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DIAGRAM REPRESENTATION OF THE SINGLE-PHONON
PROPAGATOR IN THE QUASIPARTICLE-~PHONON MODEL OF NUCLEI

G. Kyrchev

A diagram technique is proposed for the quasiparticle—phonon model of nuclei. H is shown
that restriction to single-phonon and two-phonon components in the wave functions of the
excited states of even—even deformed nuclei is equivalent to summation of a definite class
of single-loop diagrams. The contribution of a two-loop diagram is calculated. Further,
closure of the hierarchy of equations for the Green’s functions yields explicit approxima-
tions that lead to summation of the considered class of graphs.

1. Introduction

The construction of the quasiparticle~phonon model (QPM) of nuclei, the basic propositions of which
are given in the review [1], is based on a concrete form model Hamiltonian and on the concept of a many-
component operator wave function fwhich is assumed expanded in a series with respect to the operators in
terms of which the Hamiltonian is expressed). The solutions of QPM equations derived from the variational
principle uniquely determine the excitation spectrum and the coefficients of the operator wave function,
which plays an important part in the QPM. However, some modern nuclear models use the language of
propagators and representations of them by means of diagrams [2-5].

The theoretical justification [6] and comparison [7] of the nuclear models now firmly established in
the theory of nuclear structure become ever more topical problems. To compare the QPM with models that
use the language of graphs, it is important to establish what diagrams are taken into account in the framework
of the QPM. This gquestion was raised in particular in the recent papers [8, 9]. In this connection, it is
necessary to give an alternative derivation of the QPM equations based on the formalism of Green’s functions
[10-12]. For the QPM, this formalism was used in [13], in which it was shown that the hierarchy of QPM
equations is equivalent to a hierarchy of equations for the corresponding Green’s functions.

In the present paper, which is methodological in nature, a problem with operator wave function
containing single-phonon and two-phonon components [1,14-16] (we shall call this problem the "model "},
which is solved in the framework of the QPM by means of a variational principle in explicit form, is trans-
lated into the language of diagrams. For this model, the object that contains all the physical information is
the perturbed propagator (the interaction Hamiltonian of the QPM plays the part of the perturbation), for
which one can construct a diagram expansion by the standard method., Comparison with the equations derived
from the variational principle [1,14-16] make it possible to separate uniquely the class of diagrams contained
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in the model, which is the aim of the present paper. One can arrive at the same answer by writing down the
equations for the two-time Green's functions and, closing them in a consistent manner, solving them in the
corresponding approximation.

The paper is arranged as follows. The problem is formulated in Sec.2. In Sec.3, we analyze the
diagram series of the single-phonon propagator, which makes it possible to deduce which graphs are taken
into account in the model [1,14-16]. In Sec.4, the same result is obtained by approximate solution of the
hierarchy of equations for the Green’s functions. The adequacy of the Green’s function formalism for the
model is noted in Sec. 5.

2. Tormulation of the Problem

The model of an even—even deformed nucleus with wave function of the form
Lt 1 n
o= Yo @ ot 55 Y i @) 0r0st| 1w v
i1 ; &8’

has been studied in detail in a number of papers {1,14~16]. The notation is as follows: n is the number of
the root of the excited state with given values of the spin projection K onto the symmetry axis of the nucleus
and parity m; g=(Aui)=(gi); Qs is the operator of creation of a phonon with multipolarity g with number i;
m, is the number of phonons of multipolarity g, Q.| ¥.>=0.

When considering the model with wave function of the form (1) it is convenient to express the QPM
Hamiltonian solely in terms of the phonon operators* Q;Qg. Under the assumption of validity of the quasi-
boson approximation the QPM Hamiltonian can be given the form

HM=Hv+HVq, (2)
Hy= Y 005 Qu ®)

where the energies w, of the noninteracting phonons are obtained from the solution of the secular equations
of the random phase approximation (RPA) [1,14],

(Q— 1
Hr=— Y [ 500 0 00, vl |+l ). @)
e’ V2 . 4 )

The symmetry properties of U/ g’é" and V¢ gre

g'g'’ g''e Py p e e gt
U, =Ug , Ve — YEe e = YV8''e'e = Yeag’ (5)

