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FURRY THEOREM FOR NON-ABELIAN GAUGE LAGRANGIANS
N.V. Smolyakov
It is shown that in a gauge-invariant Lagrangian (without v° anomalies) based on an
irreducible representation of simple compact Lie algebras it is always possible to
define an operation of C parity with respect to which the Lagrangian is invariant.

This imposes certain requirements on the algebraic structure of the vertex functions.

1. 1Introduction

In non-Abelian gauge theories, the question of the algebraic structure of the vertex functions fre-
quently arises. For such an analysis, the most common procedure is to use the Ward—Slavnov identities [1-3]
for the generating functional of the Green’'s functions. The analysis is most readily performed if the Ward
identities are expressed in terms of single-particle~irreducible vertex Green’s functions [4]. In [5, 6], it is
shown that in the loop approximation the Ward identities determine gauge invariance of the generating
functional of the vertex Green’s functions with respect to a certain Lie group which is isomorphic in the
general case to the original group. And it is only if consideration is restricted to the divergent parts of the
corresponding functions, whose explicit form in the momenta we know, it is possible to show, on the basis
of the Ward identities, that the divergent parts (i.e., the counterterms needed to eliminate the divergences)
have the same algebraic and Lorentz structure as the corresponding terms in the Lagrangian [7]. Strictly
speaking, the renormalizability of gauge theories is based on this last fact.

On the other hand, the study of the properties of charmoenium in quantum chromodynamics @QCD)
has led naturally to the concept of the C parity of charmonium. Under the assumption that the strong
interactions are described by QCD, one can define the operation of C conjugation of a gluon. The Lagrangian
of QCD is invariant with respect to this operation of C conjugation of quarks and gluons. The coloriess
states of gluons have C parity equal to +1 or —1, This immediately enables one to say how many gluons
can result from the decay of a particular charmonium state [8, 9] or identify the channel through which
particles with hidden charm are produced in hadron~hadron collisions {10].

1t should be noted that C invariance in @CD leads to consequences different from those of the C
invariance in electrodynamics, and the automatic transfer of results of electrodynamics to QCD leads to an
incorrect answer [11],

In the present paper, it is shown that an analogous operation of C conjugation can be defined for
any gauge-invariant Lagrangian based on an irreducible representation of a simple compact Lie group. It
follows from the invariance of the Lagrangian with respect to a global group transformation that the algebraic
structures which occur in the vertex functions must be invariant with respect to the corresponding trans-
formations, It follows from the invariance of the Lagrangian with respect to the C parity that the correspon-
ding vertex function must also be C even. This last condition makes it possible to determine a class of
algebraic structures that certainly will not appear in the vertex functions. In particular, the total three-gluon
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vertex function and the total vertex for the interaction of the Faddeev—Popov ghosts with a gluon are propor-
tional to the structure constants of the given Lie algebra.

The paper is arranged as follows. In Sec.2, we formulate the operation of C parity for gauge-
invariant Lagrangians without 75 anomalies, In Sec.3, we prove the existence of the operation, In Sec.4,
we show that the total three-gluon vertex is necessarily proportional to the structure constants of the given
Lie algebra.

2. C Parity

Let 1, be the basis of a real simple compact Lie algebra L:

{ Tay 'rb} =i}c abeTe-

Summation is understood throughout the paper over repeated indices. We assume that the 7, are chosen
such that the tensor f.. is completely antisymmetric.

Let 7, = 7{7,) be an irreducible representation of L. For simplicity, we assume that the = are
Hermitian, Then [n,, m] =ifut.. The matrices fiL,=—mn also form an irreducible representation of
L: {ﬁm ﬁb} zi.fabcﬁc-

In Sec.3, it will be shown that there exist matrices U and A such that

Ut U=Aum, (1)

with the properties

1} U+U”—=1; Aqb*"—‘Ag{,; ATA=1,

2) AcarAsprBeerfortrer=fave; .

3} the explicit form of A does not depend on the choice of the representation W(Ta) and is determined
solely by the algebra 1

4) suppose 9% --! has an odd number of indices @, b,..., ], is completely symmetric with respect
to them, and is invariant with respect to the adjoint representation:

Fan®® L fug? - h=0
fi.e., ¢ ',1:...1: is a Casimir operator in the universal covering algebra of the algebra L), Then
oAy o Ay -+ V=gt L
5} A is not a multiple of the unit matrix.

