
4.3. 

generator L[-] takes the form 
Spin System Defined on the Space ~,,~@~v,. SO(3)-Invariant Environment. The 

h(a~)[Too(a~) p]+__i Z c,(a~,~'~')X 
' 2 =,~,~,~, 

Q=O, hl 
15 

{[T:Q (a~), pT,Q+ (oVb ') ]+[T,Q(=~)p, T,Q+Oz'} ") ]}+ 2 Z c,,{[F,, pF~+I+[F,p,F~+]}, 
i,j=13 

. i5 i5 
where h(cz~)=O, r {c,j]~,~=~-.~u,>~" C~ is a 4 • 4 matrix, and {ci~}~.~=i3 is a 3 • 3 matrix. 

Therefore, in this case too it is possible to write down explicitly relations between 
the dissipative parameters in the form of inequalities. 

Remark 5. If we require 0(3) invariance of the environment and the spaces ~v2(al) 
and ~'12(~2) have different parities, then in accordance with Theorem 3 the relations we have 
given admit further simplification. 
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BOUNDARY-VALUE PROBLEM FOR NONLINEAR SCHRODINGER EQUATION 

P. N. Bibikov and V. O. Tarasov 

A mixed boundary-value problem on the half-line for the nonlinear SchrSdinger 
equation and a generalization of it are studied by the inverse scattering 
method. A connection is established between the conservation laws and 
boundary conditions in integrable boundary-value problems for the higher 
nonlinear SchrSdinger equations. It is shown that the generalized boundary- 
value problem requires simultaneous consideration of regular and singular 
solutions for the nonlinear Schr6dinger equation with repulsion. 

The 20-year development of the inverse scattering transform method has made it one of 
the most powerful tools for studying nonlinear evolution equations (see, for example, the 
monograph [1] and the bibliography given there). However, apart from rare exceptions the 
application of the inverse scattering method is restricted to problems on a finite 
interval with quasiperiodic boundary conditions or to problems on the complete axis. It 
is well known that for linear equations problems with local boundary conditions are also 
of great interest. There was recently proposed in [2,3] a generalization of the inverse 
scattering method for nonlinear equations with local boundary conditions, and this opens 
up the possibility of wide application of the method to nonlinear boundary-value problems. 

In this paper we consider a mixed boundary-value problem on the half-line for the 
nonlinear Schr6dinger equation (NSE) and a certain generalization of it. The NSE has been 
well studied in both the classical [i] and the quantum cases [4,5]. By means of the coor- 
dinate Bethe ansatz the quantum NSE has also been investigated with local boundary 
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conditions [6,7]. These results can also be reproduced by means of the algebraic Bethe 
ansatz in the framework of the quantum inverse scattering method. An alternative approach 
to the treatment of local boundary conditions for nonlinear integrable equations is 
outlined in [8]. 

I. Boundary-Value Problem for Nonlinear SchrSdinger Equation 

We consider the following boundary-value problem for the NSE on the positive half-axis 
with mixed boundary condition at the left-hand end: 

i 9 , = - 9 " + 2 •  [ $ l~$, ( 1 ) 

~'(x)~0r I~=0=o, 0>0. (2) 
We s h a l l  a s sume  t h a t  t h e  f u n c t i o n  $ ( x )  d e c r e a s e s  r a p i d l y  as  x § ~. In  l i m i t i n g  c a s e s  t h e  
b o u n d a r y  c o n d i t i o n  (2 )  goes  o v e r  i n t o  a Neumann c o n d i t i o n  (0 § 0) o r  D i r i c h l e t  c o n d i t i o n  
(0 § ~) .  

T h i s  b o u n d a r y - v a l u e  p r o b l e m  p o s s e s s e s  an i n f i n i t e  s e t  o f  c o n s e r v a t i o n  laws  and can  be 
i n c l u d e d  in  t h e  i n v e r s e  s c a t t e r i n g  scheme [ 3 ] .  For  t h i s  we c o n t i n u e  O(x) as  an even  
f u n c t i o n  t o  t h e  n e g a t i v e  h a l f - a x i s ;  a t  x = 0 t h e  p o t e n t i a l  ~ ( x )  and i t s  d e r i v a t i v e s  can  
h a v e  d i s c o n t i n u i t i e s .  E q u a t i o n  (1 )  h o l d s  f o r  x r 0, and i t  i s  c o n v e n i e n t  t o  r e p r e s e n t  t h e  
b o u n d a r y  c o n d i t i o n  ( 2 )  in  t h e  fo rm o f  t h e  c o n s t r a i n t s  

