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Calculation of  Transport Coefficients o f  Air P lasmas  
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This paper is devoted to results of calculation of  the main transport coefficients of 
air plasmas: electrical and thermal conductivities and viscosity. These calculations 
are performed for pressures between 1 and 200arm and for temperatures varying 
from 1000 to 30,000 K. The computational methods proposed by Devoto from the 
classical formalism described by Hirchfelder et aL are used. Collision integrals for 
interactions between charged particles are calculated using the formalism of Mason 
et al. to account for the fact that, in most of  the situations considered here, the 
number of charged particles in the Debye sphere is weak. 
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1. I N T R O D U C T I O N  

When a system (gas or liquid) is subjected to internal or externat 
constraints such as concentration, velocity or temperature gradients, or 
electric field, as a reaction, one or several of  the following nonequilibrium 
terms then develops: diffusion current, pressure, heat flux, or electric current. 
When the constraint is weak enough to induce only a small perturbation 
on the velocity distribution function, a proportionali ty between the cause 
and the effect exists and the factor of  proportionality is the so-called 
transport coefficient. 

These transport coefficients are depending both on the  populat ion 
number  densities of  the different species of  the system and on the nature 
and frequency of collisions between these particles~ 

In the preceding paper/'1~ results concerning composition and ther- 
modynamic  functions of  air plasmas in extended ranges of  pressure and 
temperatures were presented. In this paper,  we present results concerning 
the calculation of  the main transport  coefficients, i.e., thermal and electrical 
conductivities and viscosity. These three parameters  are particularly needed 
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to solve energy rate equations such as the Ellenbaas-Heller equation or to 
model plasma flows produced in high-power torches. The numerical results 
of these calculations have been published as an internal report (2) available 
from the authors. 

2. SUMMARY OF FUNDAMENTALS OF TRANSPORT 
COEFFICIENT CALCULATIONS 

In this work, the basis of calculation of the transport coefficients is the 
resolution of  the Boltzmann collision equation by a first-order perturbation 
technique proposed by Chapman and Enskog. <3:) Chapman and Cowling (3) 
have shown that the transport coefficients can be expressed in terms of 
Sonine polynomial expansion coefficients. These coefficients are combina- 
tions of a set of  integrals which contain information on the dynamics of 
the collisions between the components of the system. These so-called col- 
lision integrals are defined for interactions between molecules i and 
molecules j by 

fl}j,~ ) = 2 7 r k r  oo exp  ( - y / j )  �9 Tg2s+3(1 - c o s l x ) b  dbdy / j  (1) 
/z/j 

where y/j is the reduced initial relative speed of the colliding molecules, X 
their angle of deflection measured in the center-of-gravity coordinate system, 
and b the impace parameter. The term /xo is the reduced mass of  the two 
interacting particles. The interaction potential between the components of 
the system appears clearly through the correlations between b, x, and yq. 

The classical transport cross section denoted Q(1) is defined as 

fo o Q(I~ =2~" (1 - coslx)b db (2) 

The transport coefficients are often expressed in terms of collision 
- -  l , s  integrals ~q/j defined by 

~!:,s) = ( ri + rj)2Il *{l's> (3) l j  

where r~ and r~ are the radii of particles i and j and 

~,(t,s) = --oO!!'s)/O!:'S)R---,: . . . . .  S (4) 

fII]")R.S, is the value of  the collision integral calculated assuming that the 
interaction potential being i a n d j  is the rigid-spheres potential i.e., V ( r )  = 0 
if r >  (r~+r~); V ( r ) = o o  if r<r~+rj;  r~ and r: are the radii of the colliding 
particles. 

Under the pressure and temperature conditions considered in these 
calculations, the population number densities of charged particles are par- 
ticularly high: the electron population number density exceeds 10 ~9 cm 3 for 
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p = 100 atm when T >  20,000 K. Due to the long range of the interaction 
potential between these particles, the corresponding collision integrals 
should be treated with special attention. 

