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CALCULATION OF SCALAR PRODUCTS OF WAVE FUNCTIONS AND 

FORM FACTORS IN THE FRAMEWORK OF THE ALGEBRAIC BETHE ANSATZ 

N. A. Slavnov 

Explicit expressions are obtained for a special case of the scalar product 
of the wave functions and form factor of the particle number operator in 
a generalized two-dimensional model. 

i. Introduction 

The Bethe ansatz method is widely used to investigate two-dimensional completely 
integrable models [1-3]. In the framework of the quantum inverse scattering method [4,5] 
it has proved to be possible to construct an algebraic scheme of the Bethe ansatz, and this 
has been successfully applied to calculation of correlation functions [6,7]. One of the 
important questions of the method is that of the scalar products of the wave functions. In 
particular, knowledge of the properties of the scalar products is necessary for investigating 
the form factors and correlation functions. 

In the present paper we consider a generalized model with R matrix of the model of the 
nonlinear SchrSdinger equation [8]. The main formulas and notation are given in Sec. 2. In 
Seco 3 we calculate the scalar product of an arbitrary function and an eigenfunction of the 
Hamiltonian. The generalized two-site model [6] is introduced in Sec. 4. In Sec. 5 we 
calculate the form factor of the particle number operator. 

2. Generalized Model 

In the framework of the quantum inverse scattering method the Hamiltonian of a physical 
system is constructed by means of the monodromy matrix T(X). We shall consider a 2 • 2 
matrix 
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[A(~) B(X)) 
T(~ = .  ) ~C(~) D(~) 

whose elements are quantum operators that depend on the spectral parameter I. The commu- 
tation relations between these operators are specified by the equation 

tl(~,, p.)(T(It)| )=(T(~t)| )R(~., ~), 

where R(I, ~) is a 4 • 4 matrix with c-number elements. For the model of the nonlinear 
SchrSdinger equation the R matrix has the form 

( /(p, ~) 0 o o ) 
o g (~, ~) i 0 
o 1 ~ (~, x) 0 , 
0 o o / (~, ~)~ 

where 1()~, b)=()~--~+ic)/()~--~), g()~, ~)=ic/()~--~t), c is the coupling constant. In what follows, 
it will be convenient to use the function h(%, V)=f(%, v)/g(%, ~)=(}~-~+ic)/ic. We give the 
explicit form of some commutation relations from (i): 

[B(~), B(bt)]=[C(~), C(~t)]=0, [C(~t), B(~)]=g(~t, ~)(A(~t)D(~)--A(X)D(~t)). 

In addition, the operators C(1) and B(1) satisfy 

(1) 

(2) 

(3) 

C(~)=B+O,). (4) 

An important object in the quantum inverse scattering method is the pseudovacuum 
vector I0> and its dual vector <01 . The elements of the monodromy matrix act on these 
vectors as follows: 

A(~)lO>=a(X)]O>' D(k)[0>=d(1010>' C(%)]0>=0' (5) 

<0[A (;~) =a(iQ <0], <0]D(;~)=d(~)<0], <0]B(~) =0, 

where a(1) and d(1) are complex-valued functions whose form depends on the particular 
model (for the nonlinear Schr6dinger equation a(%)=exp(--i~L/2), d(~)=exp(i~,L/2), where L is 
the interval over which the equation is considered). In the framework of the generalized 
model, these functions are not particularized and remain free functional parameters. It 
was shown in [9] that for arbitrary functions a(l) and d(1) there exists a monodromy matrix 
T(1) satisfying Eq. (i) with R matrix (2), and the action of the operators A, B, C, D on 
the pseudovacuum is given by Eqs. (5). 

Thus, in what follows, if no restrictions are imposed, we shall regard I and r(1) = 
a(%)/d(1) as independent variables. 

The eigenfunctions of the Hamiltonian are constructed by means of the operators B(X): 
N 

~ ({~,,}) = 1 1  B(~) 10>, 
j = !  

and on the parameters lj we impose the conditions 

r(~j) H / (~' ~) : t, ]=t , . . . ,  N. 

In t h e  s p e c i f i c  model ,  (6) i s  a sys tem of  e q u a t i o n s  f o r  t he  a l lowed  v a l u e s  of Xj. In the  
framework of  t h e  g e n e r a l i z e d  model t j  remain  a r b i t r a r y ,  and t he  c o n d i t i o n  (6) can be 
r e g a r d e d  as a c o n s t r a i n t  between t he  v a r i a b l e s  r j  = r (Xj )  and t j .  