A ~ ' = •  (3)  

(Fo r  e v e r y  f u n c t i o n  ~ we d e n o t e  ~ • 1 6 2 1 7 7  r247 A~=r162 As i s  w e l l  known, t h e  
NSE is the condition of commutativity of two differential operators (see, for example, [I]) 

[ ~ - Q ( E ) ,  o~-V(E)1=0, (4 )  

where 

~ _ (~2 ) 
Q(~)---yo~+v~(~o++r v(~)=~ -f.+~lr ~ +~F~[(,'+~r 

where Oa, a = I, 2, 3 are Pauli matrices. It can be represented in the integrated form 

a, To(x, y, ~ ) = V ( x ,  M To( X, y, )O-To(x, y, ~ ) V ( y, ~ ) . (5 )  

H e r e ,  T o ( x ,  y ,  X) i s  t h e  monodromy m a t r i x  o f  t h e  a u x i l i a r y  l i n e a r  p r o b l e m ,  s a t i s f y i n g  t h e  
e q u a t i o n  8xTo(x ,  y ,  X) = Q(x ,  X)T0(x ,  y ,  X) and t h e  i n i t i a l  c o n d i t i o n  T 0 ( y ,  y ,  X) = 3, 
where I is the 2 x 2 unit matrix. It is shown in [3] that the constraint (3) is equivalent 
to the equation 

V+(g)K(~)=K(%) V_(%), K(~)=~• (6) 

[ To(x,y,)~), 
T(x,y,~)= / T0(x, 0, ~)K!~) r0(0, y, ~), 

~0(x, 0,~)g- (~)r0(0, y,~), 

if xy>O, 
if x>0>y, 

if x<0<y. 

(7) 

We consider the function 

Then the relations (4) for x a 0 and (6) are together equivalent to the equation 

O,T(x, y, E) =V(x ,  E) T(x, y, E ) - T ( x ,  y, ~) V(y, ~), 

which is completely analogous to (5) and makes it possible to include the boundary-value 
problem (I)-(2) in the scheme of the inverse scattering method. 

(8) 

2. Generalized Boundary-Value Problem 

Now let ~(x) be an arbitrary function on the real axis. In the definition (7) we 
replace the matrix K(X) by L(~) = X + iSaoa, the L operator of the lattice isotropic 
Heisenberg magnet. We shall assume that for • the vector S=(S i, $2 S ~) is real, and 
for • that S 3 is real while S l and S 2 are purely imaginary; in both cases we assume 
sas a = 82 > 0. Then the reality properties of L(X) and T0(h) are the same and lead to 
the relation 

(0 sign• 
T(x , y ,%)=o T( x , y ,~ ) o - ' ,  o =  t 0 " (9) 
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The relation (8) for the newly defined function T(x, y, %) leads to Eq. 
x ~ 0 and to the equation 

a,L(%) =V+(~)L(%)-L(%) V_(Z), 

which is equivalent to the following equations for the vector S: 

and the constraints 

(i) for ~(x) when 

(10) 

(11) 

C , ~ A r  =0, C,~A~ _ S-=0. C,~Ar162 (12) 
? x  ?z 

We call Eqs. (i) and (ii) with the constraints (12) the generalized boundary-value 
problem or the NSE with spin impurity.* 

The generalized boundary-value problem admits the symmetric reduction ~(x) = ~(--x), 
S ~ = S = = 0, S ~ = • which leads to the boundary-value problem (1)-(3). In terms of the 
auxiliary linear problem the symmetric reduction is equivalent to the equation 

T'(x,y,~)=sign(xy).o~T(-y,-x,-~)o~. 

