
considered by Dobrushin and Tirozzi [4] in the case of many-particle potentials with 
infinite interaction range. 
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"HIDDEN SYMMETRY" OF ASKEY-WILSON POLYNOMIALS 

A. S. Zhedanov 

A new q-commutator Lie algebra with three generators, AW(3), is con- 
sidered, and its finite-dimensional representations are investigated. 
The overlap functions between the two dual bases in th~s algebra are 
expressed in terms of Askey-Wilson polynomials of general form of 
a discrete argument: To the four parameters of the polynomials there 
correspond four independent structure parameters of the algebra. 
Special and degenerate cases of the algebra AW(3) that generate all 
the classical polynomials of discrete arguments -- Racah, Hahn, etc. 
- -  are considered. Examples of realization of the algebra AW(3) in 
terms of the generators of the quantum algebras of SU(2) and the 
q-oscillator are given. It is conjectured that the algebra AW(3) is 
a dynamical symmetry algebra in allproblems in which q-polynomials 
arise as eigenfunctions. 

Introduction 

In [1,2], Askey and Wilson constructed a remarkable system of orthogonal polynomials. 
In many respects, they can be regarded as the "most general" classical polynomials. 
Indeed, they possess all the properties of classical orthogonal polynomials, namely, they 
can be explicitly expressed in terms of a generalized hypergeometric function, the weight 
function and coefficients of a three-term recursion relation for them are known, etc. In 
addition, by limiting processes one can obtain from the Askey-Wilson polynomials all the 
classical polynomials of both discrete and continuous argument: Racah, Hahn, Jacobi, 
etc. 

In view of the numerous remarkable properties of the Askey-Wilson polynomials, attempts 
were made to interpret these polynomials from a group-theoretical or algebraic point of 
view after the manner that Vilenkin interpreted the special functions of mathematical 
physics [3]. 

We cannot here give any exhaustive survey of the large number of studies on this 
theme. We shall merely mention some of the most characteristic ones. 
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In the approach of the monograph [4], these polynomials arise as solution of the 
difference analog of the hypergeometric equation on nonuniform grids. Such an approach 
is convenient for the classification of these polynomials and the obtaining of a number 
of their characteristics, but it does not clarify their algebraic origin. 

It was found comparatively recently that the Askey-Wilson polynomials of special 
form are intimately related to representations of the so-called quantum groups, in 
particular, the group SUq(2) ([5,6] and numerous publications of other authors). Also 
interesting is the connedtion between these polynomials and the wave functions of the 
q-analog of the harmonic oscillator [7]. 

However, in all the listed cases only Askey-Wilson polynomials of special form with 
restrictions on the parameters are obtained. In addition, the mathematical formalism of 
the quantum groups cannot explain why the same polynomials arise in problems that at the 
first glance are Completely different. 

In the present paper, we propose a simple scheme that permits construction of Askey- 
Wilson polynomials of general form for arbitrary values of the parameters as overlap 
function of dual bases on a Lie algebra with three generators. 

In this sense, the present paper can be regarded as a development of [8-10], in 
which classical polynomials were constructed on the basis of ordinary Lie algebras. We 
note that [i0] contains first attempts to construct three-termrecursion relations for 
q-polynomials on the basis of Lie q-algebras; however, the resulting polynomials corre- 
spond only to some special cases of the Askey-Wilson polynomials. The representations 
of the new q-algebra, which we call the algebra AW(3) in honor of Askey and Wilson, makes 
it possible to explain the algebraic origin of polynomials of general form. In addition, 
the algebra AW(3) is also important by itself as a dynamical symmetry algebra in problems 
in which the Askey-Wilson polynomials arise as eigenfunctions (for example, in the 
approach of [4] these polynomials arise as eigenfunctions for a difference operator of 
second order; we show that this difference operator belongs to the algebra AW(3)). It 
is in this sense that we understand the expression "hidden synnmetry" in the title of the 
paper. 

This paper develops the approach proposed in the preprint [ii], in which the Askey- 
Wilson polynomials were generated by a biquadratic commutator algebra of a somewhat more 
cumbersome structure than the one proposed here. 

I. The Algebra AW(3) and Its Ladder Representation 

In this section, we describe the algebra that generates the Askey-Wilson polynomials 
and construct its ladder representation. 

Let K0, KI, K 2 be three operators that satisfy the commutation relations 

[Ko, K, ]~=K2, 

[K~, Ko]~=BKo+C,KI+D~, 

[K~, K2]~=BKI+CoKo+Do, 

where B, Co, Cz, Do, D x are the structure constants of the algebra, which we shall assume 
are real, and [...]m denotes the so-called q-commutator: 

[ L, M] ~=e~LM-e-~ML, ( i .  2) 

where  ~ i s  an a r b i t r a r y  r e a l  p a r a m e t e r .  

