
THE I/N EXPANSION IN THE O(N) • O(N) SCALAR THEORY 

AND THE PROBLEM OF THE RESTORATION OF SYMMETRY 

AT HIGH TEMPERATURES 

K. G. Klimenko 

The possibility of restoration of symmetry in the model (i) in spaces 
of dimensions d = 3 and 4 at high temperatures is investigated in the 
framework of the I/N expansion. In the case d = 4 spontaneous symmetry 
breaking does not occur at T = 0, and the problem remains open. In 
the case d = 3, the symmetry spontaneously broken at T = 0 is 
necessarily restored in the limit T + ~. 

I. Introduction 

It is only comparatively recently that quantum theories of fields in contact with a 
thermal reservoir at temperature T began to be studied. The first work in this direction 
was the paper of Kirzhnitz and Linde [i]. Almost at once Weinberg [2] noted that the 
O(N) x O(N) scalar field theory had a behavior at large T unusual from the point of view 
of quantum-mechanical statistics. The Lagrangian of this theory has the form (spacetime 
is Euclidean) 

gij 
(~, ' -N?,)-~(~j -N?j), ( 1 ) 2 

z~3 

where i,]=1,2, ~ is the i-th N-dimensional vector, each component of which is a real scalar 
field, gij is a real symmetric matrix of coupling constants, and Yi are mass parameters. 
Weinberg found the corrections to the effective potential of the model (i) in accordance 
with the usual perturbation theory and showed that one can find values of the coupling 
constants for which the spontaneously broken O(N) • O(N) symmetry will not be restored 
at any arbitrarily high temperature (the Weinberg effect). The Weinberg effect was used 
by various authors in their physical theories. For example, in [3] it was the basis of 
an explanation of the baryon-antibaryon asymmetry of the universe, in [4] it was used to 
construct a mechanism to suppress the production of superheavy monopoles, etc. 

Of course, the Weinberg effect confounds our physical intuition, according to which 
a spontaneously broken symmetry must be restored at sufficiently high T. It was therefore 
suggested by Fujimoto et al. [5,6] that the symmetry in models of the type (i) is not 
restored only because ordinary perturbation theory with respect to the coupling constants 
is used. But if one works in the framework of some nonperturbative method, the Weinberg 
effect should be absent and the O(N) • O(N) symmetry restored as T § ~. 

The authors of [5,6] used the I/N method. In the leading order in I/N they considered 
equations of Dyson-Schwinger type for the squares of the particle masses and showed that 
at sufficiently high T the equations have positive solutions. This means that the 
point ~=0 is a stable, in general local, minimum of the potential as T § ~. On this 
basis, Fujimoto et al. concluded that in the leading order in I/N in the model (i)the 
original symmetry is necessarily restored in spacetime of dimensions d = 3 and 4. 

There are at least two reasons why these results are not fully established and are 
taken with a large measure of skepticism. They are: a) Fujimoto et al. themselves 
recognize that the method of the Dyson-Schwinger equations can be used to investigate the 
properties of the effective potential only at the origin. In [5,6] there is no proof of 
the absence of a deeper absolute minimum of Vef f away from the origin. In our view, it is 
necessary to investigate in the leading order in I/N the entire effective potential and show 
that in the limit T + ~ the point ~=0 is not only a local but also a global minimum of it; 

Institute of High Energy Physics, Serpukhov. Translated from Teoreticheskaya i Mate- 
maticheskaya Fizika, Vol. 80, No. 3, pp. 363-371, September, 1989. Original article sub- 
mitted October 13, 1987. 

0040-5779/89/8003-0929512.50 �9 1990 Plenum Publishing Corporation 929 



b) Fujimoto et al. implicitly assume that at T = 0 the initial symmetry can be spontaneously 
broken in the model (i) in the leading order of the I/N expansion. But this property 
should first be verified, so that one can then conclude there is restoration of the original 
symmetry. 