We consider the operation of C conjugation taking the example of the Lagrangian of gauge and spinor
fields:

. . _ 1 1
L=1Y: (3,8 ap—ig o " Y Of—mp st~ 4 e o (8*a,°)*+Lrp (T, %, @),

where «, B, ¢ are the indices of the group symmetry, i and j are the spinor Lorentz indices, and Lg, is
the Lagrangian of the ghosts. Tt is readily verified that by virtue of (1) the Lagrangian remains invariant
under the C conjugation operation

(iuu:Aabauby @ia=Uﬂa+Cﬁiﬁjﬁy Eia=U (zﬁCiﬂpjﬂ, 'X:'=AabXb, 7:(;=A¢1,Xb, C ='Y°’Yz, (2)
f.e.. 5
LB, b % ) =L, $, 7 % ). (3)

Cbviously, the Lagrangian of gauge and scalar fields has the same invariance. Spontaneous breaking of the
symmetry does not break the C invariance if (@>*={Dudo; Uus{Dp?y={(Do>,. It is clear that such an operation
applies not only to gauge Lagrangians but also to a number of Lagrangians possessing only a global internal
syminetiry.

. The invariance of the Lagrangian (3) with respect to the C conjugation (2) means that the total
vertex n-gluon functions must satisfy the conditions

BB ab..k
fiakrm...:_*” e + fichFuv.,_g == O, (4)
a's'...ef ' ab...c
AuaBoy o A Tonn =T, (5)
where a, b,..., ¢ are group indices and u, v, ..., # Lorentz indices. Similar relations can be written down
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for the vertices with spinors.

The conditions (4) and (5) make it possible to identify the algebraic structures that will occur in the
vertex functions.

3. Construction and Properties of the Matrices A, and U

Let L be a real simple compact Lie algebra, and L, be the complex extension of L. Let e, h;
be a Cartan~Weyl basis in L_, h_  be the corresponding nonzero roots, h; be the simple roots, and H be
the Cartan subalgebra in LC, h € H. Then

[hv ea] = (hv ha) €uy [Ba, e—al =—‘hay [ell, B‘;] =NG, 8€a+By (em e—m) =—'1; Nu B=N-‘\2, -y (6)

where (x.y) is the Killing form. Let 8 be the involution defined by the real form L of the algebra L.
Then in L_ there exists a Cartan—Weyl basis [12] such that

0(es) =€wa; 0(ha) =—h,. (7)
We shall work in this basis.

We define an automorphism L, - L_ by the relations

bi=—h;, &.=e_q. (8)
Then €, i, satisfy the relations (6). Let 7, be a basis in L such that fu. is completely antisymmetric.
We have
0(1t.) =1.. (9)
Suppose
Tangfhé+Baaeu; hi=Bi¢—‘Tn; ea::Bu,a_lTa,; ?aEBm‘%i.i—BaaEa. (10)
1t follows from (6)-(10) that
1 -
_i“{fa, ?b]=fabc?¢, e (’fa) =?a=>'fa6L, Aab = _BaiBib_’+BaaB—l:by Ta:Aabqu (11)

since A, *=A,, because T, T.6L. It follows from (11) by virtue of the fact that the Killing form fayfui~0. that
‘4aa'Abb'A(c’fa'b'c‘zfabcy A[/lT::l-

Property 4 is obtained from the following. Let ¢* - -°t....7. be a Casimir operator. We consider
its restriction to the Cartan subalgebra, i.e., we express 7, in terms of h;, e,, and then set e, =0, Then
under the automorphism (8) this restriction changes sign. But by Chevalley’s theorem [13] there is a one-to-
one correspondence between Casimir operators and their restrictions to the Cartan subalgebra, from which
Property 4 follows.

From (8) we also have A # A-1. Let w(7,) be an irreducible representation of L. By linearity,
we construct m(h;), m(e_ ), an irreducible representation of L,. It is readily verified that the matrices
7/ (h)=n"(h:), n'(ea}=—n"(e_,) also form a representation of L,.

The character of the representation determines the representation itself uniquely up to equivalence,
The character itself is uniquely determined by its restriction to the universal covering of the Cartan sub-
algebra [12]. It is obvious that these restrictions of the representations = and 7" are the same. Therefore,
there exists a matrix V such that

a(x)=V-'n'(2)V, z€L.. 12)
It is easy to show that there exists a number % such that
U=xV, Ur=U-' (13)
From (12) and (13), we obtain Aun(7.)=U*7(1.)U.

