into account.  

Our  a im is to es tab l i sh  what graphs  a re  taken into account in the f r a m e w o r k  of the model with the 
wave function (1). The p re sc r ip t ion  for  answer ing this question is given by the following d iscuss ion .  The 
cons idered  model co r r e sponds  to a p ropaga to r  (we denote it by C~i/) sa t is fying two requ i remen t s :  the equation 
for  the poles of the F o u r i e r  t r a n s f o r m  of ~ is identical to the secu la r  equation (7), and the res idues  of the 
F o u r i e r  t r a n s f o r m  of ~ at the poles must  be equal to (C~) 2 f rom (8). It is c l ea r  that the d i ag ram se r i e s  
for  Gii must  contain a sequence of graphs ,  summat ion  of which gives C~//. This will be the requi red  c lass  
of d i a g r a m s .  To s epa ra t e  them,  it is n e c e s s a r y  to develop an appropr ia te  graphical  technique.  

3 .  D i a g r a m  A n a l y s i s  o f  t h e  S i n g l e - P h o n o n  P r o p a g a t o r  

If in Eq. (9) we set  H~,q=0, we obtain the unper turbed p ropaga to r*  

G(0)/~ 0. t [ - - [ +  ' ii ~ , - -  t') ~--- - -  t <tFo [ r {O~oi (t) Og0i (t')} I g0> ~ - -  iO~o~ (t) O~oi, (t). 

F r o m  (11), using (10), we find its explicit  fo rm:  

o - ~ o ~ - .  ( t - i ' )  
~(0)~.  --io~ee g~ , if t ~ t ' ,  

0 , i f  [ t ~ t ' .  

The expansion of the exponential in Eq. (9) gene ra t e s  a d i ag ram s e r i e s  of per turba t ion  theory  if we 
[ - - [ +  

use Wick ' s  t heo rem  [11,12] and introduce the following convention: the t i m e - o r d e r e d  pa i r ings  Og(t)Og,(t ')= 
iG(o), -. ~' tg, t - -  t') ~5~? a r e  assoc ia ted  with the l ines  

t '  

(they a re  or iented by vir tue  of (12)), the m a t r i x  e lements  U~ 'g'' a re  assoc ia ted  with the ve r t i c e s  

(11) 

(12) 

g 
f f  �9 , 

,, f '  

and the quanti t ies  V gg'g'' a r e  r ep resen ted  in the fo rm 

* The phonon vacuum I~!, o) in Eq. (9) is assumed to be nondegenerate, and (q,01~I,0) = I .  
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F r o m  these  e l e m e n t s  we shal l  c o n s t r u c t  the d i a g r a m s  that  con t r ibu te  to G,.(g0; g - f )  f r o m  (9). 

It is c l e a r  f r o m  Eqs .  (4), (9), and (10) that  the c o r r e c t i o n s  5G of odd o r d e r  to G(~ a r e  equal  to z e r o ,  
a~(z~+l) (g0; t-t')=O, and we t h e r e f o r e  r e w r i t e  Eq.  (9) in the f o r m  i . e . ,  ~ i ~ "  

G,,,(g;t_t,)=Gvio,($o;t_t,)+26G{~,,(eo;t_t,),:G(:)(~o;t_f)._~(_i) (--i)~ d - c , . . . d ~ X  
2n! 

n~l n ~ i  - -~  

(WolT{Q~o, (t) Q~, (t')Hvq (**)... H~q ( ,~)  } t ~Fo> con �9 (13) 

The  f ac to r  1 /2n!  can be omi t t ed  and we can  c o n s i d e r  only  index f r e e  d i a g r a m s  [12]. We c o n s i d e r  
in s o m e w h a t  m o r e  detai l  the c o r r e c t i o n s  to G,,(~0; t- t ' )  of the second  (n = 1 ) and four th  (n = 2 ) o r d e r s .  
Tak ing  into account  the e x p r e s s i o n s  (4), (5), and (11) and us ing  W i c k ' s  t h e o r e m ,  we obta in  

(2~ _ .  w gg' *r t ' ~ G  (~ " ~ ( o ) / = .  T "G ( ~ 1 7 7  fiG,, (go. t--t ')=i ~ 2 U;:, U~.e ~ d~,d*~G~ ~, (go; ~ -  ~: ,'~' (g ; ~2--T.)_~ tt~; 2 - * . )  ,, (go; t - x z )  + 

+ ~  

i-n ' ~i ~zqe~ ' (~o;~z- t )G~ (g;x~-~O ~ t g ;~ :z - - , )  ,, (go; t-~d,  CEV*e~'V~'~'I" I d d _(o) , (o,_ .G(o,,_, .~,~,o,.  (14) 

w h e r e  it is a s s u m e d  that  t>x~>x ,> t ' .  