The dua l  e i g e n f u n c t i o n  i s  c o n s t r u c t e d  s i m i l a r l y  by means of  t he  o p e r a t o r s  C ( t ) :  

9~,({~}) =<01H c (~). 
J = l  

The set {I} also satisfies (6). 

(6) 
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3. Scalar Products 

We shall call the quantity S N defined by 
N N 

s =<o I I  c(kh B (k,')to>, 
j=i j = i  

where C(k)=C(k)/d(k), B (k) =B (k) /d (k) , the scalar product. From the general theory of scalar 

products [8] it is known that S N is a function of 4N independent variables S~=S~({kjc}, {kp}, 

r~'=r(k~' ). The scalar product depends linearly and homogeneously on the variables (rf}, {rf}), ~ - ~ "  

r C and r B. The coefficients of products of r C'B are rational functions of A C and A B that 

are symmetric separately with respect to the arguments of the operators C and B (see [3]) 
and decrease as A~'B §  = as I/A~ 'B.~ The points A~ = A B (k, m = 1 ..... N) are the poles 
of these rational functions. The residues at these poles reduce to SN_I: 

S N ({kjC}, {k/B}, {r.f}, {riB}) I~,C._.~,raB ~--- g (~i: c, ~m B) (rk c --  rmB ) • 

N N 
/ (~c, 7,jc) I I /  (k,~,, ~,~,) S~_~ ({~fb~, {~%~, {~ c}~, (~'b~), (7) 

.~=1 i = l  

where 
C,B C B C B 

r~ =rj ' /(~,j' ,~,,~')//()~,,B,~,['B). (8) 

In this section we shall consider a special case of the scalar product when the 

vector <01 

where 

N 

H C (kf) is an eigenvector of the Hamiltonian 

N N 

s =<Ol c (k f )H B (k,")Io>, 
j : i  ~ - - i  

M" 

rfXI/(k ~ = i. 
~=, l ( k f ,  k f )  

By virtue of (9), the scalar product ~N 
(~c}, (kp}, {rp}. 

THEOREM. The e x p l i c i t  form of the  

~=G~({~),  
where 

N 

G~ ({kf}, {kf})=I~ 

M,~((rp}, {kjc}, {kj'}) 

h # 4  

depends on the  3N independent  v a r i a b l e s  

scalar product SN is given by 

{~B})det~ M,h({rp}, {~c}, {~p}), 

N N 

g(kJB')~hB)g(~hC'~J c) H H h(kJc,~,B), 

N 

g (k~' z~). - r," g (~''' kf)  ] - [  I (k,', ~J) 
h (~,h c, %,") h (k~', k~ c ) 2 2  ~ "  

(9) 

(zo) 

We prove the relation (i0) by induction. We denote G N det N M by @N o For N = i, SN can 
be calculated by means of (3). With allowance for (9) it is readily seen that 
~1=Oi=g(k c, k~)(1--rB). In the next stage of the proof we use the formula for the residue of 
the scalar product (7) and the property of decrease SN § I/A~ as A~ § ~. 

Let O~_I=S~-~. We consider @N as the function of A~. It is obvious that O N is a 
rational function of A~ that decreases as A~ § ~ as i/~ and has simple poles at the points 
C B �9 A N = Aj (j = 1 ..... N). Note that although G N has additional poles at C _ C 

sponding residues are zero, since for A~ = A~ two columns in the matrix M~k AN -areAJ the identical.C~ 

We consider the residues of the function O N at the points A~ = A~. We have 
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N 

N--1 

]=1 

(ll) 

det~M~ ({r~'}, {Xc}, {L B}) [~,~vcoxmB = dety_~Mt ~ ({Z~B}j#,~, {s {~i~}.#~) X 

.~ g ()~x c, %m B ) ( -  i)~+~ ( h (X~c, X~) 

Combining (11) and (12), we obtain 

N 

e~ [~c~. ~ = g (X~ c, X~) / (X~c, ~f) 

r"~ ~ ~, (~,., ~, ~c) ~ /(~.~, ~f) 
h (Xm ~, ~..c) / (~.p, ;~,,,~) j " 

rm B] X 

(12) 

N--1 AT 

I~ ] (~N c, ~f) I I  / ( ~ ; ,  ~s ~) eN-i (9~?}j~,, (~j~}s~.~:, {GBb.~.,) �9 ( 13 ) 
j=1 J=1 

j#m 

Note that the parameters {%C}j~N again satisfy the condition (9) with function ~C: 

Since by the inductive hypothesis @N-~=SN-~, we see, comparing (13) and (7), that the 

difference A = ~N - @N as a function of ~ is bounded in the complete complex plane. 