The following arguments are traditional for the inverse scattering scheme, and we shall 
not dwell on the details. We introduce the Jost functions 

[ ( ,~Y 11 r~(=,~)= ~m r(x,y,~)exp - - ~ o , ] j ,  

which for  real  h are connected by the t rans i t i on  matr ix T(~): 

T- (x, %) =r+  (x, %)T(%), det T(~) =%'+8 =. (13) 

T(~)=(a(~) signu.~(~) ), Ta(~)p_sign• (14) 
b (~,) ~ (~) 

are analytic in the 

It follows from (9) that 

T~(=, l)=~r~(x,~)a-', 

The columns TJ~(z,~), ~c,~ _+ (x,~) 

(15) 

(16) 

(17) 

and T- ('~ (x,%), iV+ ('~(z,%) , respectively, 

upper and lower planes of the spectral parameter A except, perhaps, for simple poles of 
the columns of the matrix T+(x, A) for x < 0 at the points A = • inherited from L-I(%). 
The function a(%) admits analytic continuation to the upper half-plane % and has there, 
in general, zeros, which, as a rule, we shall assume are simple and not real but finite in 
number (other possibilities can be achieved by means of a limiting process). In addition, 
we assume that a(i0) ~ 0; the case when a(i@) = 0 will be considered in the Appendix. 
We shall discuss the zeros of the function a(%) in more detail in the following sections. 

If a(~) = 0, Im ~ > 0, then the columns T! i> (x,B) and ~(2) ~+ (x,~) are proportional: 

T! ') (z, ~) =~ (~) Tf ~ (x, ~), 0< I~ (~) l <~ 

In the case of a symmetric reduction, we have 

T+'(x, %)=sign x'o~T_-~(--x, -%)~i, a(--X)=-a(s b(--%)=--b(%), 

(~) ? (--~) =sign • (~2+02), 

and t h i s  r e s t r i c t s  t he  p o s i t i o n s  of  the  pu re ly  imaginary zeros of  a(A). 

The Jose f u n c t i o n s  and e lements  of  the  t r a n s i t i o n  matr ix  have the  fo l lowing  behaviors  

T+ (x, ~) = exp( i%x 
- - -~-  o,] ( I+o(l)) ,  if x>O, 

if =<o, 

*The transition to the generalized boundary-value problem and the subsequent symmetric 
reduction were proposed by E. K. Sklyanin. 

572 



/ i~x \ 
T_ (x, ~,) =~, exp - -~-o , ! (~+o(~) ) ,  if z>o, 

Ti (x, ~) = e x p (  
is 

- - ~ - -  o~1 (I+o ( i ) ) ,  if x<0.  

h complete set of scattering data is provided by the functions b(X), the zeros of the 
function a(X): {Xj: Im Xj > 0}, and the coefficients {u The element a(X) can be 
recovered from its zeros and the element b(X): 

+~ 

( -') 
. xp 

~.-~ 2-~_. ' ~-;~-~0 

From Eq. (i0) there follows the familiar dependence of the scattering data on the time: 

a(t, ~v)=a(0, ~), b(t, ~,)=b(0, s ?(t, ~t)=7(0 , ~)exp(-i~t=t). (19) 

. Equations of the Inverse Problem 

The equations of the inverse problem can be conveniently represented in the form of 
a conjugation problem for meromorphic functions: 

F()~)+ B(2) P(~)=G(~) ,  P (~)=oF(~) ,  
A (~) 

is t 
a s  > .  

2 

r (~) d 
res G (s -- i0 ()~), .4 (~) ------ A (s 
~=~ i (~ )  -& " 

Here, A(1) is a function analytic in the upper half-plane of I with simple zeros at the 
points lj, Im I~ > 0, and unit asymptotic behavior as I + ~ with IA(s215163 
for real ~; F(1) is a vector-valued function that is analytic in the lower half-plane of 
and satisfies 9(hj) x 0, and G(~) is a meromorphic function in the upper half-plane of 
with simple poles at I = Xj. It is precisely the same problem that is the equation of the 
inverse problem for the NSE on the complete axis [1]. 

Specifically, the relations (13)-(15) and asymptotic behaviors (17) lead to several 
different conjugation problems for the positive and negative half-axes x, namely 

-To' )  , F (-) ( ~ + * 0 ) T ~ x , ~ ) ,  F~+)(~)-~, (.,~) (~)= 

G (+) (X) = t T j ,  ) (x, ~),  G (-) (~) = ~+~0 T P  (x, ;~), 
a(s a() 0 

a (~) b (s ~ (V) 
B(-+) (~,) = -  F ( ~ ) = - -  (x~0).  