We now m a k e  a F o u r i e r  t r a n s f o r m a t i o n :  
+r 

,--,,' (go; n ) =  ~ 6G[3' (go; t-t')e'n(t-")d(t--t'). 

We subs t i tu te  h e r e  the e x p r e s s i o n  fo r  5G!~. )(g0; t--t') f r o m  (14) and,  fol lowing [12] m a k e  an i n v e r s e  F o u r i e r  
t r a n s f o r m a t i o n  on the funct ions  G (~ in (14): 

(o) _ , +~ (o) d~ 1 a-., (go; t - t  )=J" G., (~o; n)e-'~(*-*') 
2-~'" 

As a r e su l t ,  we  obtain  

d~l~d~b 
{a) _ . f f  (o) 2 gg' gg' f~.r z - 0G,,, (g.; ~) (go; n) u~:, U~0,, J 2~ =~-,,," ~ re; m ) 8 ( m + n r n ) v ~  ~'~ (g'; m)#,~' (go; n)+ 

gg" 

iG,~OJ($o;Tl) Z V  ~ �9 V 5 '  2a ( e ; n z ) - 6 ( n z + n & n ) G ~ " '  (g ; n ' ) a g ) ( g o ; n )  (15) 

(the 6 func t ions  e x p r e s s  the c o n s e r v a t i o n  law f o r  the e n e r g y  a t  each  v e r t e x ) .  The  F o u r i e r  t r a n s f o r m s  a r e  
ca l cu la t ed  with a l lowance  fo r  (12): 

V,~ ,~ (~; ~)=-6,,, (n -0~ ,+ i~ )% ~-*0. 

Subst i tu t ing (16) in the u p p e r  e x p r e s s i o n ,  we f ina l ly  obta in  
6,,., (~) ,_ ^ 

t~,, (go; ~) = [~(0, (~0; n) W+~(g0; n) ~(o) (~0; n) ] ' " ,  

w h e r e  6(~ n) is  the m a t r i x  c o m p o s e d  of  the quan t i f i e s  (16), and IIU+V(g0; ~) is  the  m a t r i x  

(16) 

(17) 

. ~e' V~VW V ~  w 
I I , .  (g0; 1])----H- '§ U-~, U-~,, + ~l+a)dt-% ' ,. 

gg, n ~ o ) g ~ O ) g  , gg, 

Reca l l i ng  the convent ions  in t roduced  above ,  we can  r e p r e s e n t  (17) g r a p h i c a l l y  in the f o r m  

~ i .  (g0; n ) =  *-~-  + 

(18) 

(19) 

The  g r a p h i c a l  equ iva len t  of  H~ .  (~,; ~) i s  a ske l e ton  d i a g r a m ,  the s o - c a l l e d  phonon loop 
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• ~ ) =  (~o; (20) 

In the fourth order, there will be a nonvanishing contribution to o~,~ from, in particular, the 
matrix element with the contractions 

<~o ] T {Q-~o~ (t) Q§ (t)} I m0>con. (21) 

P r o c e e d i n g  as  above,  we can r ead i ly  show that  (21) makes  a cont r ibu t ion  to 5G!~)(B0; ,1) equal to 
[~(~176176 or ,  in d iagram language, 

(22) 

In the higher  o rde r s ,  it is possible to have the diagram 

. .~ ~ (23) 

I t  is readi ly  ver i f ied  that the analytic equivalent of the diagram (23) is the express ion  [5(~ (~ . . .  
I]~G(~ which is genera ted  by the t e r m  that a r i ses  in the 2n-th o rd e r  (see Eq. (13)), where  the opera to rs  

a r e  contracted as in (21). The fact that the s t ruc tu re  of the express ion  is such is in no doubt (see, for  

example,  [12]), and we show that the resul t ing fae tor  in the 2n-th o r d e r  is equa! to unity. Indeed, the 

is compensated by 2 '~ because of the s y m m e t r y  of U~'e", (see (5)), and f rom the contract ions  the fac tor  ~+~ 
a r i s e s ;  with each rI~, there  is assoeia ted* the fac tor  ( - i ) ,  giving al together  ( - i ) ~ .  It is now obvious 
that (--i)(--i)2~i'~+~(--i) '=l. 