Therefore, 5 -= 0 since h + 0 as iN C + ~, and this completes the proof. 

We consider two special cases of the relation (i0). 

The partition function of the 6-vertex model is determined by the coefficient K N of 
H 

'I1 the product r~ B in the scalar product ~N- It is readily seen that 

N N N 

�9 ~ B C ~ g( , , ~  ) K~ Hg()~B,)~kB)g(~,c,)~,c) H Hh()~7,)~h ) d e t e r .  
~<j ~=, ~=, h(~ , ~  ) 

I t  i s  in p r e c i s e l y  such a form t h a t  t h i s  r e l a t i o n  was f i r s t  ob t a ined  in [10].  

From the  formula  fo r  the  s c a l a r  p roduc t  gN we can a l so  r e a d i l y  o b t a i n  an e x p l i c i t  
expression for the square of the norm of an eigenfunction of the gamiltonian. We consider 
the limit %~=l~c+e, e-~0. Then 

~=, /(Xf, X~ c) 0~ 
h~ej 

S u b s t i t u t i n g  t h i s  e x p r e s s i o n  in (10) ,  we o b t a i n  t he  well-known e x p r e s s i o n  f o r  t he  square  
of the norm [8]: 

N N 

where 

kq~j 
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4. Two-Site Model 

A generalized two-site model was introduced in [6,7]. In this model the total mono- 
dromy matrix on the interval [0, L] is represented as a product of two monodromy matrices: 

T(~,)=T2(X)T,(%) T~(%)=(A,(k) B,(k) ) i= i ,  2. 
' C~ (;Q D, (~) 

The matrices Tz(X) and T2(~) are associated with the intervals [0, x] and [x, L], respec- 
tively; here, x is some fixed point. Each matrix Ti(%) satisfies Eq. (i) with the R 
matrix (2). The elements of different matrices commute. For each Ti(%) there exists a 
corresponding pseudovacuum [0>i and dual vector <01i. The complete pseudovacuum is 
I0)----]0)~| The action of Ti(~) on [0> i and <0li is given by the relations (5) with 
functions ai(X) and di(%), and a(%)=ai(~)a2(%),d(%)=d~(%)d2(%). 

We consider the particle number operator Ql on the interval [0, x]. We give the 
commutation relations of the operator QI with the elements Tl(1): 

[Q,, B,C~)J=B,(~,), [C,C~), Q,]=c,(;~), [Q,, A,(~)]=[Q,, D,(Z)]=0, Q, IO>,=<Ol,Q,=O. 
The operator Qz commutes with the elements of T2(X). 

We shall call the matrix element 
N N 

F~=<0I Hc(x,~)Q, 1-IB(~7)I0> 
j=t j=i 

N 

the form factor of the operator Q~. We assume here that IIB(%9) I0> and <01 IIc(%~ ~) are 

eigenfunctions, in general different, of the Hamiltonian. It is easy to calculate F N for 
small N: 

F0=0, F,=g(~C,~)[ a~(~C)d'(~2) l ]. 
d, (~c) a, (~) 

In the following section we give the explicit form of F N for any N. 

(14) 

. Form Factor of the Operator Ql 

The properties of the form factor of the particle number operator were investigated in 
detail in [6,7], in which the following representation was obtained for FN: 

N 

J=~ d~(g C)a~(~jB) - I o~({~c}, {~B})Is=0, 

in which o~ is  a r a t i o n a l  f u n c t i o n  of the  2N v a r i a b l e s  {xC} and {t B} and i t  suppresses  
the  fo l l owing  p r o p e r t i e s :  

i) o~ is symmetric separately with respect to %C and %B; 

CB (7 c~ 4 /  C B  2 )  a s  ~j ' -*~  ~-NI,~j '  ; 

3) the points %C = 1~ (j, k = !, ..., N) are poles of o~. 

reduces to (7~_~: 
N - - i  N - - i  

j = i  ]=i 

where we have introduced the notation /~.B____/(%f,B %~.B). The remaining residues can be 
obtained by using the symmetry property i; 

4) (7~=g(~C %S)(e~_i). 
These properties uniquely fix o~ (see [6,7]) and in principle make it possible to 

construct o~ recursively for arbitrary N. An explicit expression for o~ in the model of 
the nonlinear SchrSdinger equation was obtained for the first time in [ii] in the form of 
the determinant of a 2N x 2N matrix. In this paper we propose a different representation 
for o~, which, in our view, is more convenient for applications and generalization to the 

(15) 

The residue at these poles 
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XXZ model. 