( 2 o )  

(21(• 

We denote by ~(• the potentials for the NSE on the complete axis corresponding to 
the scattering data {A (• (%), B (• (s {F (e) (%j) }}: 

V§ 

Then f o r  t h e  p o t e n t i a l  ~(x)  in  t h e  g e n e r a l i z e d  b o u n d a r y - v a l u e  problem we s h a l l  have 
~(x)=~(+)(x) i f  x > 0 and ~(x)=~(-) (x)  i f  x < 0. I f  •  t h e n  t h e  d e s c r i b e d  c o n j u g a t i o n  
problems can be u n i q u e l y  s o l v e d  f o r  a l l  x [1 ] .  For  z > 0  s o l v a b i l i t y  can b reak  down a t  n o t  
more than n points (n is the number of zeros of the function a(1)), and the potentials 
~(e)(x) will have n poles with allowance for multiplicity (as a rule, n simple poles) [9], 
but ~(x) may also be regular. 

It remains to show that the ratio T+(+0, l)T$i(--0, ~) found from the conjugation 
problems is indeed the L operator of the Heisenberg magnet. For this we construct the 
vector S with regular properties such that (s T(~) ~+ (-0,~) and (s satisfy 
the problem (20), (21(+)). The first of Eqs. (20) is satisfied immediately; the second 
together with the relation for the residues follows from the reality properties of the 
components of the vector S; the properties of analyticity and the asymptotic behavior are 
obvious; it is sufficient to establish that there is no pole of (%+iS~)T~) (--0, %) at 
t = -i9. 

( 2 2 )  

This can be achieved by the choice of the vector S:-0+S~oa is a degenerate matrix, 
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T(~) (--0, %) (the possibility is verified by direct calculation). and its root vector is res ~+ 

By virtue of the uniqueness of the solution of the conjugation problem we obtain the 
required equation 

T+ (+0, ~) = (L+iSao~) T+ (--0, %). (23) 

4. Local Integrals of the Motion and Constraints 

To calculate the local integrals of the motion we go over to the generalized boundary- 
value problem on the interval [--s s with impurity at x = 0 and periodic boundary con- 

ditions ,(h) (1) =,(~) (--l) , k=O, I,.... The generating functional for the integrals of the motion 
is tr T(s --s ~). We shall proceed as in the case without impurity, using the notation 
and results of [i]. 

We consider for the monodromy matrix T0(x, y, ~) the representation 

To(x, y, )~)=(I+W(x, ~))exp(Z(x, y, s  )~))-~, (24) 

where W(x, X) i s  an a n t i d i a g o n a l  m a t r i x ,  and Z(x,  y, X) i s  a d i a g o n a l  m a t r i x  w i th  the  
p r o p e r t i e s  

~ ( z - y )  
W(x,~,)=o(t), Z(x,y,~,) . . . .  ~ + o ( t ) ,  ~ .  

2 
By virtue of (24), 

tr r(l,  - l ,  )~) =tr  [ (I+W+ (~))-*L(~) (I+W_ (~)) exp(Z(/, +0, X)+Z(-O, - l ,  ~) ) ] 

( see  ( 3 ) ) .  Using t he  wel l -known a s y m p t o t i c  expans ions  fo r  W(x, X) and Z(x,  y, ~) [1] and 
t h e  r e l a t i o n  (9 ) ,  we f i n d  t h a t  

I 

n = i  ~ = t  

The functionals I n = Re Jn generalize naturally the conservation laws of the NSE without 
impurity, and the functionals K n = Im Jn depend only on *~) and S. The simplest integrals of 
the motion have the form 

N----l,= [ K,=o, 

P=12 =~ ('Cp'(x),(x)-'Cp(x),'(x))dx+-~-[(2d,-A~)%-~o(UC~-A~)] K2 = - - -C~C, ,  
' 2 

t ~ 2+_~S~_O2)+C~%,+.~o,C~__~C~C~ ' H=/3 = ~ ( I , ' ( x ) J z + •  (4,,14ol 
I 

i 

- - I  

The h i g h e r  NSEs wi th  i m p u r i t y  a re  o b t a i n e d  from Eq. (8) by r e p l a c i n g  V(x, ~) by a s u i t a b l e  
m a t r i x  V=(x, 2~) (V~(x, ~)=(~/2)o~, V=(x, ~ ) = - Q ( x ,  ~), V,(x, ~)=V(x, ~)). For them the  c o n s t r a i n t s  
a re  w r i t t e n  as f o l l o w s :  

~ [  V~+ (~) (~) (~) V~_ (L) ] =0. (25) L m L 

By means of the generating functional for Vm(x, ~) the constraints (25) can be transformed 
to 

i.e., 

where fft(~) 

S ince  d e t  T(s 

[ (I+W+ (~))-'L(~) (I+W_ (~t)), os] =O(~-m+'), 

(I+W+(~)) ~L(~)  (I+W_(~))  =?~2+02 [exp(~(~))  +0(~-~)] ,  

i s  a d i a g o n a l  m a t r i x .  