The c o n c e p t  o f  t h e  q - c o m m u t a t o r  was p r o p o s e d  in  [ 1 0 , 1 2 , 1 3 ] ,  a l t h o u g h  t h e  f i r s t  
examp le  o f  a q - c o m m u t a t o r  a l g e b r a  was c o n s i d e r e d  in  [ 1 4 ] .  We s h a l l  c a l l  t h e  a l g e b r a  w i t h  
t h e  c o m m u t a t i o n  r e l a t i o n s  ( 1 . 1 )  t h e  a l g e b r a  AW(3) ( i . e . ,  A s k e y - W i l s o n  a l g e b r a  w i t h  t h r e e  
g e n e r a t o r s ) .  

I n  t h e  l i m i t  m § 0, t h e  a l g e b r a  AW(3) becomes  an o r d i n a r y  L i e  a l g e b r a  w i t h  t h r e e  
g e n e r a t o r s  (we i n c l u d e  D O and D 1 among t h e  s t r u c t u r e  c o n s t a n t s  o f  t h e  a l g e b r a  in  o r d e r  t o  
t a k e  i n t o  a c c o u n t  a l g e b r a s  o f  H e i s e n b e r g - W e y l  t y p e ) .  

The C a s i m i r  o p e r a t o r  o f  AW(3), wh ich  commutes w i t h  a l l  t h r e e  g e n e r a t o r s ,  h a s  t h e  fo rm 

Q= ( e -~-e 3~) KoK~K2+e2~K2~+ B (KoK~ + K~Ko) +Coe~Ko2 +C~e-2~K~2 + 

(l.la) 

(1.1b) 

(I.1c) 



Do ( l+e2~)Ko+D, ( l+e-ZO)K,. 

A remarkab le  f a c t  about  t h e  a l g e b r a  ( 1 . 1 )  i s  i t s  l a d d e r  p r o p e r t y ,  which (as  in t he  
case  of  o r d i n a r y  L ie  a l g e b r a s )  makes i t  p o s s i b l e  to  c o n s t r u c t  an e n t i r e  l adde r  of  e i gen -  
states from one fixed state. 

This property is as follows. 
sponding to eigenvalue Xp, 

Let ~p be an eigenfunction of the operator K 0 corre- 

K0r 

(1.3) 

( 1 . 4 )  

We form the linear combination 

~= (~ (p) Ko+} (p)Kt+? (p)K2)~ (1.5) 

in  such a way t h a t  ~s i s  an e i g e n f u n c t i o n  f o r  K 0 but  wi th  d i f f e r e n t  e i g e n v a l u e  As: 

K o ~ = ~  (1.6) 

(in contrast to Lie algebras, the coefficients a, ~, u are in general functions of the 
spectral parameter p). 

Substituting (1.5) in (1.6), we see that ~s will be an eigenfunction only if 

%p~+M~-2ch 2 ~ M + C y O .  (1.7) 

It follows from the condition (1.7) that for each state ~p there are two "neighboring" 
~s, for which the eigenvalues k are found as roots of the quadratic equation (1.7). By 
virtue of this condition, the operators K l and K 2 are tridiagonal in the ~p basis. 
Therefore, it is possible to choose the following ladder representation of the algebra: 

K~p=av+l,p+~+av,~-~ +bv,~, ( 1 . 8 a )  

where 

We take the matrix coefficients ap and bp to be real. Such a choice means that both 
operators K 0 and K I are self-adjoint in the ~p basis (K 2 is obviously not self-adjoint in 
this basis). 

As a result, Eq. (1.7) for thespectrum can be rewritten in the form 

~ r + l + ~ - 2 c h  2~%v%p+~+C~=0. (l.7a) 

This equation is invariant with respect to the change of sign %p § --kp, i.e., there exist 
two branches of solutions for kD differing only in sign; we shell choose only the 
positive branch (the situation ~esembles the case of the Lie algebra SU(I,I), for which 
there also exist two equivalent discrete series differing in sign). 

The form of the solution of Eq. (l.7a) depends strongly on the value of the constant 

C l �9 

kP= sh2o ch~(2p+ l ) .  ( 1 . 9 a )  

~p ?-C~ sh ~ (2p+l).  ( 1 . gb )  
sh 2o 

For C l > 0 

If C l < 0 then 

Finally, for C ! = 0 

~=e • ( i. 9c ) 

Here, p is a discrete variable with unit step and arbitrary origin, i.e., the substitution 
p § p + const does not take us out of the framework of Eqs. (1.9). In all that follows, 
we shall assume that the spectrum is everywhere nondegenerate: %p~%p+i, %p-~#%p+,. For this, 
it is sufficient to restrict the origin of the variable: p > �89 

Thus, the spectrum of the operator K 0 in the ladder representation has hyperbolic or 
exponential form depending on the sign of the constant C I. Such a form of the spectrum 
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relates the algebra to quantum algebras of the type SUq(2). 