The V t e rms  of the Hamiltonian Hvq generate  a ladder  of graphs:  

(24) 

To this d iagram there  cor responds  the express ion  [6(~176176 II~6(~ 

Collecting together  the geomet r ic  progress ion  (see (19), (22)-(24)), we obtain 

(25) 

where the total propagator  G~,,(~0; ~1) is represen ted  by a thick phonon l ine.  Equation (25) concre te ly  is 

G~i,(g0; ~1) = ([(@(0))-i. (i]v + 1]v)])T~ + many-loop co r rec t ions .  (26) 

It is readi ly  seen that if ~v = 0 and many-loop diagrams are  not taken into account then it follows 
f rom (26) with allowance for  (18) that 

G.M(~0; ~l) =--(--l)'+*'M"}(~0; ~l)/d(~0; ~q), (27) 

where  M"'(~0; ~1) and d(~0; ~l) a re  the same functions that were  introduced e a r l i e r  (see Eqs.  (7) and (8)). It 
can be seen f rom (27) that the equation for  the poles of G.'~(~0; ~1) is identical to the secu la r  equation (7) and 
that BesG.~'(~0; ~l)=(Cs ~ f rom (8), i e . ,  GM (~0; ~1) iS the propagator  corresponding to the model (1) Its 
d iagram represen ta t ion  is 

= - , (2S) 
A 

+~ dTh ~o) " 
* This follows f rom the fact that J ~ C. (~; m)G~,~ -l. 
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which co r r e sponds  to summat ion  of the ladder  of the d i ag rams  (23). 

To calcula te  the contr ibut ion of the two-loop d i a g r a m  in (25), we use  the co r r e spondence  ru les  that 
hold in the ~? represen ta t ion :  

I) ~ ~ i (~-~9 + ~ry~ ; 

g:g' g',r 

where  the energy  conserva t ion  law must  be sa t is f ied at each ver tex :  ~l=~l'+~"; 

3) if the line (g, V) is internal ,  it is n e c e s s a r y  to p e r f o r m  the integrat ion ~d~ and the summat ion  
2~ 

E . In the given case ,  we have 

E ,,~j' +Td~' dB H , 
Tfu' I}H' g'J "(~1--1] --r -i X ~o, .~  u~ ~o, j ~  

gg'I[h --oo - 

(~]'--03g'+iE) -t ( ~ t t f D f + i e )  -, (~q_rl,_ ~(~_ col +iB)-~ (~l,+~(, o~+iB) -~. 

Integrat ing,  for  the contr ibution of the two-loop graph  we obtain the resu l t  

gg'lfth 

The denominator  (~-c%-0~j-os)-: '  in the upper  fo rmula  is re la ted  to the three-phonon in te rmedia te  s tate  of 
the cons idered  graph.  D iag rams  of such type can be taken into account in the QPM if three-phonon c o m -  
ponents a r e  included in the ope ra t o r  wave function. 

With r ega rd  to d i a g r a m s  of the type (24), they a r e  re la ted ,  as will be seen in what follows, to 
al lowance for  co r r e l a t ions  in the ground s ta te .  

4 .  A p p r o x i m a t e  S o l u t i o n  o f  t h e  C h a i n  o f  

E q u a t i o n s  f o r  t h e  G r e e n ' s  F u n c t i o n s  

We introduce the G r e e n ' s  functions 

GD + (~o; t - t ' )  = - i O  (t-t ')  (01 + . . . . .  [Q~oi (t), Q~0i, ( t )  ]] 0), G+/,+ (go; t - t  ) = - t O  ( t - t )  (01 [Q+~ (t), Q+r (t') ]10), 
(29) 

G~'+(t-t')=-iO(t-t')<OI[Q,(t)Qg(t),Qh+(t')]tO>, G ~ f  '+ (t-t')=-io(t-t')<OI[Q,(t)Qg(t)Qh(t),Q,+(t')]lo> 

etc.  In Eqs.  (29), P0) denotes the ground state  of the Hamil tonian HM, i . e . ,  H~I0>=0. 