--s X)  = ~2 + O 2" 

(26) 

(27) 
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det exp (9~ (~) +Z(~) ) =1+O (~ -z~) (28) 

and 

Therefore 

tr (9~ (L) +Z (~)) = -2• 2 K~I-~=O (l-2m). 

K,~=0, n = i , . . . , 2 m - l .  (29) 

All the arguments, except for the transition from (27) to (28), can be readily generalized. 
To eliminate this gap, we can use the relation 

(I+W+ (~))-lL(l)(I+W_(~,))=o(I+W+(%))-'L(X) (I+W_(%))o-', 

which fol lows from Eq. (9) .  Thus, we have e s t ab l i shed  tha t  the c o n s t r a i n t s  for  the m-th 
NSE with impurity are equivalent to the vanishing of the 2m -- 1 lowest integrals of the 
motion K n. 

To go to the limit s § ~ we use the equations 

logtr(e"rG,-/,X))=41og(X~+OD+i• AX-"+O(I~I-~), X:+i~, 

limtr(e'~T(l,--/,~)) =a(~), i f  Im X>O, 

which together lead to the relation 

for the generalized boundary-value problem on the complete axis. With allowance for (14), 
the constraints (29) can now be represented in the form 

la(~,) 1~----0~+09 (l+O(;~-~'~)), b(X)=OO&m). (30) 

If in the scattering data it is assumed that b(1) = O(~1-m), then, solving the 
inverse problem, we obtain m -- 1 times differentiable potentials ~(• The smoothness 
of ~2(x) will be not worse (almost always the same) than that of 9(• This allows us to 
consider the m lowest equations and the constraints for them. In addition, it can be seen 
from comparison with (30) that all the allowed constraints are satisfied. 

5. Soliton Solutions (z<0) 

We consider in more detail the case z<0. The vector S lies on a sphere of radius 8. 
The function a(1) can have arbitrarily situated zeros in the upper half-plane of ~. The 
conjugation problems (20) and (21) can be uniquely solved for all x and make it possible to 
recover the regular potentials ~(• and ~(x). 

After symmetric reduction in the phase space there are distinguished two unconnected 
components, which differ in the sign of S 3. We describe their separation in terms of 
scattering data. Transforming the relation (13) into T(I) = T$1(+0, I)L(I)T_(--0, ~) and 
using (16), we can readily see that --ia(i@)S 3 > 0. By virtue of (16) the zeros of a(l) 
are situated either in pairs symmetric with respect to the imaginary axis or on the 
imaginary axis above the point i@. It can be seen from the representation (18) that the 
factors corresponding to the function b(g) and pairs of symmetric zeros are positive, while 
the factors corresponding to purely imaginary zeros are negative for ~ = i@. Thus, the 
sign of --ia(iS) is determined by the parity of n, the number of zeros of the function a(%), 
and the preceding inequality is transformed to the convenient form (--l)nS 3 > 0, which is 
also valid in the case when a(i@) = 0. 

We give some of the simplest soliton solutions (b(1) = 0), parametrizing them by the 
values of the scattering data at the initial time t = 0 (the time dependence is given by 
the relations (19)): 

%--%o' 2o =~ (v+ia), s 7~(s163 --~ x• , 
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e x p [ i ( + ~  +vz +~-y2  t ) ]  

, ~ '  (x) = , s / = & -  = 

2g-~ ch[~- (x-vt-x~_) ] 

t 
Sl ~ =~ [ (;~?+0~+ I~:1 ~) (L~+O~+['~i~)+ ( X o - L ) 1 7 l q ,  

~ =  (iXo+ml~§ ( t~o- m [=+i~,l,~), 

an (s ----- (~,--iO) E--Xo Xo--iO '~(+)----0, (:~" " (-7-) 
~-~o' 7~(~~ XO+~O' '~(-)=% ~ (x)=,~ (z), Sn=-S~. 