E

o |
By virtue of 4), U, d =v—3<‘PoIQ,quQg.+Q;r|‘I’.,>, i.e., Uf% is the amplitude of transition of the single-
phonon state g into the two-phonon state (g’g" ). The explicit form of Uy is given in [14,15] and is not
needed in what follows, '
For the normalized wave function (1), the variational principle gives the following system of
equations [1,16]:
- ,
() O @) = Y U Dl @) =0, (0rt0r—n,) D5 (@)~ Y Uk €7 (@) =0. (®)
. daad

The secular equation for the energies of the excited states is obtained [1,15, 16] in the form

2z’
Uxai Ugo:. ll 0. (7)

Solving (6), we can readily show that

* For this purpose, it is necessary in the interaction Hamiltonian of the quasiparticle—phonon model, which
has the structure o o(Q**Q), to express operators of the type a o in terms of phonon operators (see [14],
p.391).
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where M"(g,; n) is the corresponding minor of the determinant in (7),
Equations (6)-(8) will be essentially used in the following exposition.

The point of departure for constructing the diagram representation of the single-phonon propagator
in the QPM can be taken to be the well-known formula [11, 12]:

Guv @t =1 W | T {05 @il (¢) exp[ —1 [ ]} [ %) con. o)

Here, Q;(t) and Q,(t) are the operators of creation and annihilation of phonons in the interaction
representation, i.e.,

Qq(t) =eiHthge'—iHvt=e—i%" Q. (1) =eiHv§Qg+e—iHVt=eimgt’ 10}

T is the time-ordering operator, Hy,~e'""'Hy,e """, and the subscript con indicates that only connected
diagrams are taken into account.

Our aim is to establish what graphs are taken into account in the framework of the model with the
wave function (1), The prescription for answering this question is given by the following discussion. The
considered model corresponds to a propagator (we denote it by GM) satisfying two requirements: the equation
for the poles of the Fourier transform of GM ig identical to the secular equation (7), and the residues of the
Fourier transform of G¥ at the poles must be equal to (C”) from (8). It is clear that the diagram series
for G;; must contain a sequence of graphs, summation of Wthh gives G{‘f This will be the required class
of diagrams. To separate them, it is necessary to develop an appropriate graphical technique.

3. Diagram Analysis of the Single-Phonon Propagator

If in Eq. (9) we set Hy,=0, we obtain the unperturbed propagator*

! !
G (8ot — 1) = — i (Wo| T{Q5, (1) Q5, ()} | oy = — 105, (1) 0% (). i1)
From (11}, using (10), we find its explicit form:
60 (s t— 1) = | —buwe B s, 12)
g ; it ci<.

The expansion of the exponential in Eq. (9) generates a diagram series of perturbation theory if we

use Wick’s theorem [11,12] and introduce the following convention: the time-ordered pairings Qg(t) Qg {t') =
G (g3t —1 )GEE’ are associated with the lines

4 i
P e

they are oriented by virtue of (12)), the matrix elements U£#" are associated with the vertices

and the quantities V#'¢"" are represented in the form

SR

* The phonon vacuum |¥) in Eq. (9) is assumed to be nondegenerate, and (%19} =1,
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From these elements we shall construct the diagrams that contribute to Gu (g,; t—¢') from (9),

It is clear from Eqgs. @), (9), and (10) that the corrections 6G of odd order to G are equal to zero,
i.e., 6GZYV (g,; i—t')=0, and we therefore rewrite Eq. (9) in the form

"‘i 27 too
(2n2 j dii...dn, X

Gov (55 12 =G @y 1=+ Y 00” (@ t—1)= G (g t—t) +(—1) ¥
=1

n=1

W T {Qas () Ol () Hyg(a) .. g (ean) W o - GE)

The factor 1/2n! can be omitted and we can consider only index free diagrams [12]. We consider
in somewhat more detail the corrections to Gs (&; t—t’) of the second (n = 1) and fourth (n = 2) orders.
Taking into account the expressions {4), (5), and (11) and using Wick’s theorem, we obtain

400 .
8G MGy t—t') =1 Z Use Uzﬁ'jdﬁd'ﬁsz('g% (B0 11—t )Gr'3? (&3 T—10) Gy (§; Ta—11) G (Foy t—12) +

TN o
"ﬁ R 4o .
. - Trermdt © ,_ S0 ~ Y
152_[ | e J At dv, Qe (g5 1.—1) Gy (&; Tz—Tt)Gﬁ('u) &5 1) Gt‘(foj (Gost—74), (t4)
22 — )
where it is assumed that £>v>1,>>1.
We now make a Fourier transformation:

+o
6G,(ﬁ) (670; ﬂ)=j 5Gi(|_2,) (go; t_tl)em(t_t')d(t_t,)'