We now find the form of the matrix coefficients ap and bp of the operator K~. It is 
simplest to find bp. Indeed, substituting (1.8) in the commutation relation (l.lb) and 
equating the coefficients of the diagonal terms ~p, we obtain 

BL~+D~ 
g~g~+~ 

where 

(1.10) 

gp=~r-%p-i. ( i ~  

To find the coefficients ap, we substitute (1.8) in (l.lc) and again equate the 
coefficients of the diagonal terms ~p. As a result, we obtain a difference equation for 
ap: 

~p+la~+~-~p_iapZ=-4shio%~bpi+Bb~iCo%~+Do, (1.12) 

where ~p=%~+~-%p_~. 

Similarly, substituting (1.8) in the expression (1.3) for the Casimir operator and 
equating the coefficients of ~p, we obtain 

--J/2 (~p+l~a~+~+~p~p-~ap 2) =Q+4 sh ~ ~pib~Z+ 

ch 2~(Co~2+C~b~2)--2B~b~-2ch2~(Do~p+D~bp), (1.13) 

where Q = const is the value of the Casimir operator for the given ladder representation. 

Solving (1.12) and (1.13) as a system for ap 2 and 2 ap+~, we find the explicit form of 
the coefficient ap: 

(B~+DI) (B~p_~ +D,) 
Q~Q~_~ap ~ = + C o ~ - t + D o  (L~+Zp_,)-Q. (1 .14)  

I t  i s  easy  to  p rove  the  s e l f - c o n s i s t e n c y  of  t he  sys tem (1 .12 )  and ( 1 . 1 3 ) ,  i . e . ,  t h e  
solution for a~+~ obtained from this system can also be obtained from (i.14) by shifting 
p by unity. 

Note also that the balance of the terms in (i.i) of nondiagonal form, i.e., ~, ~, 
does not lead to new restrictions on the obtained expressions (i.i0) and (1.14) for the 
matrix coefficients of the ladder representation. 

Using Eq. (l.7a), we can rewrite the expression (1.14) in the compact form 

a~=~(A~) /g~_~,  ( 1 . 15 )  

where ~(A~) i s  a po lynomia l  o f  no t  h i g h e r  than f o u r t h  degree  in t he  argument hp = ~ + kp_~. 
We shall call ~(A~) the characteristic polynomial of the algebra AW(3). We shali s~ow 
that its form determines the characteristics of a finite-dimensional representation. 

Thus, we have found the explicit form of all the matrix coefficients %p, ap, bp 
of the ladder representation of the algebra AW(3). 

Note that, in contrast to the case of Lie algebras such as SU(2), SU(3), SU(I,I), 
etc., for which the structure of the ladder representation is specified solely by the 
value of their Casimir operators, in the case of the algebra AW(3) the form of the matrix 
coefficients p. bp also depends strongly on the structure constants. In particular, as 
will be shownain the following section, to fix the dimension N of a finite-dimensional 
representation of AW(3) it is necessary to specify an equation containing the constants 
B, D 0, D~, Q. 

2. Finite-Dimensional Representations of AW(3). 

Dual Representation 

In the previous section, we obtained the spectrum and matrix elements of the ladder 
representation of AW(3). We investigate the conditions under which this representation 
will be finite dimensional (infinite-dimensional representations will be investigated 
separately). 

We first note that by a scale transformation of the generators K 0 and K l the constants 
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C O and C~ can be reduced to preassigned numbers with the sign of each of these constants 
kept the same. Depending on the signs of C O and Cl, there can be nine forms of the 
algebra AW(3). Among these, four are nondegenerate (i.e., C0-C ! ~ 0) and five degenerate, 
when one or both of the constants C O and C I vanish. 

For definiteness, we consider the case Co, C l > 0. The remaining cases can be obtained 
similarly. By a scale transformation, we reduce our algebra to the canonical form 

C0=C~=sh ~ 2o. (2. I ) 

In this case, the spectrum of the operator K 0 takes its simplest form: 

3,p=ch o (2p+l). (2.2) 

The expression (1.15) for the matrix element ap can be written in the form 
3 

H ( c h  2op-ch 2oph) 
k=0 

ap = ---- (2.3) 
4 sh ~ 2o sh 22op sh o (2p-l)sh o (2p+i) ' 

where cosh 2oPk are the roots of the characteristic polynomial ~ of fourth degree in the 
argument cosh 2mp. The connection between these roots and the structure parameters (by 
structure parameters we understand the values of the structure constants B, Do, D~ and the 
Casimir operator Q of AW(3)) is given by 

3 

B=4tho~'sh2o[Hcho~p~+Hshop~ ] , (2.4a) 
h=0 k=0 

3 3 

h~O h~O 

(2.4b) 