3. COLLISION INTEGRALS FOR CHARGED 
PARTICLE-CHARGED PARTICLE INTERACTIONS 

Because the classical Coulomb potential falls off too slowly with the 
distance, interactions between charged particles should be described by a 
shielded Coulomb potential (S.C.P.) of the form 

V(r) ~ ( l / r )  exp ( - r / h )  

where h is the Debye shielding distance. 
For transport coefficient calculation, the S,C.P. was first used by 

Liboff. (5~ In this model, a characteristic length of the plasma L was intro- 
duced such that bo < L < h, bo being the mean value of the impact parameter 
for collisions between particles i and particles j (bo = ZiZ~eZ/2kT) and h 
the Debye length calculated taking into account both electrons and ions. 
The collision integrals were then calculated using a classical Coulomb 
potential for impact parameter values smaller than L, and using the S.C.P. 
when values of b greater than L were considered. The collision integrals 
are then expressed by the general relations 

4b~ [Ln(2h/bo) + ~b(s)- 1o6541 (5) f~ !.~.s~ _ 
'J s ( s + l )  

where ~O(s)=Z~ 1/n with ~p(1) =0, 

12 (2"'~ = 3f~ (I"~) -6bo2/ S( S + 1) (6) 

This hypothesis implies that the number of charged particles in the 
Debye sphere is high enough to obtain the shielding effect. 

From the calculation of air plasma compositions discussed in Ref. 1, 
the number of charged particles in the Debye sphere is obtained. In Fig. 1 
the variations of this number as a function of temperature, for different 
pressures, are shown. Taking these results into account, it may be readily 
seen that, following the pressure and temperature values, because the two 
first terms in the brackets of Eq. (5) do not always counterbalance the 
negative constant, the collision integrals can take negative values, which is 
a physical nonsense. For instance, for a temperature value of 25,000 K, all 
collision integrals corresponding to interactions (X+/Y+++) or (X++/Y++) 
become negative when pressure exceeds 50 atm. 

It should be noted that the collision integrals calculated by Kihara (6) 
on the same S.C.P. basis also have negative values in more extended 
temperature and pressure ranges than those in Liboff's theory. 
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Fig. 1. Number  of  charged particles in the Debye sphere. The arrow shows the evolution of 
curves as pressure increases. 

Spitzer and co-workers have calculated the collision integrals for 
charged particle-charged particle interaction in a fully ionized gas from the 
Fokker-Plank equation. 7'8 They also obtain an analytical form in which the 
term Ln(2h/bo) plays a role and which leads to the same difficulties when 
the number of charged particles in the Debye sphere becomes small. 

The model used in this work was proposed by Mason, Munn, and 
Smith. ~9-12) In this model, a S.C.P. was also considered but using a Debye 
length calculated only from the electron number density. For the calculation 
of the classical transport cross sections Q(l), the range of integration was 
broken into three intervals: 

- - the  first corresponds to the smallest values of b (b < 10 -3 h); in this 
interval, a classical Coulomb potential can be used. 

- - the  second corresponds to intermediate values of the impact para- 
meter, and a distinction between attractive and repulsive potentials should 
be made. 

- - f o r  the highest values of b, only interactions leading to small values 
of the deflection angle X (X <0.05 rad) are taken into account. In this 
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interval, attractive or repulsive potentials give the same result for collision 
cross sections and consequently for collision integrals. Under these condi- 
tions, their asymptotic forms are in agreement with the results of Liboff ~5> 
or Kihara)  6~ 

As mentioned above, the screening effect exists only when the number 
of  charged particles, no,  in the Debye sphere is important (100 is the order 
of  magnitude). When this condition is fulfilled, the main term in the collision 
integrals is the logarithmic term which is >>1. When strongly correlated 
plasmas are considered, na can be <1 and collisional theories as those 
proposed by Lihoff or Mason and co-workers are not yet valid. 

Some of the authors mentioned in Ref. 13 have proposed a "unified" 
theory which ,  in principle, allows the extension of these calculations to 
situations characterized by na ~ 1 or Ln(A) # 3. Nevertheless, for na values 
<1, this "unified" theory diverges when theories using the S.C.P., though 
nonvalid~ do not diverge. This phenomenon is described by Glasser ~'14~ and 
illustrated by Devoto ~ for partially ionized argon plasma at 1 atm. 

