
V ~ = . -  K ). 

1/r2(rs-r0 "r2(r3 ri) 

App ly ing  t h e  o p e r a t o r  L t o  ( B . 1 ) - ( B . 3 )  and t h e  o p e r a t o r  T t o  ( B . 4 ) - ( B . 6 ) ,  we o b t a i n  
s e r i e s  o f  s o l u t i o n s  o f  t h e  form 

(B.5) 

(B.6) 

V~=L~(V~, W, W), (B. 7) 
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MINIMAL TORI IN THE FIVE-DIMENSIONAL SPHERE IN @3 

R. A. Sharipov 

The class of surfaces that have a certain property (called complex- 
normal) in the five-dimensional sphere in C ~ is considered. It is 
shown that the minimal tori in this class are described by the equation 
UzE = e -2u -- e u, which can be integrated by the inverse scattering 
method. The construction of finite-gap minimal tori that are complex- 
normal in the five-dimensional sphere in C 3 is described. 

I. Introduction 

Minimal surfaces in multidimensional spaces arise naturally as classical trajectories 
of relativistic strings with the Nambu [i] and Polyakov [2] Lagrangians. Geometrically, 
these are surfaces of zero mean curvature, whose embedding in an enveloping space is 
specified in many known cases by equations that can be integrated by the inverse scattering 
method [3-5]. The minimal surfaces in ~ and ~ are described by the Liouville equation 
u~=e ~, which is nonlinear but can be linearized by a B~cklund transformation [6,7]. In 
spaces of higher dimension, and also in curved spaces, the equations of embedding of 
minimal surfaces can no longer be linearized, but they do possess matrix Lax pairs (see 
[5]), and this makes a fairly efficient investigation of their solutions possible. 

In this paper, we consider minimal tori in the five-dimensional sphere $5c@ 3, the 
embedding of which is described by the Bullough-Dodd-Zhiber-Shabat equation 

u~=e-2~--e ~. (I.i) 

Using the construction of finite-gap solutions of this equation from [8], we construct 
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finite-gap minimal tori that are complex-normal in S s. The situation here is analogous to 
the one considered in [9,10], in which significant progress was achieved in the description 
of tori of constant mean curvature in ~a,S a, and H ~ on the basis of finite-gap solutions 
of the sine-Gordon equation u~=sinu. Equation (i.i) was considered in the context of affine 
geometry in [ii]. 

2. Complex-Normal Surfaces in the Hermitian Sphere 

in e a and Their Scalar Invariants 

We consider the space C a with the standard Hermitian scalar product 
3 

<A ]B> = s  .4~B~ (2.1) 

and the associated Euclidean scalar product 

(A[B)=Re<AIB>.  ( 2 . 2 )  

Let r(x l, x 2) be a vector function with values in g3 that determines the embedding of the 
real two-dimensional surface T in the sphere S R of radius R in C a . We denote by E z and E 2 
the tangent vectors 

ar ar 

Ox ~ ' ax 2 

The s c a l a r  p r o d u c t  ( 2 . 1 )  i n d u c e s  a H e r m i t i a n  m e t r i c  on T 

h~=<E~]Ej> =g~j+ ico~, ( 2 .3  ) 

whose real part gij is the Riemannian metric induced by the scalar product (2.2), while the 
imaginary part 

o~j= (lEd&) (2.4) 

i s  s k e w - s y m m e t r i c  and d e t e r m i n e s  a c l o s e d  2 - f o r m  ca on T. The t e n s o r  f i e l d  ~i  = gikmk 4 
p o s s e s s e s  z e r o  t r a c e ,  = O, and d e f i n e s  t h e  i n v a r i a n t  d e t  o f  t h e  m e t r i c   2.3) on r 

DEFINITION. We shall say that an embedding r: T-~M~C a of a real two-dimensional 
surface T in a real submanifold M of codimension one in C 3 is a "complex-normal" embedding 
if the unit Euclidean normal N to M at every point of the surface T is Hermitian orthogonal 
to the tangent plane to T at this point, i.e., <Ei IN> = 0. 

