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CALCULATION OF SCALAR PRODUCTS OF WAVE FUNCTIONS AND

FORM FACTORS IN THE FRAMEWORK OF THE ALGEBRAIC BETHE ANSATZ
N. A. Slavnov
Explicit expressions are obtained for a special case of the scalar product
of the wave functions and form factor of the particle number operator in

a generalized two-dimensional model.

1. Introduction

The Bethe ansatz method is widely used to investigate two-dimensional completely
integrable models [1-~3]. 1In the framework of the quantum inverse scattering method [4,5]
it has proved to be possible to construct an algebraic scheme of the Bethe ansatz, and this
has been successfully applied to calculation of correlation functions [6,7]. One of the
important questions of the method is that of the scalar products of the wave functions. In
particular, knowledge of the properties of the scalar products is necessary for investigating
the form factors and correlation functions.

In the present paper we consider a generalized model with R matrix of the model of the
nonlinear Schrddinger equation [8]. The main formulas and notation are given in Sec. 2. In
Sec. 3 we calculate the scalar product of an arbitrary function and an eigenfunction of the
Hamiltonian. The generalized two-site model [6] is introduced in Sec. 4. In Sec. 5 we
calculate the form factor of the particle number operator.

2. Generalized Model

In the framework of the quantum inverse scattering method the Hamiltonian of a physical
system is constructed by means of the monodromy matrix T(A). We shall consider a 2 x 2
matrix
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A B(x))
cx) D/’

whose elements are quantum operators that depend on the spectral parameter A. The commu-
tation relations between these operators are specified by the equation

R, p) (TM)OT(n))=(T(W)®T(A))R (1, n, (1)

where R(A, u) is a 4 x 4 matrix with c-number elements. For the model of the nonlinear
Schrddinger equation the R matrix has the form

TM)=(

flwr 0 0 0
0 gr 1 0
0 0 0 Fwh),

where f(h, w)=(A—ptic)/(A—n), g(A, n)=ic/(A—np), ¢ is the coupling constant. In what follows,
it will be convenient to use the function h(X, p)=f(h, p)/g(A, n)=(A—ptic)/ic. We give the
explicit form of some commutation relations from (1):

[B(M), B(wI=[C®), C(u)]=0, [C(n), B(A)]=g(p, ) (A(r)D(A)—A(A)D(n)). (3)
In addition, the operators C()) and B()\) satisfy
C(A)=B*(%). (4)
An important object in the quantum inverse scattering method is the pseudovacuum
vector |0> and its dual vector <0|. The elements of the monodromy matrix act on these

vectors as follows:
A)|0>=a(r)|0>, D(R)|0>=d(r)]|0>, C(1)]0>=0,

5
0]A(A)=a(r)<0|, <OD(A)=d(1)<0|, <O}B())=0, )

where a(A) and d()) are complex-valued functions whose form depends on the particular

model (for the nonlinear Schrddinger equation a(i)=exp(—irL/2), d(A)=exp(iAL/2), where L is
the interval over which the equation is considered). In the framework of the generalized
model, these functions are not particularized and remain free functional parameters. It
was shown in [9] that for arbitrary functions a(A) and d(A) there exists a monodromy matrix
T()) satisfying Eq. (1) with R matrix (2), and the action of the operators A, B, C, D on
the pseudovacuum is given by Egs. (5).

Thus, in what follows, if no restrictions are imposed, we shall regard A and r{}A) =
a(x)/d(A) as independent variables.

The eigenfunctions of the Hamiltonian are constructed by means of the operators B(A):

v, o =1] 20 10,

i=1

and on the parameters Aj we impose the conditions

f(?"i’}"h)
roy) 11 =——-=1, j=4,...,N. (6)
’ Bt f(}\'hv?\'i) !
L]
In the specific model, (6) is a system of equations for the allowed values of A;. In the

framework of the generalized model A; remain arbitrary, and the condition (6) can be
regarded as a constraint between the variables rj = r(kj) and Aj.