The existence of such a property for the model (i) cannot be accepted as an article 
of faith, it must be proved, since even in the four-dimensional O(N) model with one vector 
multiplet of scalars the original symmetry cannot be spontaneously broken in the leading 
order in I/N [7]. 

The aim of this paper is to reexamine in the framework of the I/N method the problem 
of restoration of symmetry in the model (i) at high T with allowance for remarks a) and b). 
We shall investigate the theory in spaces of dimensions d = 3 and 4. The method that we 
use is based on examination of the properties of the effective potential in the leading 
order of the I/N expansion. In particular, particular attention is devoted to the case 
T = 0. 

In Sec. 2 we consider the model (i) for d = 4 and T = 0. We show that in the leading 
order in I/N spontaneous symmetry breaking does not occur. Therefore, one Cannot speak of 
restoration of the original symmetry at high T. In the case d = 3 (Sec. 3) the situation 
is quite different in the leading order of the I/N expansion. At T = 0, the O(N) • O(N) 
symmetry can be spontaneously broken, and in the limit T § ~ the symmetry is restored. 
Thus, the assertion of Fujimoto et al. that there is no Weinberg effect in the model (i) 
is proved by the I/N method only for the case d = 3. In the case d = 4 it is necessary to 
use other nonperturbative methods. 

2. The Model (i) in Four Dimensions 

In this section, we consider the model (i) in the leading order of the I/N expansion 
in Euclidean space of dimension 4 at zero temperature. For this, it is convenient to 
introduce O(N)-singlet fields el(X) (i = i, 2), in terms of which the Lagrangian of the 
model takes the form 

L~ y ' ,  I 2 / N Z ~ k ~ o j  ' (2) 

where the matrix Xij is the inverse of the matrix gij" By virtue of the O(N) • O(N) 
invariance of the theory it can be assumed that the first N -- 1 components of each multi- 
plet have vanishing vacuum expectation values, i.e., we can assume <~=>=0 (e<N). We 

introduce the notation ~i=(x)=~i~(x) (~<N), ~i~(x)=~(x)YN~. Since we are mainly interested 
in the phase structure of the model, we preclude from consideration the fields v~. For 
this, we go over from the action determined by the Lagrangian L o to a new action Sef f in 
accordance with the following procedure. In the generating functional of the Green's 
functions of the fields ~i(x) we integrate over the fields ~(x). We obtain 

Z (J) = 'Do, De, exp {-NS~. (o, ~) +J~} ,  

where in the limit N ~ 

So~(~, ~) = ~ d~x a.~ a ~  + -~  ~ (~  - ~ )  } -  ~k~o~ 2 
�9 f , j  

(3) 

in which [] is the Laplacian in four-dimensional Euclidean space. The action (3) is the 
effective action of the original model in the leading order in I/N (if necessary, the 
auxiliary fields can be eliminated from (3) by means of the equations of motion). In the 
case when all the fields are constant, we can obtain from (3) the effective potential in the 

leading order of the I/N expansion in accordance with the formula Se~= Id'xV. Here 

where d = 4. The expressions (3)-(4) contain ultraviolet divergences when expressed in 
terms of bare quantities. They can be eliminated by means of the following renormalization 
procedure (we use dimensional regularization, D = 4 -- ~, with M the normalization point): 
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d'k i 
~.(M)-M~-D~.=4M ~-" ~I (2:0d~kD . . . . . . . .  fk2+M~l-~ ?~'(M)-M-2?~=-M~ ~ (2tO" k2, ~ 2 = ~ 2 ,  

where I r and Yr are the renormalized parameters. The vacuum expectation values of the 
fields o i and ~ (<o~>~-m~ 2, <~>------Oi) satisfy the stationarity equations aV/Oo~=OV/O~=O 
(i, j= l ,  2): 

m 2 m 2 
"~ In "~ = 4%lM2+m12~il+m22~--4Oi 2, 
4 ~  MS " (5)  

/ /~z  / n 2  
2 1 2 4 M S +  2 ~ 2 4a---~ n M--- F- = ]~2 ml ~r22+mt ~12--4(I)2 , m,O,=m~O~=O. 