P roceed ing  in the s tandard manner  [10, 11], for  the F o u r i e r  t r a n s f o r m s  of the functions in (29) we 
obtain a h i e r a r c h y  of equat ions.  If we ignore the h igher  functions of the type G--- ,  +, which desc r ibe  p r o -  
c e s s e s  with the par t ic ipat ion of more  than three  phonons (Hvq has  cubic s t ruc tu re  with r e spec t  to the phonon 
ope ra to r s ) ,  we a r r i v e  at the s y s t e m  of equations 

3 II - ++ + 

l ] '  

----.+ ~ gg' --.+ 3 ~-~ Vg~g.G+.+ [~ O, t , ~ , + o , , - n ) ~ g , , , ~ 0 , , ( ~ ) -  u,0jG~, ( ~ o ; n ) -  T / ,  ~,' ,~0, n ) =  

~=' i J=~ (30) 
"t'+,+ gg" +,+ 

+'+ (~a) +u~;, C.,~o,,++'+ (~) ] =0. 
f l  

1118 



Functions of the type G-, + and G-- .  + can be associa ted with the coefficients  C and D (see Eq. (1)), r e s p e c -  
t ively.  Apart  f rom these functions, the sys tem (30) contains functions of the type G +,+ and G +++, + and the 
combinations (eg+eg+~) appear .  These  quantit ies a r i s e  because of the c i rcumstance  that in the method of 
equations of motion for  the two-t ime Green ' s  functions the cor re la t ions  in the ground state are  effect ively 
taken into account.  ]3ecause of the t e rms  of the type V in Hvq the phonon vacuum I q,0} is not an eigenstate  
of H M with zero  energy.  If 10>-=-IT,>, as is assumed in Eq. (1) (and this cor responds  to Vgg'~'-~O), then 
G+.+--=0, G ++, +=0, the las t  two rows in (30) become identi t ies,  and we a r r ive  at the sys tem of equations 
(identical in form to the sys tem (6) but with r ight-hand side) 

mo 

(c%,-n)G., (go; n ) -  U~o~ ~.~o,, ( 'q)=-6.,,  (co~+ r U~:j Gj~; (~o; n)=0. 

Solving (31) explici t ly,  we have G~', + (~0; ~l)=-(-l)i+~M"'(~0; ~l)/d(~0; ~1) and by vir tue of Eq. (27) we obtain 

G ~ G~ ;+ (g0; ~l) = ~' (~0; ~l). (32) 

In deriving (32) we assumed that p roces se s  with the part icipat ion of more  than three  phonons and cor re la t ions  
in the ground state are  not par t icu la r ly  important .  

5. Conclusions 

]3y applying the standard diagram method we have established the fact that restriction in the operator 
wave function of even-even deformed nuclei to single- and two-phonon components corresponds to allowance 
for only single-loop diagrams. This is the main result of the present paper, and it was obtained in two ways. 
We have given an analytic expression for the contribution of a two-loop graph. It is worth noting that by using 

gg' gg" 

the d iagram technique it was possible to show that U~j g'' and Z U~0, U~01, .play the par t  of a ver tex  and the 
gg, 0)~+ cog,-------~- ~1" 

polar izat ion opera to r  of the QPM. This indicates the convenience of using Green ' s  functions in the model (1). 

I am ve ry  grateful  to P r o f e s s o r  V. G. Solov'ev for  valuable advice and great  ass is tance  in the 
presen t  work,  to R. A. ]3roglia, A. Bulgak, R. V. Dzholos, G. N. Afanas 'ev,  L. A. Malov, and V. V. Voro-  
nov for  helpful d iscussions ,  and also to A. I. Vdovin for  reading the manuscr ipt  and cr i t ica l  comments .  
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