The dual eigenfunction is constructed similarly by means of the operators C(A):

@ (=<0l 1L con.

J=1

The set {A} also satisfies (6).
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3. Scalar Products

We shall call the quantity Sy defined by

N N
sv=aol Il cos Tl B 100,
J—i je=t

where C(AY=C(\)/d(A), B(A)=B(Ax)/d(A) , the scalar product. From the general theory of scalar
products [8] it is known that Sy is a function of 4N independent variables Sy=Sx({M°}, {A®},
{rf}, {r#h), n°3=n(xfﬂ). The scalar product depends linearly and homogeneously on the variables
r¢ and r? The coefficients of products of rg’B are rational functions of A% and A that
are symmetric separately with resgect to the arguments of the operators C and B (see [3])

and decrease as A\$*B » = as 1/0% The points Ak = Ag (k, m=1, ..., N) are the poles
of these rational functions. The residues at these poles reduce to Sy-;:

N ({AE B A BN | e B =8 (M A B) (1€ — riB) X
k m

N N

H FS, A0 H 7 (MnBy AB) Stvog ((AC 55100 AP Yinems {7 Cisres (FBYiem)s (7)
;:%f j;é—m

where

¢,B

7= 05 ) 1 O, 05, (8)
In this section we shall consider a special case of the scalar product when the
N
vector <0ﬂ[I(xxf) is an eigenvector of the Hamiltonian

j=1
N N
Sy=<0| H C(3°) H B() |02,

jei jumi

where
N
FOE M°)
j hc (9)
Re1 f(?"h 9 )
netd
By virtue of (9), the scalar product Sy depends on the 3N independent variables
{2 (VW) {n7)
THEOREM. The explicit form of the scalar product Sy is given by
Sy=Gx ({1}, (AP dety Mu({r®}, (A}, {A°}), (10)

where

en (003, 0D = L 0 m g o, 10 LT T 20,009,

i>h j==1 h==1
g (M5, M%) B g (M5 M) FA5, AnC)
N N YO R T

Mlh({er}1 {}"J'c}v {?".‘in} ) =

We prove the relation (10) by induction. We denote Gy dety M by ©y. For N =1, Sy can
be calculated by means of (3). With allowance for (9) it is readily seen that
§,=0,=g(A°% A%)(1—r?). In the next stage of the proof we use the forpula for the residue of
the scalar product (7) and the property of decrease §N > 1/Af as Af > .

Let Oy_=Sy-1. We con31der ON as the functlon of AN It is obvious that Oy is a
rat10nal function of AN that decreases as AN > ® asg 1/AN and has simple poles at the points
AN J (j =1, ..., N). Note that although GN has additional poles at Aﬁ Ag the corre-
sponding residues are zero, since for Ag AJ two columns in the matrix Mgy are identical.
AB

We consider the residues of the function @y at the points AN We have
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Gy (4% PN g0, 5= (= DFh (b, ) Hf ABy 48) X
]—-1
J#m

N-1

H FOVE AN Gy (Y 52y {3 B Yisem)s (11)

J=1

dety M ({8}, (1) (A5 [ANCA;\MB = dety_ 1My ((FiB)joems {2y {A;B}iem) X

+m g OLNC’ ?\’mB) ” }"mBi An© f(}\mBs A C)
=0 {hmv%mB} o e ,afVVC) H 5 (12)

J’ m)

Combining (11) and (12), we obtain

®N+kNaaMnB==g(ch,x B [11 jil__ﬁﬂfl,_rms} %

FNC L)
N—1 N
H f (ANC, M) H F By A58 Ony (3o (M5B jmems {(FBisem)- (13)
= jm
Note that the parameters {)\Jc'}j;tN again satisfy the condition (9) with function i-g;:
N—-1
f(}\'ica ch)

== 1,
e (Y

k]

Since by the inductive hypothesis @y, —S’N_,, we see, comparing (13) and {(7), that the
difference A = Sy — Oy as a function of )‘N is bounded in the complete complex plane.
Therefore, A = 0 since A » 0 as )\I% > <, and this completes the proof.