The system of equations (5) has solutions of three types: A) ~z,2 ~ 0, ml, 2 = -; B) ~i ~ 
0, m z = 0, ~2 = 0, m 2 ~ 0; C) ~ 207N0,_~ ~ml 2• ~ 0. They correspond to the following 
symmetry groups of the theory: A~ )' O(N -- i), B) O(N -- i) x O(N), C) O(N) x 
O(N). 

We now show that the physical vacuum of the theory cannot be a state for which the 
expectation values of the fields o and ~ are solutions of Eqs. (5) of types A or B. This 
means that the original symmetry of the model (I) cannot be spontaneously broken in the 
leading order of the I/N expansion. To this end, we shall use the following necessary 
condition for a certain state to be a vacuum of a theory, namely, in such a theory there 
must not be tachyons, i.e., particles with negative square of the mass. Therefore, the 
two-point Green's functions of the fields o and ~, constructed over the physical vacuum, 
must not have singularities for p2 ~ 0 (the momenta are Euclidean). 

In practice, we shall not deal with the Green's functions themselves but only with the 
single-particle-irreducible (IPI) Green's functions Fo~, which form a matrix F that is the 
inverse of the matrix of two-point Green's functions. In order to construct Fo~ over a 
state that is supposed to play the part of the vacuum, it is sufficient to find 62Seff/~o5~ 
on the corresponding solution of the system (5), i.e., for o i = m~, Oi = ~i" It is easy 
to obtain in the momentum Euclidean space the following nonvanishing IPI Green's functions 
in the leading order of the I/N expansion: 

r~ ~=-~4~,,-~/2B(p, m~), r,~,~ =p~+m~ ~, r~o~=Fo~=-~/~,~,  F, ~=Fo~  ,~=0~.  (6 )  

The remaining elements of the matrix F are zero. In Eqs. (6), 

B(p, m)= [ d'k [ (k~+m~) [(p+k)~+m~ ) ]_~. 
( 2 t O '  

In terms of the renormalized quantities, the matrix element F0~ ~ has the form 

[ V 4m~ []/P2+4m(2--P]] 
)~,  1 In (e~M~/m~ ~) + 1 + -pZ In ? ~ + P  8 I'~ ~~ 9 8 32.a z . . . .  A,(p,m~). (7) 

I m p o s s i b i l i t y  o f  an O(N -- 1) x O(N -- l )  P h a s e .  Suppose  t h a t  as  vacuum in  t h e  model  
(i) we have a state for which the vacuum expectation value of the fields o, ~ is a solution 
of type A of Eqs. (5), i.e., suppose 

<o~>=m?=O, <~>=O~=]/'b~M ~, 7~>0. 

This state is invariant with respect to 0(N -- I) • O(N -- i). 

Substituting these values for m i and ~j in Eqs. (6)-(7), we can obtain the matrix F of 
the IPI Green's functions. It is obvious that the elements of the matrix that is the 
inverse of F, i.e., the ordinary Green's functions of the fields o and ~, will be propor- 
tional to (det F) -~, which in our case has the form 

64 det I' --- [A, (p, 0)-{ p~ 
p~ 

We can  r e a d i l y  o b t a i n  Ai (  p ,  0) f rom ( 7 ) :  

1 
A~(p, 0) = Z~. + ~ ] n  (eM/p). (9) 

I t  can  be s e e n  f rom (8 )  t h a t  f o r  a l l  a d m i s s i b l e  v a l u e s  o f  t h e  p a r a m e t e r s  d e t  i" mus t  
n e c e s s a r i l y  v a n i s h  a t  a t  l e a s t  one p o i n t  P0 > 0. T h i s  means t h a t  t h e  t h e o r y  w i t h  such  a 
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vacuum is unphysical, since it will contain tachyons. 
O(N -- i) x O(N - i) invariant. 