If we consider that na --- 10 is a lower limit for the validity of  the concept 
of S.C.P., the collisional theories are only valid for the smallest temperature 
values: in air, with p = 1 atm, T~im - 10,000 K and for p = 200 atm, T~m 
5000 K. 

4. COLLISION INTEGRALS FOR NEUTRAL-NEUTRAL OR 
NEUTRAL-CHARGED PARTICLE INTERACTIONS 

4.1. Neutra l -Neutra l  Interactions 

To compute classical transport cross sections and corresponding 
collision integrals corresponding to interactions between neutral species~ 
three models are used. 

a. The rigid-sphere model is used when data necessary for more 
sophisticated models are unavailable. In this model, collision integrals' aLij ,~,(I s) 

are equal to the geometric cross sections and do not depend on temperature. 
When this model is used, numerical values of radius of atoms or molecules 
are taken mainly from Ref. 16. 

b. The reduced temperature model; when nonpolar molecules are 
considered, the Lennard-Jones (12-6) potential is used, which reads 

The constants e and o" are characteristic of the interacting particles: e is 
the depth of  the potential well, and cr is the collision diameter, i.e., the 
value of r leading to V ( r  = o')  = O. 
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For nonpolar  molecules, a Stockmayer potential (i.e., a Lennard-Jones 
potential with a third term corresponding to the polarizability of atoms or 
molecules involved in the collision varying as 1/r  3) is used. The reduced 
temperature T* is then defined by 

T* = Tk/E (8) 

where e is estimated from the relation 

k/e - 0.87/Tb (9) 

In this relation, the Boltzmann constant k is expressed in erg/Kelvin. The 
quantity Tb is the boiling point of the chemical species when two identical 
particles interact; when the projectile and the target are different, eab is 
then defined by (eaeb) 1/2 (cf. Ref. 4, p. 168). 

In Chapter 8 of Ref. 4, the evolution of ~*  vs. reduced temperature 
T* is shown, and numerical values are given. Using this model, we summar- 
ize the numerical values of e/k in Table 1. 

It should be noted that this model cannot always be used particularly 
when one of the interacting particles is N or O, since liquid-phase atomic 
oxygen or nitrogen do not exist. 

c. When two monatomic species are interacting, the collisions can be 
described on the basis of  the Morse potential used to describe the diatomic 
molecule formed by these two particles. Collision integrals are then obtained 
by interpolation of the numerical values in the Tables of Samoilov and 
Tsitelauri ~ or in the tables of Smith and Munn. ~ In the latter, values 
of l'~* are generally greater than in Ref. 17 due to the influence of the 
smallest internuclear distances. When this method is used, the spectroscopic 
constants needed to compute the dimensionless quantities f l= toe /2  
(BeDe) 1/2 and T * =  kT/De are taken from the tables of R o s e n .  (2~ This 
method can also be used to treat interactions between a neutral and heavy- 
charged particle which can form a charged molecular species like NO +. 

Some collision integrals used in this work have been taken from the 
literature. For example, numerical values for N2-N2, N-N,  and N-N2 
interactions are obtained by fitting numerical values obtained by Capitelli 
and Devoto (2~) who consider a Morse potential; this procedure has been 
used by Eymard (22) to compute properties of  equilibrium and nonequili- 
brium pure nitrogen plasma. In the same way, collision integrals for 02-02 ,  

Table I. Values of e/k Used in This Workfor Identical Colliding PaNicles 

N2 02 NO N20 NO2 Ar 

e/k 90.06 103.67 139.48 212.24 338.33 100.52 
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Table If. Models Used to Treat Neutral-Neutral Interaction ~ 

N 2 N 02 O NO N20 NO 2 Ar 

N 2 2t 21 T* R.S. T* T* T* T* 
N 21 R.S. R.S. /Mo R.S. R.S. R.S. R.S. 
02 25 25 T* T* T* 25 
0 25 R.S. R.S. ' R.S. 25 
NO T* T* T* T* 
N20 T* T* T* 
NO2 T* T* 
Ar 25 

a Numbers refer to references. R.S.: rigid sphere model; T*: Lennard-Jones potential; Mo: 
Morse potential (numerical values from Ref. 17). 