We consider two special cases of the relation (10).

The ﬁartl'i'tion function of the 6-vertex model is determined by the coefficient Ky of

l
the product ’]___[rj” in the scalar product Sy. It is readily seen that

=1
ME A
_HE(M ’MB)g(M, C)H]__Ih()".)a?\‘hc)d tNg< { gc)
< =t het B (AE, 2:°)

It is in precisely such a form that this relation was first obtained in [10].

From the formula for the scalar product Sy we can also readily obtain an explicit
expression for the square of the norm of an eigenfunction of the Hamiltonian. We consider
the limit A=A +e, e—0. Then

F M%) (

d
- . 4 2 .
f(}\'] 1}‘%6) 3 a}\,] In r(}\,J)) 0(8 )

k=/=)

Substituting this expression in (10), we obtain the well-known expression for the square

of the norm [8]:
<OIHC(K)HB(}»HO> =c’ ]:[f(’mkk)detzv

=k

where

2 ) f(}"h A’k)
Q=1 ln{rJ IS

ket

505



4. Two-Site Model

A generalized two-site model was introduced in [6,7]. In this model the total mono-
dromy matrix on the interval [0, L] is represented as a product of two monodromy matrices:
A;(A) Bi(h) )
C.(A) D:(\)

T =T.(A)T.(r), Ti(%)=( i=1,2.

The matrices T,(A) and T,(A) are associated with the intervals [0, x] and [x, L], respec-
tively; here, x is some fixed point. Each matrix T;()) satisfies Eq. (1) with the R
matrix (2). The elements of different matrices commute. For each T{(X) there exists a
corresponding pseudovacuum [O>i and dual vector <0|i. The complete pseudovacuum is
|0>=[05,®|0>. The action of T;(X) on |0>; and <0|; is given by the relations (5) with
functions aj(1) and dj(A), and a(r)=a,(A)a,(A), d(A)=d(A)d:(A).

We consider the particle number operator Q, on the interval [0, x]. We give the
commutation relations of the operator Q; with the elements T,(A):

[Qy, Bi(W) ]=B.(}), [Ci(h), Q]=Ci(}X), [Q, 4:(R)]=[Q, Di(A)]1=0, Q.]0>,=<0|,Q,=0.
The operator Q, commutes with the elements of T,(A).

We shall call the matrix element
ro=of Heono [IBam o (14)
J=1 Jem1
N

the form factor of the operator Q,. We assume here that HB(KJ-B)I(D and (0| :[[C(?»,-C) are

je=t et

eigenfunctions, in general different, of the Hamiltonian. It is easy to calculate Fy for
small N:

@094 0%) ]
409aG) 1

In the following section we give the explicit form of Fy for any N.

F=0, Fimg0)]

5. Form Factor of the Operator Q,

The properties of the form factor of the particle number operator were investigated in

detail in [6,7], in which the following representation was obtained for Fn:

_ a: (A,°) di (A") N LA B
FN—[I;_[W 1]0050” ({5 A7) Lam, (15)

in which °N is a rational function of the 2N variables {AC} and {AB} and it suppresses
the following properties:

1) GN is symmetrlc separately with respect to Ac and AB
2) as M Do ~1/k

3) the p01nts A AE (J, =1, ..., N) are poles of of. The residue at these poles
reduces to off-;:

on* ({A%}, {(M°)) !Afv—»xf;, =g (Ax", Ax") {6“]:[ [in’fui® — 1;[ fNjcijB}GJ:—i (MY, (M Yimen)

C,B

where we have introduced the notation f; —j(hca ). The remaining residues can be

obtained by using the symmetry property 1;
4) o*=g(h% 2?) (e*—1).

These propertles uniquely fix GN (see [6,7]) and in principle make it possible to
construct GN recursively for arbitrary N. An explicit expression for GN in the model of
the nonlinear Schrédinger equation was obtained for the first time in [11] in the form of
the determinant of a 2N x 2N matrix. In this paper we propose a different representation
for cﬁ, which, in our view, is more convenient for applications and generalization to the
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XXZ model.