Impossibility of an O(N -- I) x O(N) Phase. We show that the vacuum of the theory 
cannot be O(N -- I) • O(N) invariant. Suppose otherwise. Then the vacuum expectation 
values of the fields must be solutions of type B of Eqs. (5). Then 

mZ 

d 

and m 2 satisfies the equation 

Thus, the physical vacuum cannot be 

(10) 

m2 2 

- - .  In (m~lM ~) =4?,~M~+m2~r ( 11 ) 

Substituting the parameters m i and Cj from (i0)-(ii) in Eqs. (6)-(7), we find the matrix 
of IPI Green's functions, the determinant of which has the form 

p2(p,,+m22) detr=A~(p, mO +A~(p,O) -~.~2-----C(p), (12) 

where the functions A are given in (7) and (9). The expression in the square brackets on 
the right-hand side of (12) necessarily vanishes at some point P0 > 0, where C(p0) = 
(--i)~122 . It follows from the form of the functions A that in the limit p § ~ the function 
C(p) + ~. Therefore, in the interval (P0, ~) there exists a point Pl at which C(pl) = 0. 
At this point, the two-point Green's functions will be singular, and this corresponds to 
a tachyon instability of the theory with the chosen vacuum. Thus, the original assumption 
is false, and in the model (i) the vacuum cannot be O(N -- i) • O(N) symmetric. 

Thus, we have shown that at T = 0 in the four-dimensional model (i) in the leading 
order of the I/N expansion spontaneous breaking of the original symmetry does not occur.* 
The conclusions drawn in [5] about the restoration of the original symmetry at high T are 
incorrect because O(N) • O(N) cannot be spontaneously broken at T = 0 (moreover, we believe 
that spontaneous symmetry breaking cannot occur at any values of T in the leading order in 
I/N in the model (i) for d = 4). Therefore, in order to prove in four-dimensional space 
the assertion of Fujimoto et al. -- that the Weinberg effect is absent -- it is necessary 
to use nonperturbative methods different from the I/N method. 

3. The Model (I) in Three Dimensions 

In three-dimensional spacetime, in contrast to four dimensions, the original symmetry 
can be spontaneously broken in the leading order in I/N in the model (i). Since this 
result was obtained in [8], we shall not here analyze in detail the case T = 0 but merely 
give the most important information about this model that is needed after a nonzero tempera- 
ture is assumed. 

The Case T = 0. The effective potential of the model (i) in the leading order of the 
I/N expansion has the form (4) for d = 3. In three dimensions, the bare parameters 7i are, 
in general, divergent quantities. However, if dimensional regularization is used, ~i will 
be finite. Therefore, we shall not here introduce renormalized parameters. From (4) for 
d = 3 we can obtain 

1 1 t ~ / .  
V ( o , , )  = - - -  ~ . o ~ o ~  + ~ {o~ (,~z--~) (13) 

7,J i 

Not all values of the coupling constants in (13) are allowed physically. We obtain con- 
ditions on Xij by using the requirement that the potential be bounded below. To find the 
effective potential v(~), which depends only on the fields ~i, we must eliminate from (13) 
the auxiliary fields o i by means of the equations 8v/Sa i = 0: 

%~01+%302+4 (]~--~2) + (t/~) ~oi=O, %202+%30t+4 (]2--~22) + (1/~) ~02=0, ( 1 4 )  

where Xii ~ Xi, ll2 ~ X3" Solving these equations for o i and substituting them in (13), 
we can find the potential v(~). Let us see if v(~) is bounded below. Let @~ take fairly 
large values. Then in (14) we can ignore the terms ~i and r The resulting equations 

*One can show [8] that the vacuum in the model (I) for d = 4 is an O(N) x O(N)-invariant 
state. In this case the theory contains no tachyons. 
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can be solved: 

where h = t l t  2 -- t ~ .  
we have 

~,(r -~ ,= ), o~(r X- ( ,r -~r  ) 

Substituting (15) in (13) and retaining only the terms of order O, 

( 1 5 )  

The expression (16) is positive definite if and only if (this is equivalent to the complete 
v(~) being bounded below) 