O-O, O2-O, Ar-Ar, A r - Q ,  and Ar-O are taken from the compilation 
published in Refs. 23-25. 

The different models used to compute neutral-neutral collision integrals 
are summarized in Table II. In Fig. 2, their numerical values are shown for 
a temperature of 10,000 K: all the neutral-neutral collision integrals are 
characterized by the same order of magnitude: some A 2. When they are 
calculated from the rigid-sphere model, the collision integrals corresponding 
to N - O  interactions differ from the others by a factor of about 3. Because 
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Fig. 2. Comparison of some collision integral values for T=  10,000 K calculated by the 
rigid-sphere model, On the abscissa: target particle; in the table: projectile particle. 
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N and O are species which play a role in large intervals of pressure and 
temperature, the influence of  these particular collision integrals will be 
discussed separately. 

It should be mentioned that, except for interactions described by the 
rigid-sphere model which, in principle, lead to constant values, the collision 
integrals corresponding to interactions between neutral particles vary with 
temperature more slowly than those corresponding to charged-charged 
interactions: for example, when the temperature increases from 5000 to 
15,000 K the collision integral ~'~1,1 corresponding to N - N  interactions 
calculated from a Morse potential varies from 4.32 to 2.92 .~2. The variations 
with temperature of collision integrals calculated from Lennard-Jones 
potentials are quite similar. 

4.2. Neutral -Charged Heavy Particle Interactions 

These interactions have been considered as elastic, and the correspond- 
ing collision integrals have been calculated: 

- -using a Morse potential when possible; 
--considering the charge exchange process, mainly when resonant 

charge exchange occurs, i.e., for reaction such as X, X §  § X; 
- - f r om the polarizability of the neutral atoms or molecules involved 

in the collisions. 
When the polarizability model is used, the collision integrals are then 

expressed as 

t,, e2lJWF(s+3)AZ 4 (10) 
/zq 

Values of A14 are taken from Ref. 26; numerical values of the polariza- 
bility ~i are either calculated or taken from Ref. 4 or 16. These values are 
summarized in Table III. 

When charge exchange is considered, two situations should be con- 
sidered: 

(a) the resonant charge exchange when the neutral and the charged 
particle belong to the same chemical species, 

Table Ill. Numerical Values of the Polarizability 

Species N2 N 02 O NO N20 NO2 Ar 

sci 1.76 1.13 1.60 0.15 1.74 3.00 5.00 1.654 
Source Calc. 4 Calc. 16 Calc. 4 Calc. 16 
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(b) the nonresonant charge exchange when the two interacting particles 
belong to different chemical species (X, Y+/X +, Y). 

Little data on nonresonant charge exchange cross sections are available; 
these interactions are therefore treated using the polarizability model which, 
according to the synthesis published by Capitelli 46 leads to an overestimation 
of collision integrals. 

If X denotes the deviation of the charged particle in a neutral-charged 
collision, the charge exchange process corresponds to a deviation (or-x).  
If P~x is the charge exchange probability, the classical transport cross section 
is then given by 27 

Q(~ 

+ Pex(1-cosl(cr-X))sinxdx 
0 

When 1 is .odd, it is obvious that terms depending on Pex disappear; collisions 
are then wholly elastic. When l is even, then charge exchange plays a role 
and 

O(z) = 2 0  ~ 

where, according to Dalgano, (28"~ 

Qtr= ~1A _ B log gijl ~ 
go is the relative speed of the interacting particles: A and B are characteristic 
of the considered species. From their values, the collision integrals can be 
written as follows: 

ln(4R) 2+BX B (~I's=I{A2-ABI~ 2 ~ r  ) --~(log(4R)-2A) 

B 2 [,.gr 2 s+l ) , T 
+--4~-6-~1~ +X2, +B[B(ln(4R)+X)-2A]'~ 

R is the perfect gas constant; X is defined from ~2+_~ (1/n - y), 3' being 
the Euler constant (0.5772), and M is the molar weight of the considered 
gas. Numerical values for A and B can be found in several compilations 
such as that by Rapp and Francisfl 9 When A and B are not experimentally 
known, their values can be calculated from the potential energy curves. (27~ 