—co

We substitute here the expression for 8G@ (g,; t—t’) from (14) and, following [12], make an inverse Fourier
transformation on the functions G' in (14):

4o
G @i 6= [ G2 (g me-on- 21
- 2n

As a result, we obtain

— . - ' o d dn - —r -
8G (Fi ) =iGrt (&) Z;U;"g uit | nzzn G5 (Eme) S (et ne—n) G (850 G5 (@03 m)+
: o \
i 9 Bt 28’ goigg'-l-” dn.dns 10) (— ©) ,=r, 0 =
iGyv (Boim) ZV a4 jTGﬁ (8 m2)® (st ) Gy (85 16) G (B0 M) {15)
T —

{the & functions express the conservation law for the enérgy at each vertex). The Fourier transforms are
calculated with allowance for (12):

G (3 m) =6 (n—optie) ™!, &0, (16)
Substituting (16) in the upper expression, we finally obtain
8G:T (80; 1) =16 (8o; M I+ (g0; 1) 6 (Zo; 1) Juv, an

where G©® (&; 1) is the matrix composed of the quantities (16), and IIV+V(g,; 1) is the matrix

Uzt User +2 Vet es” Yadtee’

- . (18)
Ntogto,

LYY (8o; ) =1L+ = Z
ge’ N7 O Ogr gg’

Recalling the conventions introduced above, we can represent (17) graphieally in the form

GG@ (Zo; M) = &«va'M + @ . (19)

The graphical equivalent of IIZ, (Z; n) is a skeleton diagram, the so-called phonon loop
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g (@m= ~~ 20)

In the fourth order, there will be a nonvanishing contribution to 6G{) from, in particular, the
matrix element with the contractions

=] = T |
o T (o) 000008050 058 ¥y, o)

Proceeding as above, we can readily show that 21) makes a contribution to 8G4¥ (&; n) equal to
[GOTIVGII" G )4, or, in diagram language,

WW : (22)

In the higher orders, it is possible to have the diagram

M%'Qvnav.wﬂ . 23)

It is readily verified that the analytic equivalent of the diagram (23) is the expression [G®IIVG™ ...
1IVG )., which is generated by the term that arises in the 2n-th order (see Eq. (13)), where the operators
are contracted as in (21). The fact that the structure of the expression is such is in no doubt (see, for

- 1 2n
example, [12]), and we show that the resulting factor in the 2n-th order is equal to unity. Indeed, the (7—)

is compensated by 27 because of the symmetry of U£%" (see (5)), and from the contractions the factor i***
arises; with each [I; there is associated* the factor (—i), giving altogether (—i)”, It is now obvious
that (—i) ()28 (—i)"=1.

The V terms of the Hamiltonian /Iy, generate a ladder of graphs:

To this diagram there corresponds the expression [¢OTIVGONTYG™ .. . 176 ..

Collecting together the geometric progression (see (19), 22)-(24)), we obtain

NV =[] - e+ EDT s o .

where the total propagator G;-, (8»; m) is represented by a thick phonon line. Equation (25) concretely is
Gir(go; ) = (GO — (@Y + ")) + many-loop corrections. 26}
It is readily seen that if T = 0 and many-loop diagrams are not taken into account then it follows
from (26) with allowance for (18) that
Gi™ (83 m)=— (=) M* (&; )/d(2s; ), @7

where MY (g; n) and d(&; n) are the same functions that were introduced earlier (see Eqs, (7) and 8)). It
can be seen from (27) that the equation for the poles of G.*(5:; 1) is identical to the secular equation {7} and
that Res Gi™(g,; n)=(C")* from (8), i.e., GM (g, n) is the propagator corresponding to the model (1). Its

diagram representation is _
=7 .t
=D = [(M) - MQ.\.] ) 28)

(0)

Gii

(0 . N
(& ) GE (@ n—n0) =— i (~0g—0g +18) ™%

+w
* This follows from the fact that 5 dzm
T
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which corresponds to summation of the ladder of the diagrams (23).