For the complex-normal surface T we determine the vectors F l and F 2 that are Hermitian 
orthogonal to N and Euclidean orthogonal to the vectors E z and E2, using the relation 

F~=iE~+~]~'E,. ( 2 . 5  ) 

The vectors F I and F 2 determine a further tensor field fij = (Fi[Fj), which is related to 
gij and mij by 

�9 gikfk j For the associated tensor field FJ = we obtain 

J ~ 6 h r 6  ( I ) s j - - u ]  l a i r  aaj . 

The sca . l a r  i n v a r i a n t s  o f  t h i s  f i e l d  can be e x p r e s s e d  in  t e rms  o f  t h e  i n v a r i a n t  d e t  ~ o f  t h e  
field ~. 

The vectors E I and E 2 form a frame in the tangent space to T, while the vectors gz, F2, 
N, and iN form a frame in the normal space. The dynamics of the first frame is determined 
by the equations 

&Ej = !'~,kE k + T~,~F~+ b,jN+ i&jN, ( 2 . 6  ) 

rkj are the coefficients of the metric connection on the surface T, determined by the where 
well-known formula 

F~jh=~ /2g~ [ O~g~+Ojgi~--O~gd . ( 2 . 7  ) 

The dynamics  o f  t h e  v e c t o r s  F l and F 2 i s  e n t i r e l y  d e t e r m i n e d  by t h e  dynamics  o f  E 1 and E 2 
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from the relation (2.5). The dynamics of the vector of the unit normal to M is described 
by the equations 

~iN=LikEk+M~fk+iS~N, ( 2 . 8 )  

The tensor fields bij, dij, L~, and M~ that occur in these equations as coefficients are 
connected by numerous relations, which follow from the choice of the frames. From the 
orthogonality of the vectors N and Ej, we obtain 

b~j=-Lihg~, ( 2 .9  ) 

and f rom t h e  o r t h o g o n a l i t y  o f  iN and Ej we h a v e  

dij=Mihf~--L~k ~kj. (2 .10  ) 

D i f f e r e n t i a t i n g  ( 2 . 4 )  and u s i n g  a t  t h e  same t i m e  t h e  r e l a t i o n  ( 2 . 6 ) ,  we o b t a i n  t h e  
e q u a t i o n  

V ~j=T~jkj~-T~ikLj, (2 .11 ) 

by which  t h e  p a r t  o f  t h e  t e n s o r  t i s  j = T ~ s f k j  s k e w - s y m m e t r i c  w i t h  r e s p e c t  t o  t he  i n d i c e s  
i and j i s  c o m p l e t e l y  d e t e r m i n e d .  

In  t h e  c a s e  when t h e  m a n i f o l d  M i s  a s p h e r e  S R o f  r a d i u s  R, t h e  r e l a t i o n s  ( 2 . 8 ) - ( 2 . 1 1 )  
d e s c r i b e d  a b o v e  s i m p l i f y  a p p r e c i a b l y .  I n  t h i s  c a s e ,  t h e  r a d i u s  v e c t o r  r ( x  1, x 2) i s  p r o -  
p o r t i o n a l  to the normal r = RN, by virtue of which E i = Sir = R3iN. Comparing this now with 
(2.8), we obtain 

i 
L~ ~ =-ff 6/, Mi~=O, G=0. 

Further, from (2.9) and (2.10) we have for the matrices of the second quadratic forms 

i i 
b,j = -- ~ -  g~j, d~j = - -~- ~ .  