142 Bacrl and Raffanel 

The resonant charge exchange process gives rise to particularly impor- 
tant cross sections: in the case of N2-N2 + collisions, for instance, the collision 
integral (1,1) corresponding to elastic processes is one order of magnitude 
smaller than that obtained from the experimental charge-exchange cross- 
section values obtained by Kobayashi for energies smaller than 3 eV (3~ and 
by Utterback and Miller for energies between 10 and 1000 eV. ~31) 

In Ref. 21, Capitelli and Devoto indicate that interactions involving 
N2 § or collisions between N and N § or N ++§ play a negligible role for 
transport-coefficient calculations. For this reason, the collision integrals 
corresponding to these processes are given the same values as those for 
(NN § interactions. 

4.3. Neutral-Electron Interactions 

Except for the collision integrals corresponding to N O - e ,  N 2 0 - e ,  
and N O 2 - e  interactions, which have been calculated using the above- 
mentioned polarizability model, all the collision integrals are taken from 
the literature. For N 2 - e  interactions, we use collision integrals computed 
by Capitelli and Devoto (2~) and Penski (32) from experimental cross-section 
values in Ref. 33. For N - e  interactions, we use the values obtained by 
Penski. (32) The collision integrals in which O, O2, or Ar are involved are 
taken from Ref. 25. 

5. THE APPROXIMATIONS USED FOR TRANSPORT 
COEFFICIENT CALCULATIONS 

5.1. Thermal Conductivity 

The thermal conductivity of a plasma is the ratio between the heat flux 
and the corresponding temperature gradient. It can be broken down into 
three terms: 

- - The  first term is the translational thermal conductivity related to the 
modification of the kinetic energies of the plasma components due to the 
temperature gradient. In this term, two contributions can be distinguished: 
the contribution of the electrons htr-e , and that of heavy particles /~tr--h" 
These two terms are calculated using the formalism proposed by Devoto. ~34~ 
Taking into account the convergence between the different approximations 
obtained by this author for an argon plasma, (35) we use the third approxima- 
tion to calculate the electronic contribution, and the second approximation 
to obtain Atr-h- 

---The second term, Aint, is related to the modifications in the distribu- 
tion of the excited levels pertaining to the different chemical species and 
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consequently to the variations of the internal energy of the plasma, induced 
by the temperature gradient. This term is calculated according to the method 
developed by Yun et  aL (36) from Eucken's theory. 

- - T h e  third term, A .. . . .  accounts for the shift of chemical equilibria 
(ionization, dissociation) due to the temperature gradient. This term is 
calculated according to the theory of Butler and Brokaw (3~ adapted to 
partially ionized gases. In this term, the logarithmic derivatives with respect 
to temperature of  the internal partition function of  the species involved in 
the reaction are needed. This justifies the great care taken to compute these 
quantities in order to avoid discontinuities during numerical treatments. ~) 

5.2. Electrical Conductivity 

The electrical conductivity is calculated using the third approximation 
proposed by Devoto (34) to compute the diffusion coefficients and neglecting 
the contribution of the ions to the current. 

5.3. Viscosity 

The static viscosity is calculated using the first-order approximation 
proposed by Hirchfelder et al. (cf. Ref. 4, pp. 489-490). 

6. RESULTS 

The calculations were performed for pressure values of 1, 5, 10, 50, 
100, 150 and 200atm. General results concerning the variations of total 
thermal conductivity, electrical conductivity, and viscosity vs. temperature 
for the different pressures are shown in Figs. 3-5. These curves have been 
obtained under the following conditions: 

- - f o r  N-O interactions, the rigid-sphere model is used. 
- - f o r  N - N  + interactions, the collision integrals are obtained by fitting 

the values of  Capitelli and Devoto. (21) 
- - f o r  O-O + interactions, values obtained by Mexmain (23) and used by 