3 

sh 2 2r ~-'~ 
Do=-2 ch~---"  ch 2mph, 

h=0 

(2.4c) 

Q=sh2 2r [ I I  ch 2~0p~+sh2 0~ B2sh*(~ 
4 s h  2 o ' s h  2 2oJ " 

h=0 

(2.4d) 

As can be seen from (2.3), the parameters Pk are much more convenient for analysis of 
the representations of AW(3) than the original structure parameters. We note in this 
connection that the parameters Pk possess a certain "excessiveness." Indeed, there are 
two operations on Pk that do not change the values of the structure parameters of the 
algebra: i) transposition of any two parameters Pk; 2) change of sign simultaneously of 
an even number (two or four) of the parameters Pk" Without going into the details of these 
symmetry properties, we merely mention that they explain the remarkable symmetry properties 
of the Askey-Wilson polynomials with respect to transformation of their parameters [1,2] 
and are analogs of the famous Regge transformations in the theory of 6j symbols (for more 
details, see [16]). 

For arbitrary real values of the structure parameters of the algebra AW(3), the values 
of the characteristic parameters Pk are, in general, complex. However, we require the 
ladder representation to be finite dimensional. For this, we require fulfillment of the 
condition 

ap0=ap,+N=0, (2.5) 

where N = I, 2, ... is the dimension of the representation. 

The condition (2.5) means that at least two characteristic parameters, say, P0 and 
Pl, must be real, and there must be fulfillment of the "quantization condition" 

p~--po=N. (2.6) 

The variable p now ceases to be arbitrary: 

p=po+n, n=0,1 ..... N-I. (2.7) 
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As can be seen from (2.4), the parameters P2 and P3 must also be real. In addition, 
from the condition a~ > 0, and also from the requirement of nondegeneracy of the spectrum 
%p, there follow the inequalities 

~/~<p=-l<po<p~-l<p~. (2.8) 

Thus, we have completely described the finite-dimensional ladder representation of 
the algebra AW(3) in the ~p basis. 

The algebra AW(3) possesses a remarkable duality property, namely, there exists a dual 
basis % such that the operator K~ in this basis is diagonal, while K o is tridiagonal and 
self-adjoint: 

K1%=~,%, Ko%=d,+l%+t+&%-i+h~%. ( 2 . 9 )  

Expressions for the matrix coefficients ~s, ha, ds in the dual basis ~, can be obtained 
from the corresponding expressions (1.9), (i.i0), (1.14) by making in them the substitu- 
tions p~s, Co'~-Ct, Do~Dl. 

Indeed, we make the following transformation of the generators: 

Ro=Ku R,=Ko, R2=[K~, Ko]~. 

Then, as is readily verified, the commutation relations (I.I) remain as before if we also 
interchange the structure constants: Co~=~C~, Do~-D~. Therefore, the basis @p for the operator 
K 0 is identical to %, and we can use the previous expressions. 

For our specific choice (2.1) of the constants C o and CI, 

~ = c h  ~ ( 2 s + l ) ,  ( 2 . 1 0 a )  

h, = B~,+Do ( 2 . 1 0 b )  
4sh2o  sh 2os-sh 2 o ( s + t )  ' 

8 

]~I  (ch 2 o s - c h  2o~s~) 
h~0  

d,2= (2.10c) 
4 sh 2 20).sh ~ 2c0s'sh 0) ( 2 s - l )  'sh o) (2s+l )  

In  t h e  e x p r e s s i o n  ( 2 . 1 0 c ) ,  t h e  c h a r a c t e r i s t i c  p a r a m e t e r s  s k a r e  r e l a t e d  t o  Pk by t h e  s i m p l e  
l i n e a r  t r a n s f o r m a t i o n  

t s . 

So=~-pi, s~c-po, &=c--pa, sa=e-p2, o=--~s  ( 2 . 1 1 )  
4 = 0  

This transformation has an obvious geometrical meaning -- it preserves the lengths of the 
intervals [P0, Pl] and [P2, P3] on the transition to the "s representation" and also the 
mutual disposition: 

I /z <s2-1<so <sl- i <sa. (2.12) 

Since the dimension of the "s representation" is equal to that of the "p representa- 
tion," 

s~-so=pi-po=N, (2.13) 

the basis % is related to the basis ,p by a certain linear transformation 
po+N-- t  

~ 0  

where by <alp> we denote the matrix elements of the overlap of the two dual bases. 
f o l l o w i n g  s e c t i o n ,  we f i n d  t h e  e x p l i c i t  fo rm o f  t h e s e  e l e m e n t s .  

(2.14) 

In the 

3. Overlap Functions and Askey-Wilson Polynomials 

We show that the overlap functions of the dual bases #p, % of the algebra AW(3) can 
be explicitly expressed in terms of Askey-Wilson polynomials of general form. 