But the matrix dij is symmetric and the matrix ~ij skew-symmetric, by virtue of which both 
these matrices are equal to zero: dij = ~ij = 0. Thus, in the case M = S R the vectors F l 
and F 2 for a complex-normal embedding of the surface T are identical to iE I and iE2, and 
the relations (2.6) and (2.8) can be written in the form 

t aiN=-~-E~. ( 2 . 1 2 )  V iE~=Ti~ F~ - ~ gisN, 

By virtue of (2.11), the tensor Tki j = gksT~ �9 is symmetric with respect to all its 
indices. The Gauss, Peterson-Codazzi, and ~icci equations are obtained as consistency con- 
ditions of the equations (2.12). The Gauss equation has the form 

~ T ~T ~ gj~6d--g~6/ Rk$=Tj~ ~ , ~ -  ~ ~ + R2 , ( 2 . 13 )  

where R~i j is the Riemann curvature tensor, determined by the metric connection (2.7) in 
accordance with the formula 

s s s r s  r R~i~=Of~ --Ofki-FhiF~j +F~ F~i. (2 14) 

In  t h e  g i v e n  c a s e ,  t h e  P e t e r s o n - C o d a z z i  a n d  R i c c i  e q u a t i o n s  can  be combined  i n t o  a s i n g l e  
e q u a t i o n ,  which  h a s  t h e  fo rm 

sk sh V~T5 - V f ~  =0.  (2 15) 

The symmetric tensor Tij k of the second quadratic forms has two second-order scalar 
invariants: 

H~=Tii~Tj~ j, k=Ti~Ti~ ( 2 . 1 6 )  

and a fourth-order invariant q, which is determined by the relation 

q--T IT~T ~T ~ ( 2 . 1 7 )  - -  J h  s r p  i �9 

By virtue of the specifics of the two-dimensional case (dim T = 2), the invariants (2.16) 
and (2.17) form a maximal set of functionally independent invariants of the symmetric 
tensor Tij k. In addition, in the two-dimensional case (dim T = 2) it follows from the 
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symmetry of the Riemann curvature tensor that Eq. (2.13) is equivalent to just one scalar 
equation, which relates the Gaussian curvature K of the surface T to the curvatures H and k 
of the tensor Tijk: 

2K=g~B~=H2-k+2B -~. ( 2.18 ) 

The invariant H in (2.16), which is the length of the vector of the mean normal to the 
surface T, 

Hn=T~F~, (2 .19)  

is the mean curvature of the surface T embedded in S, and the vector n tangent to the sphere 
in (2.19) is the unit vector of the mean normal to T. 

3. Complex-Normal Tori of Zero Mean Curvature 

The condition of vanishing of the mean curvature is a strong restriction on the class 
of considered surfaces, since the scalar equation H = 0 entails by virtue of (2.19) the 
vector equation T~ k = 0. When the symmetry of the tensor Tij k is taken into account, this 
last equation means that there are just two independent components in this tensor. To 
exploit this circumstance, we use isothermal coordinates on the surface x = x I = Re z 
and y = x 2 = Im z, in whichu the metric gij has the conformal form g = 2R2eUdzdz. Then the 
components of the tensor T~j can be expressed in terms of the two quantities A and B: 

T~=A, Ti22=T~12=T~i=-A, T222=B, T~=T2~=T~I2=-B. (3 .1 )  

We calculate the coefficients of the metric connection F~j in accordance with (2.7) for 
metric of the conformal form 

F,~=~/2u~ , r~=--~/2u~, P~2~=F2~=~/2u~, F222=~/~a~, r22~=-~/2a~, F~22=F2~2=~/~, (3.2) 

after which we substitute (3.1) in the Peterson-Codazzi-Ricci equation (2.15). After 
appropriate calculations that take into account (3.2), we have 

~(e~A)=O~(e'B), O~(e~A)=-O~(e~B). ( 3 . 3 )  

It is readily seen that the relations (3.3) are identical to the Cauchy-Riemann conditions 
of holomorphicity of the function G(z) = eUA + ieUB. 

The case G(z) ~ 0 is trivial, since in this case the subspace generated by the vectors 
E, F, and N also contains their derivatives, by virtue of (2.12). This means that in the 
dynamics too these vectors belong to a certain real three-dimensional hyperplane in C ~, 
and the surface T is a two-dimensional sphere, the central section of S R with this hyper- 
plane. 