To calculate the contribution of the two-loop diagram in @5), we use the correspondence rules that
hold in the n representation:

1) O BmnnnO

[/

9.7

where the energy conservation law must be satisfied at each vertex: n=n"+7n";
. Lo . . d
3) if the line (g, n) is internal, it is necessary to perform the integration ‘[5’9 and the summation
L

Z. In the given case, we have

8

+oo ’
, , , R dAn dn”
Y, U OO [ S (i’ —apkie) X

ge' iR -
(0 —ogtie) "t (n"—o+ie) " (n—n' —n"—op+ie) =t (4 +n” —outie) =t
Integrating, for the contribution of the two-loop graph we obtain the result
Ué'f;’Ug”' Ulf'f U;:: (N—o—0y)™ (ﬂ“mg’_m!—mf') - (T]"(Dg—ﬁ)n) -
g¢'ft'h

The denominator (n—w,—o,—o;)>' in the upper formula is related to the three~phonon intermediate state of
the considered graph. Diagrams of such type can be taken into account in the QPM if three-phonon com-
ponents are included in the operator wave function.

With regard to diagrams of the type (24), they are related, as will be seen in what follows, to
allowance for correlations in the ground state.

4. Approximate Solution of the Chain of

Equations for the Green's Functions

We introduce the Green’s functions
G (g t—t) = =10 (1—1") 01 [ Qe (1), O () T10%, G (g3 t—t) =18 (4—') <OV [ Qs (1), Qaur (¢1) 110,
Gren™ (1=t ) =—i@ (t—1") 01 [Q; (1) Qe (8), Qs+ ) 10>, G ™ (1—t') =—i@ (¢—1') <01 [Q1 (£) Qu () @ (2), Q:* (') 1107
etc. In Egs.29), 10) denotes the ground state of the Hamiltonian H,, i.e., Hx|0>=0,

Proceeding in the standard manner [10,11}, for the Fourier transforms of the functions in 29) we
obtain a hierarchy of equations. If we ignore the higher functions of the type G-——*, which describe pro-
cesses with the participation of more than three phonons (Hy, has cubic structure with respect to the phonon
operators), we arrive at the system of eguations

(on=m) G @)= Y [ VR G () + Ve () | =—bu,
i

me mo
- s 3 o
‘((ﬂs'i_ﬁ)g'_”l)ng',’E:-i' (n)— E ; U:ﬁ G * (Bim)— 5 E yeaie G_-;-:'+_(g0, 1) =0,
: = b (30)

. R <N
(mg+mgr+n>azzta*,—r(n>+7; Vi Gt (g m) }; Uz G5 (g m) =0,

' B o rmt—s o
(0at) G5 @) — Y [ VoG g+ U 615t () | =0.
it
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Functions of the type G~ + and G —* can be associated with the coefficients C and D (see Eq. (1)), respec-
tively, Apart from these functions, the system (30} contains functions of the type G* + and G**+*+ and the
combinations (e,+o,+n) appear. These quantities arise because of the circumstance that in the method of
equations of motion for the two-time Green’s functions the correlations in the ground state are effectively
taken into account. Because of the terms of the type V in Hy, the phonon vacuum I\If0> is not an eigenstate
of H,, with zero energy. If |0>=|¥,, as is assumed in Eq. (1) (and this corresponds to V¥'¢=0), then
G*+=0, G** +=0, the last two rows in (30) become identities, and we arrive at the system of equations -
(identical in form to the system (6) but with right-hand side)

(@gi— n)G” g01n> ZUgoe G;g_g-oi (n)——ﬁm (ﬁ)g+ﬁ)g’"n)Ggg Bod’ T ZUgingn (&; n) =0. B81)

=1

Solving (31) explicitly, we have G () =—(—1) "M (g; n)/d(g;n) and by virtue of Eq. (27) we obtain

G (@) =Giv (Eim). 82)
In deriving (32) we assumed that processes with the participation of more than three phonons and correlations
in the ground state are not particularly important.

5. Conclusions

By applying the standard diagram method we have established the fact that restriction in the operator
wave function of even—even deformed nuclei to single~ and two-phonon components corresponds to aliowance
for only single-loop diagrams. This is the main result of the present paper, and it was obtained in two ways.
We have given an analytic expression for the contribution of a two-loop graph. It is worth noting that by using
Usi. ii

the diagram technique it was possible to show that Uj g’g” and Z m
- 0@y —

_play the part of a vertex and the

polarization operator of the QPM. This indicates the convenience of using Green’s functions in the model (1).

I am very grateful to Professor V. G. Solov’ev for valuable advice and great assistance in the
present work, to R. A, Broglia, A. Bulgak, R. V. Dzholos, G. N. Afanas’ev, L., A, Malov, and V. V., Voro~
nov for helpful discussions, and also to A. I. Vdovin for reading the manuscript and critical comments.
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