By virtue of the relation

einbﬁbﬂae—mb@uz (eréy,> acnc,

where (F,)e=fue it is readily seen that the matrices U'=Ue™%, A’=Ae ™" also satisfy the relation (1) and
have the properties 1-4. If some algebraic tensor invariant with respect to the adjoint representation has
definite transformation properties under the action of the matrix A, then it has the same transformation
properties under the matrix A", Therefore, in a number of cases it is convenient to use the matrices U’ and
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A" rather than the matrices U and A obtained above. In particular, if = , is the fundamental representation
of SU(n) then the "angles"” 6, can always be chosen such that U’ = 1. In such a case, the relation (1) takes
the form —n."=A4,"m, which means that we can write down the matrix A’ab directly without recourse to the
Cartan~Weyl basis.

4. Algebraic Structure of Three-Gluon Vertices

The tensor 9. at the three-gluon vertex must satisfy the relations
fiarPuset fivaParet ficnParn=0, (14)
Aaa'Abb'Acc’q)a'b'c’=cpabc- (15)

A tensor 9Ya. that satisfies (14) and is antisymmetric with respect to at least one pair of indices is necessarily
proportional to fe. (see the Appendix). A completely symmetric ¢u. satisfying (14) cannot satisfy (15),

since Qu.TT:7. is a Casimir operator. Only one possibility remains: Quc~fue. Obviously, the same is true

for the vertex of the interaction of the ghosts with the gauge field.

I thank B. A. Arbuzov, M. V. Savel'ev, V. V. Khrushchov, and S. R. Slabospitskii for fruitful
discussions and helpful advice.
Appendix

We show that a tensor ¢, satisfying (14) and antisymmetric with respect to two indices (say, the
first-and the second} is proportional to fu.. We denote (0u)se=Que; (Fo)oe=fre. We rewrite (14) in the form

Fo®y— OoFo=fai0s, (18)
Fo®y—Fo O0=qusiFe. 17

From (16} we readily conclude that
FyOpF o= — —;—F@b, (18)

where SpF.F,=-Fé, From {(16)-(18),
FoF @y~ F o OF s=fuyiFa®i="/ofas@aisl's;  F®u=fui@iinFr. 19)

By virtue of (14), the matrix Aw=fugw commutes with F,. Since the algebra is simple, Aw~8s. Indeed, A,
is the sum of a symmetric and an antisymmetric matrix, each of which commutes with F,. The symmetric
matrix is a multiple of the identity, and it can be shown that the antisymmetric matrix belongs to the center
of the adjoint representation of the algebra, But the center of a simple algebra is equal to zero. It follows
from this and (19) that &, ~ F,.

LITERATURE CITED

A, A, Slavnov, Teor. Mat. Fiz., 10, 153 (1972).

J. G. Taylor, Nucl. Phys. B, 33, 4236 (1971),

B. W. Lee and J. Zinn-Justin, Phys. Rev. D, 5 2121 (1972),

B. W. Lee, Phys. Lett, B, 46, 214 (197%),

M. Tonin, Lett. Nuovo Cimento, 9, 541 (1974).

G Costa and M. Tonin, Riv. Nuovo Cimento, 5 29 (1975).

B. W. Lee, Phys. Rev. D, 9, 922 (1974).

A. 1. Vainshtein. M. B, Voloshin, V. 1. Zakharov, V. A. Novikov, L. B, Okun’, and M, A. Shifman,

Usp. Fiz. Nauk, 128 217 (1977).

9. M. B. Einhorn and 8. D. Ellis, Phys. Rev. D, 12, 2007 (1975).

10. V. G, Kartvelishvili, A, K. Likhoded, and 8. R. Slabospitskii, Yad. Fiz., 28, 1315 (1978).

11. B. Humpert, "Photoproduction of charmonium in a gluon-exchange model," Preprint SLAC-PUB-2005,
Stanford, California (1977).

12. M. A. Naimark, Theory of Group Representations [in Russian], Nauka, Moscow (1976).

i2. D, P. Zhelobenko, Compact Lie Groups and Their Representations [in Russian], Nauka, Moscow (1970).

W =3 D U oUW D) =

228