We separate in <alp> the "vacuum amplitude" ~0(s): 
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<s Ip> =<s Ipo>P~-~, (~,) ~q~o (s)p,, (,uJ, ( 3.1 ) 

where Pn(~s) are certain functions that are to be determined. Applying to the state ~p 
the operator K l and using (l.8a) and (2.9), we obtain for the functions Pn(~s) the relation 

where  5.------avo+., ~.=bpo+.. 

I t  i s  c l e a r  f rom t h e  d e f i n i t i o n  ( 3 . 1 )  t h a t  t h e  " i n i t i a l "  c o n d i t i o n s  

a0=O, P0(~.) ~ l ,  ( 3 . 3 )  

hold. It follows from (3.2) and (3.3) that Pn(~s) is a system of orthogonal polynomials 
of n-th order of the argument ~s" Indeed, the three-term recursion relation (3.2) in 
conjunction with the conditions (3.3) uniquely determines the first polynomial 

P~ (~) ~--- -~7 ~~ ( 3.4 ) 
al 

and all the following ones. It is obvious that all coefficients of these polynomials are 
real. 

The condition of orthogonality of these polynomials follows from the completeness of 
t h e  b a s i s  %: ~+~-~ 

6~.= ~ <po+m[s><sipo+n>= ~ w(s)e.(~Jv~(~.), (3.5) 
s s~s o 

and the weight function w(s) is 

w(s )= l<s lpo> l  ~ (3.6) 

Thus, we have obtained a system of polynomials Pn(~s) of the discrete argument ~s 
that are orthogonal on the system of N points on the interval of the real axis s o 5 s 
s I -- i. 

To find the explicit form of these polynomials, it is sufficient to compare our 
formulas (i.i0) and (2.3) for bp and ap with the recursion coefficients that determine the 
Askey-Wilson polynomials [1,2] and establish their identity. 

We recall that in the notation of Askey and Wilson these polynomials depend on four 
parameters ~, ~, y, 6 and on an argument 

(x) =q-~+q~+'+~+t (3.7) 

These  p o l y n o m i a l s  can  be e x p r e s s e d  e x p l i c i t l y  in  t e rms  o f  t h e  b a s i s  h y p e r g e o m e t r i c  f u n c -  
t i o n  ( t h e s e  p o l y n o m i a l s  a r e  d e t e r m i n e d  up t o  a n o r m a l i z a t i o n  f a c t o r  t h a t  i s  n o t  i m p o r t a n t  
f o r  ou r  p u r p o s e s )  

p~(~(x) ) = , ~  [ -n'n+l+~+~' -x'x+t+~+5; q I q]. ( 3 . 8 )  

We use the following definition of the basis hypergeometric function: 

[a,,ai, a~,ar "q[x] ~'~ [a,]~[ai]k[as]~[a,]~ ~ 
&~3[bl,  b2, b3 , = h ~ 0 [ ~  b2] h[ b3] ~ 'X , ( 3 . 9 )  

where the symbol [a] k is the so-called Pochhammer q-symbol 

[ a l ~ = ( t - q  o) ( 1 - r  +,) . (~-qo+~-~). 

Direct comparison gives the following correspondence of the parameters: 

q=e ~', a=po+pi, ~=po-pi, "~=po-pi, 6=p3+pi, 

x=s-So=S O, i . . . . .  N-I .  2 
The c o n d i t i o n  f o r  t h e  f i n i t e - d i m e n s i o n a l  c a s e  i s  y = --N, and t h i s  i s  i d e n t i c a l  t o  t h e  
condition for completeness of the Askey-Wilson polynomials on a finite interval of the 
real axis [i]. 

( 3 . 1 0 )  
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Thus, to the four parameters of the Askey-Wilson polynomials there correspond the 
four characteristic parameters Pk of the algebra AW(3). In view of the arbitrary choice 
of these parameters, we obtain the most general Askey-Wilson polynomials without any 
restrictions (we recall that in this paper we consider only the finite-dimensional case, 
when the Askey-Wilson polynomials are orthogonal only with discrete weight on the real 
axis; the infinite-dimensional representations, which lead to polynomials orthogonal 
with continuous weight [2], could be treated similarly). 

4. Classification of Grids and Polynomials 

We now relate our results to the approach of the monograph [4], in which the Askey- 
Wilson polynomials are classified in their dependence on the form of the grid Us on which 
the difference equation for these polynomials is defined. 