~--!~ > 0, ~ z > 0 ,  ~ sign (A) <u (17) 
A A 

(for more details about the conditions for various Higgs potentials to be bounded below, 
see [9]). The stationarity points of the potential v(~) satisfy the equations 

, ~  (,) = r  (,) = o ,  ( 1 8 )  

which are derived from the relation 
g 

Ov = ~ O V  0 ~ +  OV 

with allowance for the fact that 8V/8o k = 0. Equations (18) also have three types of 
solutions, A, B, and C, which correspond to O(N -- I) x O(N -- I), O(N -- I) x O(N), and 
O(N) x O(N) invariance groups of the vacuum of the model (see the previous section). 

Suppose the coupling constants belong to the set (17). It was shown in [8] that 
within this set a global minimum of the potential v(,) can be an extremal point of the 
type A, B, or C depending on the values of the coupling constants. Thus, in the leading 
order of the I/N expansion at T = 0 in three dimensions spontaneous breaking of the original 
symmetry can occur in the model (i). 

The Case T ~ 0. If in the model (i) for d = 3 we take into account temperature on the 
basis of the single-loop approximation then we can show that for certain admissible values 
of the coupling constants the symmetry cannot be restored as T + ~ [6], i.e., the Weinberg 
effect is present in the three-dimensional version of the model (i). We shall now show that 
in the framework of the I/N expansion the Weinberg effect is absent. 

To take into account the influence of temperature on the model, we shall use the 
imaginary-time formalism. For this, the measure of integration in the Euclidean momentum 
space must be modified as follows: 

S da k d2k 
r . . . .  ) ( 1 9 )  

n 

where n = 0, • • .... Applying the rule (19) to the expression (4) for d = 3, we 
obtain an auxiliary effective potential that depends on the temperature: 

V~ (< r = - T 6  ,.  z 
z,3 i 

Using in (20) the relation [i0] 

we reduce V T to the form 

r # k  2 2 "t ] - T g ~ l ,  (~,+k~+4,~ ~ r  )j'. (20) 
n 

E 
1n (E~+4naaaT 2) = -~- + 2 In (l--e-~/r), 

2 

Vr (o, ~) = V (o, ~P) + ~= --~a !dx ln ( i - e xp  (-- ll (li +x/ T) ) , (21) 

where V(~, 9) is the potential (13) for T = 0. Since we are interested in the behavior of 
the model at high T, we make in (21) a high-temperature expansion on the basis of the 
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formula [ii] 

o l, o,,. 0 ( 7 )  
~g o 8 " 

Substituting (22) in (21) and omitting the terms of the form O(o/T) and const'T s (the last 
expression does not depend on the fields), we obtain 

1 2 {  o 2 T I 2 o,~,,~oj q_ _~ - , (,, --]~-)---~- o~[ln (o,/T)--I ] ~. (23) v �9 (o, , )  = - T6  ,,~ 

To find the effective potential vT(~), which depends only on the fields ~i, we eliminate 
the fields o i from (23) by means of the equations 8vT/8oi = 0: 

i 
= o ,  = ( 2 4 )  

where 

T((~,) 
l,(o,,r + 4 ( r  ( 2 5 )  .~ - - f f  

The point of the absolute minimum of the potential vT(~) satisfies the equations 

which can be derived in the same way as (18). 

Equations (26) have the trivial solution ~1,2 = 0. It corresponds to the fact that 
at high T the ground state of the O(N) • O(N) model is symmetric. It is readily seen that 
the system (26) does not have other solutions. For otherwise the stationarity equations 
would have solutions of the form A: oi.2(*)=0, %61.2~0, or B: ,~0, oi(*)=0, o2(~)~0, *2=0. 
However, it follows from (24)-(25) that o i cannot vanish for any fixed values of the fields 
in the interval (0, ~) and of the coupling constants in the set (17). 

Thus, the global minimum of the potential vT(~) at sufficiently large T can only be 
O(N) x O(N) symmetric. Therefore, the original symmetry is necessarily restored in the 
three-dimensional model (i) in the framework of the I/N expansion. 