Aubreton (24'25) were introduced. 
- - N + - O  and N-O + interactions are treated by the polarizability model. 
In Fig. 6, the variation with temperature of  the components of the 

thermal conductivity obtained for a pressure of 1 atm is shown. It should 
be mentioned that, except for the higher temperature values (T  > 10,000 K), 
and contrary to results obtained for monatomic gases such as argon, the 
internal thermal conductivity is not negligible: near 2000 K, this component 
represents about 50% of  the total thermal conductivity. This result is mainly 
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Fig. 3. Variation of the thermal conductivity vs. temperature for different pressures. 

connected with the chemical composition of the plasma: for the lower 
temperature values, polyatomic molecules are the most important com- 
ponents. Their internal partition functions are strongly increasing functions 
of  the temperature and give rise to an important contribution to the total 
thermal conductivity via the internal conductivity. 

In Fig. 7, our results are compared with the experimental values 
obtained by Asinovski et aL, (39) by Devoto et aL, (47) or with similarly 
calculated values. (33-35) 

Concerning the electrical conductivity, our results are very close to the 
values obtained by Nicolet et aL ~42) for temperatures higher than 6000 K. 
These values are within 15~20% of the theoretical ~4~ or 
experimental (39'44) values. For the lowest temperatures characterized by a 
nonnegligible electrical conductivity (0-> 10 -3 mho/cm),  the influence of 
negative ions (mainly O-),  which are accounted for in our plasma composi- 
tions, is to diminish this transport parameter value: these ions constitute a 
nonnegligible part of the negative charges ensuring the macroscopic elec- 
trical neutrality; due to their mass and their geometrical size, their mobility 
is smaller than that of electrons. Figure 8 is relative to a pressure of 1 atm. 
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Fig. 4. Variation of the electrical conductivity vs. temperature for different pressures. 

In Fig. 9, different results concerning the viscosity of an air plasma at 
1 atm are compared. We obtain satisfactory agreement with the results of 
Nicolet et  aL {42) in the whole range of temperatures; up to 15,000 K, 
maximum values of departure from other works are acceptable. When the 
temperature reaches or is greater than 20,000 K, discrepancies from the 
results of Yos ~4~ arise: a factor of 4 difference between these values and 
those obtained in our work or in Ref. 42 sometimes appears. Such departures 
are essentially connected with the plasma composition and with the method 
used to treat the collision integrals between charges particles: 

- -as  shown in Ref. 42, for a given temperature, when the twofold 
charged ions N ++ and O ++ are neglected, the values of viscosity are 
increased. 

- - I n  addition, in Ref. 40 the collision integrals are not rationally treated: 
they are computed according to Liboff's model, (s) using an unscreened 
Coulomb potential up to impact parameter values equal to a Debye length 
calculated considering only the electron population number density; these 
collision integrals so obtained are then multiplied by factors ranging from 
0.3 to 12 independent of  pressure or temperature. These multiplicative 
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Fig. 5. Variation of the static viscosity vs. temperature for different pressures. 

factors are obtained through comparison with electrical and thermal conduc- 
tivities predicted by Spitzer and Harm (8) for fully ionized gases. 

When the pressure value increases, the ionization degree decreases; 
the concentration of multicharged ions, and by consequence their influence 
on transport parameters, diminishes. The departures between the different 
results are smaller. 

7. D I S C U S S I O N  O F  R E S U L T S :  INFLUENCE OF THE MAIN 
COLLISION INTEGRALS 

In spite of the apparent satisfactory agreement between these calculated 
values and previous theoretical or experimental published works, the 
"accuracy" of results should be discussed. As previously mentioned, the 
transport coefficients depend on both population number densities and 
collision integrals. In air plasmas, as soon as the temperature reaches 
10,000 K, the most numerous species are electrons, monatomic, positive 
ions, neutral atomic oxygen, and neutral atomic nitrogen. Collision integrals 
between these species play a particular role. Collision integrals between 
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Fig. 6. Components of the thermal conductivity for an air plasma at atmospheric pressure. 

charged particles have been extensively discussed, and the model used in 
this work seems to be satisfactory whatever the value of the ionization degree. 