We show t h a t  e~ i s  a s p e c i a l  c a s e  o f  s c a l a r  p r o d u c t .  Suppose  

s z =  <ol IIc( n 

and 
N 

D ~ i~-7-E = t, --= e =. 

We prove that e~ = S~. For this it is obviously sufficient to establish that S~ has all 
the listed properties of o~. 

Using (4) and (I0), we obtain for S~ 
N N N 

N 

Properties 2 and 4 are readily verified. To prove property !, we note that replace- 
C C + ment of %j by I k is equivalent to replacement of the j-th column by the k-th columm in ~he 

determinant in (16) (when 1~ is replaced by I~ the positions of two rows are interchanged) 
and to a change in sign of the factor in front of the determinant. As a result. S~ is 

C C unchanged. It also follows from this argument that Sm does not have poles at ~ = lu 
and X~ = X~ (j, k = I, .... N). ~" J ~ 

Property 3 can be verified in the same way as the properties of the residues of the 
scalar products (see Sec. 3). 

However, it follows from (16) that S~ may have additional poles at h(l~, I~) = 0. We 
show that the residues of these poles are zero. To prove this we extract from each row of 

[H ] the determinant (16) the factor h(~ . ,  c ~ %~ )h(%~,%~) We denote the remaining matrix 

by ~jk: 

m = l  

N 

g (xc, ~?) H h (~J, Xf) h (~), x J)  + 

tr 

h(~p, ~c) ~=~ 

By virtue of the symmetry of S~ with respect to 1 B it is sufficient to consider the case 
h(l B, 1 B) = 0. Then 

(17) 

for h(l B, 1 B) = 0 we have 

N 

37 = e  ~ ~ '  ~ J I Ib,~. ~k h~s c )~ ,~ _,.x.- ( m , s  (18)  

N 

. ~ =  h(X .,~ c) h( ~ ,XmOh(~.,",~"). (19) 

B ~ 

S u b s t i t u t i n g  t h e s e  e x p r e s s i o n s  in  ( 1 9 ) ,  we o b t a i n  
,v  

2ty~=(_t).,~ g(Xkc,)~, B) ]-[h(Xm',~') (20)  

Compar ing  ( ! 8 )  and ( 2 0 ) ,  we s e e  t h a t  ~2k i s  p r o p o r t i o n a l  t o  ~zk and ,  t h e r e f o r e ,  d e t  N ~k = 0 
for h(l B, l B) = O, i.e., S~ does not have poles at the points h(Xp,%,')=O. 
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Thus, we have shown that o~ = S~ and we have thus obtained an explicit expression for 
the form factor F N (Eqs. (15) and (16)). 

In conclusion we make a number of remarks that make it possible to generalize our 
results to the XXZ model. In the XXZ model, the R matrix also has the form (2), but the 
functions f(k, ~) and g(k, ~) are different: 

sh (~- ~+2i~) i sin 2q 

sh(~-~) sh(X-~) '  

where cos 2~ = A is the anisotropy parameter. The properties of the functions f and g in 
the XXZ model are analogous to those of the same functions in the model of the nonlinear 
SchrSdinger equation: 

i) g(~, ~)=--g(~,~);  

2) f and g have simple poles at ~ = ~; 

3) f and g are rational functions of e ~ and eg; 

4) as % ~  g(~,~)Nt/e ~,f(k,~)Nt.  

With a l lowance  f o r  t h e s e  p r o p e r t i e s ,  the  p roofs  of t he  e x p r e s s i o n s  f o r  the  s c a l a r  
product  and form f a c t o r  given in t h i s  paper can be app l i ed  almost  unchanged to the  XXZ 
model. In particular, the representations for SN (i0) and F N (15), (16) remain valid. 
In our view the obtained expressions are convenient for the passage to the thermodynamic 
limit and may be helpful in the investigation of the correlation functions. 

I should like to thank V. E. Korepin for helpful discussions. 
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