In the case G(z) ~ 0, we consider a compact surface T of toric topology. Regarding z 
as a uniformizing parameter inherited from the universal covering C~T, we obtain G(z) = 
const ~ 0, since in this case G(z) is holomorphic on the compact complex torus T. By a 
simultaneous change of scale along the x and y axes, which is equivalent to adding a 
constant to the function u(x, y), we can satisfy the condition IG(z)l = 1 and write G(z) = 
cos ~ + i sin 5. We can now rewrite (3.1) in the form 

T~=e-~cosO,  T22Z=e-~sin ~, T~=--e-~s in~ ,  T2~=-e-~cos~,  
(3.4) 

a tensor T~j of the form (3.'4) we calculate the invariants k and q, which are defined From 
by the relations (2.16) and (2.17), 

k=2B-2e -3~, q=2B-~e-~L (3 .5 )  

We c a l c u l a t e  the  c u r v a t u r e  t e n s o r  R~ij  from the  c o n n e c t i o n  (3 .2 )  in accordance  wi th  . (2.1~) 
and, substituting it in the Gaussian equation in the form (2.18), we obtain an equation for 
the function u(x, y): 

u=+~=4e-2~--4e~, 

which is identical to Eq. (1.1). The solution of this equation that corresponds to 
embedding of the two-dimensional torus in S~C ~. is doubly periodic with a certain lattice 
of periods in the plane of the variables x and y. Below, we consider the class of finite- 
gap minimal surfaces in the sphere SR, this class including compact two-dimensional tori 
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that are complex-normal in this sphere. 

4. Finite-Gap Solutions of the Equation UzZ = e -2u -- e u 

and the Associated Orthonormal Frame in C 3 

We consider a Riemann surface F of even genus g with two distinguished points P0 and 
P~, on which there is a meromorphic function X(P) with divisor of zero and poles 3P 0 -- 3P~ 
and on which two involutions are defined: the holomorphic involution o, which acts in 
accordance with X(oP) = --X(P), and an antiholomorphic involution ~ of separating type 
such that 

~(Tp)~(p)=t. (4.1) 
The Riemann surface F is divided by the ovals of the involution T into two regions: the 
region FQ, which contains the point P0, and the region F~, which contains the point P~. 
By virtue of the relation (4.1), all fixed ovals of the involution �9 are projected into the 
unit circle on the complex X plane. The munber of these ovals does not exceed three. It 
is determined by the number of real tori on the Jacobian Jac(F), each of which consists of 
classes of divisors D of degree g satisfying the condition 

D+~D-Po-P~ =C, (4.2)  

where C is a divisor of the canonical class on r. By virtue of (4.2), every real divisor 
D determines a certain Abelian differential ~(P) of the third kind with zeros at the 
points of the divisor D + TD and residues 

Res ~ ( P ) =  +i,  Res ~ ( P ) =  - i  

at the points P0 and P~, where it has simple poles. Underthe action of the anti-involution 
�9 , the differential ~(P) transforms in accordance with the rule 

(~P) = o  (P),  ( 4 . 3  ) 

by virtue of which it is real on the �9 ovals. The real torus T O is distinguished among 
the other real tori by the fact that for the divisors D from this torus the differential 
w(P) is positive on all ovals of the anti-involution ~ with respect to the natural orienta- 
tion on 3F~. 

Having fixed the torus To, we consider its subset consisting of the divisors that are 
invariant with respect to the composition To, 

TD=oD. (4.4) 

This subset is nonempty; it is a real torus T o in the Prymian Prym(F) of the Riemann 
surface F. For the divisors of such a torus, the relation (4.3) can be augmented by the 
relation 

(oP) = ~  (P), 

which follows from (4.4) and from the invariance of the points P0 and P~ with respect to the 
involution o. 