In our approach, this equation itself is a consequence of the duality of AW(3). 
Indeed, from the relation 

<s I Kolp>=d~+~ <s+ i ]p>+d~<s- i ]p>+h,<slp>=~p<slp> 

and the definition (3.1) we obtain a difference equation of second order for the poly- 
nomials Pn(~s): 

t, (s) p~ ( ~ , )  +t~ (~)p~ (~_,) +h.p~ (~.) =~p~ (~.), 

where 

(4.1) 

(4.2)  

t~(s)=d~+~ -r176 ~ t2(s)=d~ ~o ( s - t )  ( 4 . 3 )  
Co(S) ' Co(S) 

Applying the operators K0, Kz, K 2 to the vacuum amplitude ~0(s), we obtain for ~0(s) 
the recursion relation 

~o(s) = e ~  [ t - e  2̀ 0( .. . .  ) ], ( 4 . 4 )  ,o(s--J)  t--e ~(~+~)-] V II+ (s) ['l-e~(2~+~, 
II_(s) t l-e-(2,-1) 

~=Sl--So--Sz--Sa--~--2po. 

$ 

II• (s)- H (l-e~'~('• 
h = O  

Substituting (4.4) in (4.2), we obtain an explicit expression for ti(s): 

t ~ ( s )  = 

where 

t, (s) 

e "  II+ (s-i-t) ( t - e  ~( .. . .  +i)) 
2 sh 20) ( t - e  ~'(~+"'+t)) ( t - e  ~'('+1)) ( l - e  2'~ 

e -~ II_ (s) ( l - e  20'("+~,)) 
2 sh 2(o ( t - e  20'( .... )) ( l-e~"O ( t - e  2'~(2~+~)) 

(4.2) is identical to the difference equation that deter- As was to be expected, Eq. 
mines the hypergeometric polynomials Pn(~s) on the grid ~s [4]. 

The forms of the grids Us are obtained for different choices of the constant C o . 

The case C o > 0 ,corresponds to 

?C0 
~ --ch0)(2s+l). 

sh 2~ 

The case C o < 0 to 

(4.5) 

(4.6a) 

?--C0 
~. sh 2 ~  sh 0) (2s+t ) .  ( 4 . 6 b )  

the degenerate case C O = 0 corresponds to the exponential grid 

~s=e • (4.6c) 

each grid corresponds to three choices of the constant CI, i.e., three forms 
polynomials. Thus, for given value of m we have nine types of 
corresponding to the nine choices of the constants C o and C l in 

Finally, 

In turn, 
of the spectrum Ip of the 
Askey-Wilson polynomials 
the algebra AW(3). 
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The explicit form of the Askey-Wilson polynomials, i.e., their expression in terms 
of the hypergeometric function, depends strongly on the degree of the characteristic 
polynomial ~(Ap) in (1.15). 

Suppose C I x 0. Then for C o ~ 0, as can be seen from (1.14), we have a characteristic 
polynomial of fourth degree; the corresponding polynomials can be called q-analogs of the 
Racah polynomials, and they can be expressed in terms of 4r 

If C o = 0, D o ~ 0, then the characteristic polynomial ~(Ap) has third degree; the 
corresponding polynomials are q-analogs of the Hahn polynomials, and they can be expressed 
in terms of sr 

Finally, if C o = D o = 0, then the characteristic polynomial has second degree; the 
corresponding polynomials are q-analogs of the classical orthogonal polynomials of Kravchuk, 
Meixner, Charliea, and they can be expressed in the form 2~2 (or 2r for C I = 0). 

Thus, we have constructed a classification of all q-polynomials of discrete argument 
on the basis of an analysis of the ladder representation of AW(3). The form of the grid is 
identical to the spectrum of the operator K I. The explicit form of the polynomial Pn(Vs) 
is determined by the degree of the characteristic polynomial ~(Ap) of the algebra AW(3). 
We note that such an algebraic interpretation makes it possible to simplify significantly 
the classification of Askey-Wilson polynomials proposed earlier in [4]. 

5= The Algebra QAW(3) and Passage to the Limit 

of the Classical Polynomials 

If in the algebra AW(3) we go to the limit ~ + 0, we obtain a Lie algebra with three 
generators isomorphic to one of the algebras SU(2), SU(I,I), or the oscillator algebra. 
To these Lie algebras there correspond the classical orthogonal polynomials of Meixner, 
Pollaczek, Laguerre, Kravchuk, Charliea, Hermite [8-10]. However, there still remain 
"outside" the polynomials with quadratic spectrum (Racah, Hahn, Jacobi), since in a Lie 
algebra the spectrum of a generator cannot be quadratic. 

To obtain these polynomials, we must somewhat modify the original algebra AW(3). 
We make shifts of the generators by constants: 

Ko-+Ko+vo, KI~K~+~. 