The solutions ~i(x, t) and ~ii(x, t) describe the propagation of a soliton. Interaction 
with the impurity leads to a shift of the center of the soliton and a jump of the phase: 

2 M-~O I { Xo-~O \ 
Ax~=-Axn=x+-x- = - - 7 l o g  ~ , k c p , = - h c p u = c p + - c p _ = a r g ~ ] .  

The two following solutions are interesting in that they are continually localized on 
one half-axis: 

am (s : s  ?~+) = 7 = e x p  (0x0+i+),  7~1) ----oo, 

(+) 0 exp (i~+iOZt) (-~ 4i0~ i~f i ~--40~ 
~pm (x) = ~/~- ch 0 (x-x~) ~Pm (x) =0 ,  + --  - - S ~ = O .  �9 

a~v(X)=X-iO, (+) ^ (-) (:~), . c~) 7~v =u ,  ~ v  =~ ,  ,~v (x)=~m (x), S ~ v = - S m .  

The symmetric solutions corresponding to the scattering data 

(x-~0) (~+x0) 
av(X)----(~,-4-iO) (~--Xo) (~+,ko) ' 'Yv(Xo)"tv(--~'o)----(X~ 

( ~ , - ~ o )  ( ~ + ~ . o )  c+) _ c-~ 
, "fw = 0 ,  aw(X)f(7,-m) (7,-L) (X+Xo) ~t~(xo)'tv~(-L)=-(Xo'+Oq, "t~ =o~, 

describe reflection of a soliton incident from infinity on the boundary in the boundary- 
value problem (i)-(2), and S~ = -- S~I = 8. 

6. Soliton Solutions (u>O) 

We turn to the case ~>0. We recall that now only the component S 3 of the vector S is 
real, while the remaining two are purely imaginary. Therefore, the vector S lies on a 
two-sheeted hyperboloid, the sheets of which differ in the value of S 3. 

We show that the inequality S 3 > 0 is equivalent to the function a(1) having no zeros. 
In the proof of the direct_assertion we shall base ourselves on the formal self-adjointness 
of the operator ~f=io3a~+i]/x(~o_-~o+). We denote by <,> the natural scalar product in C z, which 
is linear in the second factor. The Jost functions satisfy the differential equation 
~T• ~)=~T• x) for x ~ O, whence, using the asymptotic behaviors 

T(- i) (x,~,)=O(exp(xlmiL)), x-,---oo, T(+ 2) (x, iQ=O(exp(-xlm%)), x---,-+~, 

and  i n t e g r a t i n g  by  p a r t s ,  we o b t a i n  f o r  Im ~ > 0 
6 O 

<T2' (x, Xl,EP(x)T? ) (x,X)>dx=X [ I r i "  (x,X)[~dx= 
- - c a  - - ~  

0 

% ~ IT(- ̀) (x,~,)[~dx+2i<Ti ') (-o,;~),o~ri" (-o,~)>, 
- ( 3 1 )  

< ~ 2  ) (x, ~), ~ (x) r+ ") (x, ~) > ~ x = ~  IT? ) (x, x) I ~ dx= 
o 0 

o o  

X ~ IT+ c~) (x, X) 1~-2i<r? ) (+0, X), o,r+ c') (+0, X) >. 
o 

I f  a(X)----0, t h e n  L(~,)T.- m (--0, X)=~(~)T+  (z~ (+0,X) and  
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(+O,X)>= i ' (-O,X)>. 

Subs t i tu t ing  (32) in (31) and making some simple manipulat ions, we obtain 
0 

I (x) I < r 2 '  ( - 0 ,  g), (-0, g)> = O. 

We can verify that by virtue of the inequality Sa>}S"+S~'Iv' the integrated term is always 
positive and, therefore, X = ~. However, on the real axis the function a(X) has no zeros, 
since la(s ) I=>8~>0. 

To prove the inverse assertion, we consider the function be(k) = sb(k). The conjuga- 
tion problems (20) and (21) are uniquely solvable for all e and x, and S ~ depends con- 
tinuously on s. Since for s = 0 we have S 3 = 8 > 0 and IS31 > 8 always, S ~ > 0 when s = 1 
also. If in the conjugation problems (20) and (21) we take a function a(X) with zeros, 
then by what has been proven the potential ~(x) certainly inherits at least one pole from 
the potentials ~(• Therefore, in the case z>0, Sa>0 regular soliton solutions are 
absent. 