We fix the local parameters k-1(P) and q-l(p) in the neighborhood of the distinguished 
points P0 and P~ by means of the conditions 

k3(P)=%(P), k(TP)=q(P). (4 .5 )  

Now, having fixed a positive divisor D6T0~Prym(F) of degree g, we construct a Baker- 
Akhiezer vector function ,(z, P) with values in C a such that 

,~(P)=eik(P)~[k-'(P)+ ... ], %(P)=e~k(P)~[k-2(P)+... ], %(P)=e~(m~[k-a(P)+... ] (4 .6 )  

in the neighborhood of the distinguished point P~, and such that 

,~(P)=eiq(m~[q'(P)+... ]e -~, ,2(P)=e~q(~)~[q2(P)+...]e ~, *a(P)=e'q~)~[qS(P)+... ] (4 .7 )  

in the  neighborhood of  the  p o i n t  P0. The f u n c t i o n s  ~l ,  ~2, and ~3 a r e  u n i q u e l y  de te rmined  
by the divisor D and by the conditions (4.6) and (4.7), and at the same time (see [8]) they 
satisfy the differential equations 

8,**=--u,~,+is 8~,~=ie-Z=,2, 0~2=u,~2+i,, , 8~=ie=%, O=~a=i{~2, O~a=i%-*e=~, (4 .8)  
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the condition of compatibility of which is equivalent to Eq. (i.I). The condition 
D6T0cPrym(F) ensures reality and nonsingularity of the finite-gap solution u(z, z) of 
this equation, for which there is an explicit expression in Prym theta functions (see [8]). 
In relation to the functions @z, 42, and 43, this same condition, expressed in the form 
(4.4), gives in conjunction with (4.5) 

4,(~P)=-X-~(P)e-=42(~P), 42(oP)=%-~(P)e=4,(~P), 4 3 ( g P ) = - l - ~ ( P ) 4 ~ ( ~ P ) .  (4.9) 

A remarkable feature of spectral problems associated with integrable nonlinear equa- 
tions is the existence of bilinear forms -- pairings or generalized Wronskians consistent 
with the Lax operators and, in the finite-gap case, possessing certain "resonance" 
properties. This last circumstance can be exploited in the construction of soliton-like 
solutions on a finite-gap background for these equations and in the construction of Cauchy 
kernels on Riemann surfaces. For the spectral problem (4.8), the pairing has the form 

O (P, Q) = { 4 (P) ]4 (oq) } =4,  (P) 42 (oO) ~ (P)-~4~ (P) 4, (oQ) t (P) - , ~  (p) r (zQ)E2 (p). (4.  t 0 ) 

Differentiaing (4.I0) with respect to z and z, and taking into account Eqs. (4.10), we 
obtain the relations 

~e(P, Q)=i[Z(Q)-%(P) I%(P)~(P)4~(oQ), 

o~ (P, Q) =ie ~ [~ (P) ~-~ (Q) - t ]X (P) 43 (P) ~, (oQ), 

from which we see that when the arguments coincide the function (4.10) does not depend on 
z and z. Moreover, the function W(P) = ~(P, P) is meromorphic on F and can be calculated 
explicitly: 

dZ (P) 
W ( P ) =  ~(p)  ~ (p)-. ( 4 . 1 1 )  

B e c a u s e  t h e  c o v e r i n g  ~: F ~ r  i s  a t h r e e - s h e e t e d  one ,  e a c h  v a l u e  o f  t h e  f u n c t i o n  X(P) i s  
attained with multiplicity three, i.e., at three different points Pz, P2, and Ps. The 
resonance property of ~(P, Q) is 

{ W(P~) (4.12) for Pi=Pj, 
~(P~'P~)= 0 for P~P~. 

For  e v e r y  v a l u e  o f  X e q u a l  in  modu lus  t o  u n i t y ,  IX[ = 1, t h e  p o i n t s  P~, P~, and Ps l i e  on 
t h e  o v a l s  o f  t h e  a n t i - i n v o l u t i o n  ~ and a r e  u n c h a n g e d  by t h e  a c t i o n  o f  z.  From them,  we 
f o r m  a m a t r i x  U = U(A, z ,  z )  o f  t h e  fo rm 

U= 

e~'~4,(I',) e-~ 4~(P,) 
rw(p~) vw(p,) vw(p~) 

vw(p~) Vw(P~)  r 

(4.13) 

With allowance for the invariance of the points PI, Pz, and P3 with respect to z, and with 
allowance for (4.9), the resonance property (4.12) leads to the relation 

e~4, (P,) 4~ (PJ) +e-=42 (Pi) 42 (Ps) +9, (P~) 43 (PJ) =W (P,) 6~, 

which is equivalent to unitarity of a matrix U of the form (4.13). From this relation there 
also follow the reality and non-negativity of the values of the function (4.11) on the 
ovals of the anti-involution T, indicating that the radicals in the matrix (4.13) are real. 
The columns of this unitary matrix U form a frame in C~: 

L=U,, M=U~, N=U,, ( 4 . 1 4 )  

which consists of unit vectors that are Hermitian orthogonal to each other. 