The transformation (5.1) does not conserve the commutation relations (i.i). 
we define a quadratic q-algebra with commutation relations 

[Ko, K,] o=K2, [K2, Ko] ~=AoKo~+A, {Ko, K~} +BKo+C,K~+D,, 
(5.2) 

[K~, K2 ] o=Ao{Ko, K~} +A,K,2+BK~+CoKo+Do, 

where A 0 and A z are arbitrary real constants, and {...} denotes the anticommutator, then 
the transformation (5.1) leads merely to renormalization of the structure constants A0, Az, 
B, ..., without changing the form of the algebra (5.2) itself. 

We shall call the algebra with the commutation relations (5.2) the quadratic Askey- 
Wilson algebra QAW(3), since it differs from the algebra AW(3) only by the presence of 
the quadratic terms in the commutators. 

The algebra QAW(3) is effectively equivalent to the algebra AW(3), since the ladder 
representations of these algebras differ only by shifts of the diagonal elements by a 
constant. 

If, however, we now go to the limit ~ § 0 for fixed values of the structure constants 
A0, A l, B, ..., we obtain a quadratic commutator algebra with three generators. As 
mathematical objects, quadratic algebras were discovered by Sklyanin [15], who considered 
in detail representations of one quadratic algebra of special form with four generators. 
A quadratic algebra of form (5.2) (for ~ = 0) was proposed in [ii], and in [16] its ladder 
representations were considered. We call this algebra the quadratic Racah algebra QR(3), 
since the corresponding overlap functions <slp> can be expressed in terms of Racah-Wilson 
polynomials (for A0"A l ~ 0) and Hahn and Jacobi polynomials (for A0"A I = 0). 

Recently, the algebra QR(3) and special cases of it (Hahn and Jacobi algebras) have 
found applications in various problems of quantum physics: symmetries of the 6j and 3jm 
symbols [16], exactly solvable one-dimensional potentials of the SchrSdinger equation [17], 

(5.i) 

However, if 
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hidden symmetry algebra of the Hartmann potential [18], and other examples. 

Thus, all the known classical orthogonal polynomials can be obtained from the 
algebra QAW(3) by limiting processes. 

6. some Realizations of the Algebra AW(3) 

Since the algebra AW(3) possesses a number of remarkable properties (duality, explicit 
form of the spectrum and matrix elements, explicit expression for the overlap functions), 
it is natural to expect this algebra to play the part of a dynamical symmetry in all 
problems in which q-polynomials arise. 

We shall consider only two examples, which demonstrate the connection between the 
AW(3) algebra, on the one hand, and the SUq(2) algebra and q-oscillator, on the other. 
These algebras are currently attracting the interest of physicists as possible candidates 
for the role of angular momentum and oscillator at very small (Planck) scales. Such a 
suggestion was made, for example, by Biedenharn [19]. 

We recall that the algebra SUq(2) is the algebra whose generators No, N• satisfy the 
commutation relations 

[No, N~]=•177 
sh ~ ' 

in the limit m § 0, this algebra becomes the SU(2) algebra. 

As in the "classical" case, a finite-dimensional representation of the algebra has 
dimension 2s + i, where s (the "q-angular momentum") takes integer and half-integer 
values: s = 0, �89 i, .... 

We define the operators 

[N+,N_] = sh2coNo (6.1) 

Ko=e -~"'~~ K~={N~,e~~ (6.2) 
where N~='/2(N++N-). 

It is readily verified that for given s these operators do indeed form a representa- 
tion of the algebra AW(3) with parameters 

B=Di=CI=O, Co=-4ch2~/2chZ~ Do=--Coch ~(2l+t)/ch ~, Q=-Co. (6.3) 

It follows from (6.3) that the realization (6.2) is one of the degenerate forms of AN(3) 
(note also that the structure parameter D o depends on the weight of s i.e., the form 
of the algebra AW(3) depends essentially on the dimension of the SUq(2) representation). 
For the spectra of K 0 and K l we have 

~,=e -2~', - l~p~I,  ~ s = s h 2 ~ s / 2 s h 4 ,  - l~s~l .  (6.4) 

The corresponding overlap functions <slp> can be expressed in terms of the q-analogs of 
the Kravchuk polynomials. 

Note that in the algebra SUq(2) itself the spectrum of the operator N I is unknown 
and apparently has no explicit expression as analytic function of the number s. In this 
sense, the algebra AW(3) "improves" the spectral properties of the operators SUq(2). 