We show that cﬁ is a special case of scalar product. Suppose

5= <o [Tcan Hzom0,

and

N
B ]c c
kaB 1, rjc Jh =

B ——
r; c“—‘e.

o et Tu
o R

We prove that off = SR-. For this it is obviously sufficient to establish that S§ has all
the listed properties of GN

Using (4) and (10), we obtain for S§

N N N
sy = et amemene TLTromm9x

i>k je=1 k=1

N
4 B c B B B B c
doty{ e £ [ TTAORERDA0 o) 800 | (16)
RS 07) L2 RO MY (™, 057 (MR, ME)

Properties 2 and 4 are readily verified. To prove property 1, we note that replace-
ment of Ag by A{ is equivalent to replacement_of the j-th column by the k-th column in the
determinant in (16) (when A? is replaced by Af the positions of two rows are 1nterchanged)
and to a change in sign of the factor in front of the determinant. As a result SN 1s

unchanged. It also follows from this argument that SN does not have poles at Ac

and AB AE (j, k=1, ..., N).

Property 3 can be verified in the same way as the properties of the residues of the
scalar products (see Sec. 3).
However, it follows from (16) that Sff may have additional poles at h(AE AB) . We
show that the residues of these poles are zero. To prove this we extract from each row of
N

-1
the determinant (16) the factor [H B (A2, ) B (A, A7) J . We denote the remaining matrix
m=1
Mjk‘

.__g (xkc’ MB) Cc 4B g(M y I )
=g BV (AR, M) + e mB, 2y
= Th ) Hh("’“’”ﬁ”(”“* T mﬂm ) b 1, 1) (17)

By v1rtue of the symmetry of SV with respect to AB it is sufficient to consider the case
h(2E, 2B) = 0. Then

. & (M", M%)

M= S "2 " 7 (A 5Yh 18
weer S0 m|=|1 (s ®) B (A, ), (18)
_ Ao A
M2h=—g(—z——kc)l|h(7»z,%m°)h( h®, ). (19)

h(?\,z 77"11

m=1

for h(13, AB) = 0 we have
R(A%, %) =—1/8(0°% M%), g(M?, M) =—1/R(ME, AF).
Substituting these expressions in (19), we obtain
N
g (Afhcv }‘413) h’ (}\'va }‘423)

My (—1)~ .
w= (1) B AE) =T 8 (e M)

(20)

Comparing (18) and (20), we see that M, is proportional to M,y and, therefore, dety My = 0
for h(A3y, AB) 0, i.e., S{ does not have poles at the points A(A?®, A:®)=0.
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Thus, we have shown that off = Sff and we have thus obtained an explicit expression for

the form factor Fy (Egs. (15) and (16)).

In conclusion we make a number of remarks that make it possible to generalize our
results to the XXZ model. TIn the XXZ model, the R matrix also has the form (2), but the
functions f(A, u) and g(A, p) are different:

_ sh (A—p+2in) _ isin2q
f(K,M)~—-“EEI}:j;§“~, g(k’u)__1ﬁ;CC:;5’

where cos 2n = A is the anisotrepy parameter. The properties of the functions f and g in
the XXZ model are analogous to those of the same functions in the model of the nonlinear

Schrdédinger equation:
1) g(h, w)=—g(p, 1);
2) f and g have simple poles at A = y;
3) £ and g are rational functions of e) and eM;
4) as A—>oo g(h, p)~1/ek f(h, u)~1.

With allowance for these properties, the proofs of the expressions for the scalar
product and form factor given in this paper can be applied almost unchanged to the XXZ
model. In particular, the representations for Sy (10) and Fy (15), (16) remain valid.
In our view the obtained expressions are convenient for the passage to the thermodynamic
limit and may be helpful in the investigation of the correlation functions.

I should like to thank V. E. Korepin for helpful discussions.
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