In the case S ~ < 0 there may exist regular soliton solutions that are absent for the 
NSE without impurity on the complete axis. However, such solutions cannot be continued 
globally with respect to the time and at some instant acquire a singularity. On the basis 
of the results of [9-11], in which solutions of the NSE with repulsion possessing pole 
singularities were obtained, we can introduce in a sensible way scattering data for 
singular potentials in the generalized boundary-value problem, and the opposite connection 
will, as before, be given by the conjugation problems (20) and (21). 

A large class of globally regular solutions of the generalized boundary-value problem 
with S 3 < 0 are given by solitonless solutions; in the scattering data the function a(X) 
has a single simple pole at k = i8 and the coefficients of proportionality are completely 
degenerate, ~(+)=0, ~(-)=~ (see the Appendix). 

We consider the single-so!iton solution 

t (u ) a(~,)=(~,+iS) -X-Xo' ~ o = - ~  (v+ia), v>O, ~()~o)=?=(~,o4-iO)exp --~x.~+iep• , 

T+-v-*)]  -s+=s-= zz -- 2~e(%o--~o) - 

'(~" (x) = 2 ~  sh [-~- (x -v t -x •  ] ~D 

(32) 

I 

X• 
The f u n c t i o n  ~(x)  i s  r e g u l a r  f o r  t_<t<t+, t •  and S a < O; f o r  t < t_ and t > t+,  

v 
r e s p e c t i v e l y ,  i t  has a po le  on the  n e g a t i v e  and p o s i t i v e  h a l f - a x i s ,  and in both  ca se s  
S 3 > O. Thus, we encoun te r  a c o l l a p s e  phenomenon. In the  symmetric case  the  p o t e n t i a l  
~(x) i s  r e g u l a r ,  and S 3 < 0 i f  and on ly  i f  the  f u n c t i o n  a(X) in the  symmetric s c a t t e r i n g  
data has precisely one zero k 0 = iq, 0 < q ~ 8; in particular, collapse is absent. To 
prove this, we note that under a continuous deformation of the scattering data that pre- 
serves the number of poles of the function ~(+)(x) and the finite integral of the motion 
N the potential ~(x) corresponding to the scattering data {b(%), {~j, ~(~)}} is regular 
simultaneously with the purely soliton potential ~0(x) corresponding to the scattering 
data {b0(~)=O, {~j, ?(~j)}}. 

For purely soliton solutions it is not difficult to obtain algebraic relations that 
are an analytic continuation of the analogous relations that hold in the case x<0 (see 
[i]): i f  

a(~)=(~+iS) H ~--~ then  9c+)(x)=~c-~(--x) 
f det/If 

~=, ~--~k ~ detM 

577 



where M and ~ are n x n and (n + I) • (n + I) matrices, respectively, 

M ~ = J ; I ~ =  i - ~  i~<], k<~n, 3~,~+~=% M . + ~ = l ,  M~+i~+~=O, ~ =  ~(~)  e a~. 
~--~ ' ' ' X ~ + i O  

A simple but fairly lengthy analysis of these relations with allowance for the symmetric 
reduction makes it possible to establish the assertion in the purely soliton case and, 
hence, in the general case too. 

We should note the possibility of going to the limit 10 § 0 in all the relations (33) 
in the symmetric case. We then obtain the slowly decreasing solution 

0e ~, r (~) =r = 
~ ( 0 ~ + i )  

w h i c h  c a n n o t  be  o b t a i n e d  d i r e c t l y  i n  t h e  f r a m e w o r k  o f  t h e  scheme  p r o p o s e d  i n  t h e  p a p e r .  

Conclusions 

It is well known that the inverse scattering method is a nonlinear analog of the 
Fourier method for the solution of linear evolution equations on the complete axis [i]. To 
solve the boundary-value problem in the linear case the boundary conditions on the potential 
in the Fourier method are satisfied by virtue of certain properties of evenness and 
decrease of its Fourier transform, these being identical in a suitable formulation to the 
relations (22) and (30). On the other hand, these relations do not contain an explicit 
dependence on the coupling constant and ensure fulfillment of the boundary conditions on 
the potential in the boundary-value problem for the NSE. Thus, we have found that the 
analogy between the inverse scattering method and the Fourier method can be extended 
naturally to boundary-value problems. 