We now consider the q-oscillator algebra 

[No, N•177177 [N+,N_I=--e -2~. (6.5) 

This algebra is constructed from the so-called creation and annihilation operators of the 
q-oscillator (see [7,19]), which satisfy the relations 

e ca 

N+N-= 2sho~ (t-e-*~Jv~ (6.6) e~N_N +-e-~N+N_=e% 

It is easy to show that the operators 

Ko=e~lvo 

also realize a representation of the algebra AW(3) in terms of the q-oscillator. 
structure parameters have the form 

KI=N+ +N_ ( 6 .7  ) 

The 
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B=C,=D~=Do=O, Co=e 2~-1, Q=2 sh (o. (6 .8)  

We are here dealing with an infinite-dimensional representation, the spectrum of the 
operator K I is continuous, and the overlap functions can be expressed in terms of the 
q-analog of the Hermite polynomials, this being natural, since the operator K 0 in the 
limit becomes the Hamiltonian of the harmonic oscillator, while the operator K l becomes 
the coordinate operator; the corresponding overlap functions are then ordinary wave func- 
tions of the oscillator in the coordinate representation, i.e., Hermite functions. In this 
sense, the operator K I can be treated as the q-analog of the coordinate for the q- 
oscillator. 

These examples by no means exhaust the list of possible realizations of the algebra 
AW(3). Other examples will be considered separately. 

Conclusions 

We have shown that the Askey-Wilson polynomials of general form are generated by the 
algebra AW(3), which has a fairly simple structure and is the q-analog of a Lie algebra 
with three generators. The main properties of these polynomials (weight function, 
recursion relation, etc.) can be obtained directly from analysis of the representations 
of the algebra. 

In this paper, we have considered finite-dimensional representations of the algebra 
AW(3) and the Aksey-Wilson polynomials of discrete argument corresponding to these 
representations. A separate analysis isrequired for the infinite-dimensional representa- 
tions, which generate polynomials of a continuous argument (these polynomials were 
investigated in detail in the review [2]). Also of interest is investigation of represen- 
tations of the algebra AW(3) for complex values of the basic parameter ~ and of the 
structure parameters. 

In our view, the algebra AW(3) by itself warrants careful study on account of several 
remarkable properties (in the first place, the duality with respect to the operators K0, 
Kl) not present in the currently very popular quantum algebras of the type SUq(2). 

We assume that the algebra AW(3) is an algebra of dynamical or "hidden" symmetry 
in all problems in which exponential or hyperbolic spectra and the corresponding 
q-polynomials arise. We hope that in time the algebra AW(3) will come to play the same 
role in "q-problems" as Lie algebras play in exactly solvable problems of quantum 
mechanics. 

I thank Professor Ya. I. Granovskii for fruitful discussion of the results of the 
paper, and also P. Feinsilver and T. H. Koornwinder for kindly sending preprints and 
reprints of their papers. 
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VACUUM ENERGY IN THE THEORY OF A NONCRITICAL 

COMPACTIFIED BOSONIC STRING 

S. D. Odintsov 

The single-loop vacuum energy of a free noncritical bosonic string 
compactified onto a torus is calculated. The modular-invariant nature 
of the result for any dimension D is discussed. In the case of a one- 
dimensional torus, the Hagedorn temperature is obtained. Inclusion 
of a Wilson loop in the theory of an open noncritical compactified 
string is also discussed. 

i. Introduction 

In recent studies [1-4], attempts have been made to construct a BRST-invariant theory 
of a bosonic string in a noncritical dimension (D ~ 26). If the Weyl mode is regarded as 
a dynamical variable, it is possible to recover background Weyl invariance [1-4], at least 
for free strings. 

In [5], a calculation was made of the vacuum energy of a noncritical bosonic string in 
D-dimensional flat space at nonzero temperature. It was demonstrated that the result can 
be expressed in a manifestly modular-invariant form for any D < 26 (see also [6]). 

A modular-invariant formulation of the critical bosonic string compactified onto a 
torus was given in [7,8]. It is now well known that at least at the single-loop level the 
vacuum energy of a bosonic string at nonzero temperature is equal to the vacuum energy of 
the bosonic string compactified onto a l-torus [7,8]. However, the temperature formula- 
tion is inconvenient in the proof of modular invariance. 

In this paper, the vacuum energy of a free noncritical closed bosonic string compacti- 
fied onto a torus is calculated. In the case of a one-dimensional torus, an expression 
for the Hagedorn temperature is given. The modular invariance of the vacuum energy is 
obvious in the given formulation. The vacuum energy of an open noncritical string com- 
pactified onto a torus is also obtained, and the possibility of including Wilson loops in 
the theory is discussed. 

2. Vacuum Energy in a Closed Noncritical String 

We find the vacuum energy of a free noncritical bosonic string on a flat background 
RD_ l x T I. The mass operator and constraint are obtained, for example, in [4,5]: 

_ _  12R 2 
M (D--t) +N+N+ + m +do2, 

12 2 2R 2 

where 

N-N=ml, 

N= E (a_."a."+d_,~d~)+ n(c_~b~+b_~c~) 

[4], N is expressed in terms of the adjoint operators, R is the radius of the torus, m and 
are integers, m/R is the discrete momentum, L is the topological quantum number, and the 

Weyl mode is compactified (see [5,6]) in a box with period of length L: d o = vr~k/L with 

( i )  

(2) 
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