The rigid-sphere model is particularly rough (but easy to use) to treat 
interaction between neutral particles. For the N-O interaction, the Morse 
potential associated with the ground electronic configuration of the NO 
molecule has been used alternatively. With respect to the collision integral 

1,1 calculated with the rigid-sphere model, ~ N-o is then multiplied by a factor 
near 3. In Figs. 10 and 11, evolutions of  the total thermal conductivity and 
the viscosity vs. temperature obtained with these two models are compared. 
For intermediate temperature values, i.e., between 7000 and 20,000 K, the 
increase of  this particular collision integral leads to a decrease of Atot which 
can be as high as 35% for p = 1 atm. The reactive thermal conductivity A .. . .  
is strongly affected by this modification. The factor which represents the 

~ l l M o r s e  r111 R.S. ratio between ,~No and ~NO propagates up to a dividing factor 1.40 
in a .... ; at~ is also affected, but its weight in atot is lower. 

As the pressure grows, the maximum difference between the two 
evolutions is shifted toward the higher temperatures as the chemical 
equilibrium is displaced. Departures on the viscosity are greater: they can 
reach 60% near 10,000 K for p = 1 atm. 
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Fig. 7. Comparison of thermal conductivity values for a pressure of 1 atm: O (Ref. 40); 
+ (Ref. 43); �9 (Ref. 39); - - - (Ref. 42); - -  (this work); [] (Ref. 47). 

Values  of  the  t r anspor t  coefficients are not  ser ious ly  affected when  
in te rac t ion  be tween  N and  O + is t r ea ted  on the bas is  o f  the  Morse  po ten t i a l  
a s soc ia ted  with the N O  + mo lecu l a r  ion in its g r o u n d  e lec t ronic  configura-  
t ion,  because  the  po la r i zab i l i t y  mode l  and  Morse  po ten t i a l  l ead  to re la t ive ly  
close values .  

As shown by Capi te l l i ,  (48'46) col l is ion integrals  f l  t'l for  N - N  + or  O - O  + 

in terac t ions  differ by  as much  as a factor  o f  2 accord ing  to the  m e t h o d  used  
to compu te  the  to ta l  charge- t rans fe r  cross sect ion.  F o r  pure  n i t rogen  or  
oxygen  p lasmas ,  the  fac tor  2 p lays  a d i rec t  role  on A . . . .  and,  d u e  to the  
weight  o f  this componen t ,  the  i nc idence  o f  these  factors  o n  ~tot can reach  
1.5. This m a x i m u m  inc idence  is ob t a ined  for  t e m p e r a t u r e  values  co r r e spond-  
ing to the  equ i l ib r i a  IN[ = IN+I or IOI = IO+1. In an air p lasma at a tmosphe r i c  
pressure ,  these  two equ i l ib r i a  are  r eached  for  t empera tu re s  o f  the same 

nt,1 + f rom orde r  of  magn i tude  (14,700 and  15,500 K, respect ively) .  When  "~NN 
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Fig. 8. Compar i son  of  electrical conductivity values for a pressure  of  1 atm: �9 (Ref. 40); O 
(Ref. 44); A (Ref. 39); - - - (Ref. 42); - -  (this work).  

Ref. 21 and 1,1 ~ o o  + from Ref. 23 are simultaneously multiplied by a factor 
2, htot can be divided by a factor whose maximum value (1.55) is obtained 
for a temperature slightly lower than 14,000 K at atmospheric pressure. As 

1 , 1  
I)NO, these two collision integrals play mainly on h .... and ht~ and on the 
viscosity. In Figs. 12 and 13 the variation of Ato t and 7/ with temperature 
is shown. 

Departures on transport parameter values induced by modification of 
the magnitude of these collision integrals should be considered as equivalent 
to error bars. This theoretical uncertainty is of the same order of magnitude 
as the experimental error bars obtained by some authors. 

A detailed analysis of the influence on the reactive thermal conductivity 
of the charge exchange from the low-lying excited states (4S, 2D, 2p for N 
atom, 3p and ~D for N + ion) can be found in Ref. 48 for a pure nitrogen 
plasma at atmospheric pressure. 
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Fig. 9. Comparison of viscosity values for a pressure o f  1 atm: O (Ref. 40); - - - (l%f. 42); 

- -  (this work). 