A p p e n d i x  

S u p p o s e  t h e  f u n c t i o n  a ( t )  h a s  a s i m p l e  z e r o  a t  )~ = • 
cases are then possible: 

TJ ~) (x, ~0) =0, res T+ c2) (y, ~) :~0; T (t)_ (x, i0) ~0, res 7,_+ (~) (y, ~) =0; 

_ ( 2 )  

T_ r (x, i0)=0, res T+ (y,~)=0 (x>0, y<0). 

We introduce coefficients of proportionality, 

(1) 
T_ (x,~O)=2ieT(+)T(+ ~) (x,~0), x>0, 

It is easy to show that three 

TJ t) (v, iO)=? (-) res 1+ (Y,)O, y<O, (A. 1) 
X=i0 

in terms of which these cases take the form 

](+)=0; 0<i~(-)i<~; 0<I~(+)I< ~, ?(-)=~; 7(+)=0, 7<-)=~. 

If 7(+)=0 or ?(-)=~, then we shall speak of degenerate coefficients of proportionality. It 
is obvious that the definitions (A.I) are consistent with Eqs. (21), and it can be assumed 
that 7(•177 in nondegenerate cases. The relative independence of ?c-+) is due to the 
fact that det L(i0) = 0. 

The equations of the inverse problem are, as before, obtained from the relations (13)- 
(15) and the asymptotic behaviors (17) and reduce to the conjugation problem (20). For 
nondegenerate coefficients of proportionality the relations (21) remain, while for 
degenerate coefficients they are modified as follows: 

F~+) (~,) = T :  1) (x, ~,), F(-) (~,) = (k-iO)T(+ 0 (x, k), 

k-iO G<+) (~) = I re_,) (x, ~), G(-)(~) = T_ m (x, ~), 
( ~ )  a (~) 

a (~L) b (i~,) ~ (p~) 
- -  B ( •  ( ~ )  = ~ 1 ̀(-+) ( ~ )  = ( ~ t ~ 0 ,  z ~ 0 ) ,  

where A(• and there is no pole at the point iO. 
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UNITARITY CONDITION IN COVARIANT QUANTUM FIELD THEORY 

WITH INDEFINITE METRIC 

A. A. Slavnov 

Conditions that ensure the existence of a unitarity S matrix acting 
on the subspace of states with positive norm are formulated. A study 
is made of BRST quantization. 

i. Introduction 

The covariant description of the overwhelming majority of physically interesting field 
theories requires the introduction of a space with indefinite metric. The most important 
examples are quantum electrodynamics and Yang-Mills theory, quantum gravity, and models of 
relativistic strings. In this connection the problem of the physical interpretation of the 
theory arises. Gauge invariance usually ensures that there are no negative probabilities of 
observable processes. Using the gauge freedom, one can pass to a manifestly unitary gauge 
of Coulomb type in which unphysical excitations are absent and the state space has a positive 
norm. The procedure for passing from the covariant gauge to the unitary gauge is well 
developed for the case of gauge theories with closed algebra and independent constraints 
(for a detailed discussion, see [i]). However, in the general case in which the constraints 
can be dependent and the gauge algebra open the corresponding transition entails great 
complexities. For example, already in the theory of an antisymmetric tensor field, when 
there is a finite number of dependent constraints (finite degree of reducibility), direct 
application of the Faddeev-Popov procedure is impossible and it is necessary to use special 
devices [2]. For theories with an infinite degree of reducibility, which include, for 
example, string models, a similar procedure in the general case is as yet unknown. 

There exists an alternative approach in which the theory is from the very beginning 
formulated in a space with indefinite metric and the absence of negative probabilities is 
ensured by imposing on the space of allowed states an additional condition that separates 
the subspace of physical vectors. This subspace must possess a non-negative norm and be 
invariant with respect to the dynamics (the operator of any observable must not carry the 
state vector out of this subspace). 

In quantum electrodynamics this construction is realized in the Gupta-Bleuler forma- 
lism, in which all the components of the electromagnetic field are regarded as independent 
and the physical subspace is distinguished by the condition 

O~AF(x)lr (1) 

The Gupta-Bleuler formalism cannot be directly generalized to non-Abelian gauge 
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