5. Finite-Gap Embeddings of Two-Dimensional Surfaces in C3 

We consider the dynamics of the orthonormal frame (4.14). 
and z, it is determined by Eqs. (4.8) and has the form 

In the complex variables z 
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OzL=-i/2u,L+~e~nN, ~L=i/2u~L+ie-~M, dzM=t/2azM+ie~L, O~M=-'/2u~M+ie~nN, 
(5.1) 

q,N=ie~/~M, a~N=i~-ie~/2L. 

G o i n g  o v e r  t o : t h e  r e a l  v a r i a b l e s  x = x 1 = Re z a n d  y = x 2 = Im z ,  we o b t a i n  f r o m  ( 5 . 1 )  t h e  
e q u a t i o n s  

&L=i/2ayL+~e~/2N+ie-~M, ~M=-i~/2%M+ie-~L+ie~/ZN, O~N=ie~/2MT~-~e~/2L, (5.2) 

f o r  t h e  d y n a m i c s  o f  t h e  f r a m e  L, M, N w i t h  r e s p e c t  t o  x a n d  a n a l o g o u s  e q u a t i o n s  f o r  t h e  
d y n a m i c s  o f  t h i s  f r a m e  w i t h  r e s p e c t  t o  y :  

O~L=-i~/2a~L-Xe~nNWe-~M, ~M=i~/~a~M-e~LTe~/2N, OvN=--e~/2M+~-~e~/2L. (5.3) 

We specify the embedding of the surface T in the sphere SR~ 3 parametrically by means of 
the function 

r(x', x 2 ) = R N  (x' ,  x ~) =RN ( x, y). ( 5 . 4 )  

For the tangent vectors E I and E 2 in such an embedding we have 

.Ei=iBe~nM+iB~-'e~/2L, E~=-Re~/ZM+R~-'e~/2L. ( 5 . 5 )  

U s i n g  t h e  H e r m i t i a n  o r t h o g o n a l i t y  o f  t h e  f r a m e  ( 4 . 1 4 ) ,  we c a n  r e a d i l y  e s t a b l i s h  t h a t  t h e  
vectors E z and E 2 are Hermitian orthogonal to the vector N of the unit normal to the sphere. 
Hence, the embedding (5.4) is complex-normal. Moreover, the metric gij determined in 
accordance with (2.3) is diagonal and has the conformal form g = 2R2eU~dx 2 + dy2). 

Now, using Eqs. (5.2) and (5.3), recalling that I is chosen with unit modulus, and 
writing I = cos % + i sin %, we deduce from (5.5) the dynamics of the vectors E I and E2: 

V~E~=e-~cos  ~ F l - e - ~ s i n  ~F2-2Re~N, V 2 E ~ = - e - ~ s i n  ~f~-e-~cos~F2, 
(5.6) 

VzEz=-e-~cos~F~+e-~sin~f~-2Re~N, 

with coefficients of the metric connection determined from (3.2). Comparing (5.6) with 
(2.12), we find the components of the tensor of second quadratic forms T~j for the 
embedding (5.4). They have exactly the same form (3.4) as we obtained in Sec. 3 in the 
general consideration. The scalar invariants are given by the expressions (3.5). Compact 
finite-gap tori arise in the case when the function ~3 is doubly periodic. The question of 
the periodicity of such functions is standard in the theory of finite-gap integration and 
is usually solved by imposing some rather ineffective conditions on the choice of the 
Riemann surface F, namely, rationality of a certain number of ratios of the Abelian integrals 
on it. 
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