When equilibrium situations are considered, the so-induced differences 
remain relatively weak (20% at maximum on A . . . .  which propagates by 
10% on Ato,). In this work, the influence of the excited states is only 
considered through the component  Ai,t. 

8. CONCLUSION 

Numerical values of the transport coefficients of air plasmas, which 
are necessary, for instance, in solving the fundamental hydrodynamic 
equations governing plasma flow, have been obtained in extended ranges 
of  pressure and temperature. 

For pressures equal to or greater than 1 atm, -air plasmas assumed in 
C.L.T.E. are characterized by a number of charged particles in the Debye 
sphere that is particularly low. Under these conditions, a difficulty arises 
when the formalism proposed by Liboff is used to treat interactions between 
charged particles: some high-order collision integrals have negative values, 
and this phenomenon is amplified when the pressure or the temperature 
increases. To avoid this difficulty, the model proposed by Mason, Munn, 
and Smith appears more appropriate: it can be used in the whole interval 
of pressure and temperature considered here, without giving rise to negative 
collision integral values. 
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Fig. 10. Inf luence  of  N - O  in te rac t ion  po ten t i a l  on the to ta l  t he rma l  conduct iv i ty .  - -  ( r ig id  

sphere) ;  - - . - -  (Morse  po ten t ia l ) .  
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5 10 --T(kK)--> 15 
Fig. 11. Inf luence  of  N - O  in te rac t ion  po ten t ia l  on the viscosi ty.  - -  ( r igid sphere) ;  - -  �9 - -  

(Morse  potent ia l ) .  
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(mW/cm K) 
I I  , ~  I ,  t I ! 1 1 ~  , ,  I I , l ~ l  t l i  

101 

~/ O0 + 
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) I , I  , I I I  , l  r I I I  I 1 1  f l l q  

5 10 15 20 --T(kK)--> 
1,l + 1 I 

~ 6 o  + o n  F ig ,  12, I n f l u e n c e  o f  ~NN a n d  t h e  t o t a l  t h e r m a l  c o n d u c t i v i t y  f o r  P = ] a t m .  

The influence of the plasma composition on the transport coefficients 
can be illustrated by the following: 

--For the lowest temperatures and the highest pressures considered in 
this work, the internal thermal conductivity represents up to 50% of the 
total thermal conductivity. This result contrasts with similar calculations 
performed for monatomic gases in which 3-int is generally negligible. This 
is related mainly to the significant concentrations of the polyatomic species 
corresponding to the nitrogen oxides and their ions. 

"q (g/cm.s) 

~ , , 1 ~ , , , i - , , , ,  , , , , i , , ~ _  

3 { 1,1 1 0-a ".\  1%0 + (23) 

6 I~',,  k 
1,1 

O0 + ~ 

I0 -4 ,,,I, K,JI,,,,I,,~)I,~, 
5 10 15 20 --T(kK)---~ ~ 

~NN + a n d  1 ) ~ +  o n  t h e  v i s c o s i t y  f o r  P = 1 a t m .  F i g .  13. I n f l u e n c e  o f  t,l 
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In t roduc t ion  in the calculat ions  of the n i t rogen oxides also leads to a 

b roaden ing  of the peak of  A . . . .  near  3500 K and  an increase of its area 

because in this range of temperatures  the popu la t i on  n u m b e r  densi t ies  of 
these oxides show a max imum.  

- - F o r  temperatures  greater than  15,000 K, the inf luence of the mult i-  
charged ions is par t icular ly  not iceable  on the static viscosity value;  this is 
in agreement  with the analysis  by Nicolet  et al. 

- - B e c a u s e  at the lowest temperatures  their  concen t ra t ion  is not  negli- 
gible with respect to the concent ra t ions  of electrons and  posit ive ions,  

negative ions such as O -  and  N O -  lead to a decrease in the electrical 
conductivi ty.  

The inf luence of the choice of in teract ion potent ia ls  between particles 

has been  examined  at least for potent ials  be tween the major  species of  the 
plasma.  This inf luence is not iceable  for temperatures  between 9000 and  

20 ,000K and  give rise to an uncer ta in ty  up to 50% on total thermal  
conduct iv i ty  and  viscosity. 
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