26) 

4. Conclusions 

This paper has been devoted to the problem of the restoration of symmetry with 
increasing temperature in the field-theory model (1) (in other field theories with several 
multiplets of scalars this problem is also present). The point is that in the model (i) 
there exists a set of coupling constants such that [2]: l) at T = 0 spontaneous breaking 
of the O(N) x O(N) symmetry occurs; 2) at arbitrarily high T restoration of the original 
symmetry does not occur. To draw this conclusion, Weinberg used the single-loop approxi- 
mation to find the effective potential of the model. 

However, it is believed that the model (1) does not in fact have such a property and 
that it is an artefact of using ordinary perturbation theory with respect to the coupling 
constants. But if certain nonperturbative methods of calculation are used, the symmetry 
is necessarily restored (Fujimoto et al. [5,6]). 

To test this suggestion, we have used the I/N expansion and shown that: l) in the 
three-dimensional field theory (1) the symmetry spontaneously broken at T = 0 is restored 
at sufficiently high T; 2) for the investigation of the problem in the four-dimensional 
model (i) the I/N method is not suitable, since even in the case T = 0 in the leading order 
in i/N spontaneous symmetry breaking does not occur in the theory. 

The four-dimensional model (1) was recently investigated [12] by the nonperturbative 
method of a Gaussian effective potential, which does Dot have the shortcomings of the I/N 
expansion. Results that confirm the conclusion of Fujimoto et al. about the restoration 
of symmetry were obtained. In view of this, we believe that the high-temperature behavior 
in the model (i) obtained by Weinberg is an artefact of ordinary perturbation theory and 
in reality the symmetry is restored in the limit T ~ ~. 
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BEHAVIOR OF MASSLESS FEYNMAN INTEGRALS NEAR SINGULAR POINTS 

A. I. Zaslavskii 

For a certain class of massless Feynman amplitudes without internal 
vertices, including single-loop integrals, it is shown that on the 
leading Landau surface these integrals have singularities of only the 
type of a pole, square root, or logarithm; the corresponding critical 
points (in the sense of the theory of singularities of differentiable 
mappings) are simple. Diagrams with nonisolated critical points are 
considered. The question of the possibility of identity of the leading 
Landau surfaces for the graph and its subgraphs and factor graphs is 
investigated. 

The aim of this paper is to attempt to generalize to massless integrals the well-known 
result on the behavior of massive amplitudes on the Landau surfaces, namely, they have 
there a branch point of the type of a square root or a logarithm. This aim is achieved 
only partly, and the obtained result encompasses only purely massless diagrams, which are 
here called simple (definition in Sec. 3). They include all single-loop diagrams. 

The methods of investigation are largely from the theory of the singularities of 
differentiable mappings. The standard arguments lead to the investigation of the critical 
points of the projection of the set of singularities of the integrand onto the space of the 
external momenta. One of the main results shows that for simple diagrams these critical 
points are simple (a simple pinch in a different terminology). After this the Picard- 
Lefschetz theorem makes it possible to obtain the necessary information about the branch 
points of the amplitude. This is done in Sec. 3, where, using the theory of holonomic 
systems of pseudodifferential equations, we obtain a more accurate formula that takes into 
account the growth near the Landau surface. In Sec. 2 we obtain the results we need about 
the possible coincidence of two Landau surfaces of one graph. It can be shown that for 
diagrams without internal vertices in the purely massive and purely massless cases without 
multiple lines this is impossible; we also establish the importance of the conditions. 
In Sec. 4 we study some examples of isolated critical points; they are encountered in 
diagrams with multiple lines, and also on ~ = 0 Landau surfaces. We also make some comments 
about diagrams with internal vertices. In Sec. 1 we give the notation and mention some 
known results. 

I thank V. A. Smirnov for stimulating discussions. 

i. Let F be a purely external (unless stated otherwise) Feynman diagram with set of 
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