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Based on the electromagnetic vector potential representation, a two-dimensional, 
axisymmetric model is proposed for the calculation of the electromagnetic fields in 
a r t  inductively coupled, radiofrequency (r.f ) plasma, A comparative analysis made 
between the flow, temperature, and electromagnetic fields obtained using this model 
and those given by our earlier one-dimensional electromagnetic fields model show 
relatively little difference between the temperature fields predicted by the two models. 
Significant differences are observed, however, between the corresponding flow and 
electromagnetic fields. The new model offers an effective means of accounting for 
variations in the coil geometry on the flow and temperature fields in the discharge 
and for achieving a better representation of the electromagnetic fields under higher 
frequency conditions ( f>  10 MHz). 

KEY WORDS: Modelling; induction plasmas; flow and temperature field; two- 
dimensional electromagnetic fields. 

1. INTRODUCTION 

Over the past few years there has been a renewal of interest in the 
inductively coupled r.f. plasma. The processing of high-purity materials, 
and the synthesis of ultrafine powders of  metals, alloys, and ceramics are 
only a few examples of current and potential industrial applications of 
induction plasma technology. The success of  these applications, however, 
depends to a large extent on our understanding of the basic phenomena 
involved and on the ability to control the conditions in the discharge. 

Mathematical modelling is an excellent tool which has so far been used 
with considerable success to calculate the flow, temperature, and concentra- 
tion fields in induction plasmas over a wide range of operating conditions.(1'2/ 
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Of considerable interest are the use of these models for the development 
of new designs of the radiofrequency plasma torch, (3~ the prediction of 
plasma-particle interactions under dense loading conditions, (4'5~ the calcula- 
tion of the emission patterns in spectrochemical ICP's, (6) and the investiga- 
tion of local thermodynamic equilibrium (LTE) effects under atmospheric 
and reduced pressure conditions. (7) Reviews of developments in this area 
up to 1985 have been published by Boulos (8) and Boulos and Barnes. (9) 

These studies, while being concerned with the calculation of the two- 
dimensional flow, temperature, and concentration fields in the discharge, 
were limited to a one-dimensional representation of the electromagnetic 
fields. The magnetic field intensity along the axis of the coil was either 
taken as constant, or varied according to that for a short coil in vacuum. 
Only the axial components of the magnetic field were considered in either 
case. 

The assumption of one-dimensional electromagnetic fields is justified, 
however, only when the coil end effects are negligible. Physically, this is 
possible when the aspect ratio of the coil (length/diameter) is greater than 
unity, and for low induction frequencies. (~~ Recently, based on the concept 
of the electromagnetic vector potential, (H'~2~ McKelliget(! 3'~4~ and later 
Mostaghimi (~5) proposed a two-dimensional formulation of the electromag- 
netic fields in an inductively coupled plasma. The concept of electromagnetic 
potential is widely used in classical electrodynamics and theory of radiation. 
Its application to r.f. plasmasl however, is a new development which could 
have a long-range impact on our ability to optimize the design of an 
induction plasma torch both from the aerodynamic and the electromagnetic 
points of view. It also offers a relatively simple means of testing different 
induction coil designs and to determine the effect of the particular coil 
geometry on the flow and temperature fields in the discharge. 

In this paper a two-dimensional model for the electromagnetic fields 
in an r.f. plasma is described. Computations are carried out for an induction 
plasma torch of standard design under typical operating conditions. Results 
are compared with those obtained using our earlier model (~'2~ based on a 
one-dimensional representation of the electromagnetic fields. 

2. THE MODEL 

The proposed model is an extension of the work by Mostaghimi, Proulx, 
and Boulos. (1-2) The plasma is assumed to be in LTE, and optically thin. 
The flow is steady, laminar with negligible viscous dissipation. The flow, 
temperature, and electromagnetic fields are assumed to be two-dimensional 
with negligible displacement currents. 
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2.1. Vector Potential  Formulation 

The electromagnetic fields in the coil region of the induction plasma 
are governed by the Maxwell equations, which can be written in their general 
form as follows: 

with 

V . E = 0  (1)  

V .  H = 0 (2) 

OH 
V • E = -I~o Ot (3) 

V x H = j  (4) 

j = ~,E (5) 

where E and H are the electric and magnetic field intensities, respectively, 
j is the current density, ~o is the permeability of the free space (go = 47r • 
10 -7 H/m),  and o, is the electrical conductivity. 

Equation (2) is satisfied through the definition of the vector potential 
A as 

g o H  = V x A (6) 

Substitution of Eq. (6) into Eq. (3), and considering that in the absence 
of an electrostatic charge on the plasma the scalar potential is equal to zero, 
gives the following equation for the electric field intensity as a function of 
the vector potential: 

0A 
E = - - -  (7) 

Ot 

Substituting Eq. (7) into Eq. (4) and using the identity V• ( V •  
V(V- A)-V2A and the Coulomb's gauge gives the following equation for 
the vector potential (11): 

aA 
V2A --- goc r - -  (8) 

Ot 

Maxwel l ' s  equat ions  are now combined  into a single equat ion  which 
has the following solution: 

A = g ~  f j ( r ' , t )  , , 
. ~ a v  (9)  

4 ~  J~, j r -  r I 

where dr' is the volume element. 
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Assuming that the A, E, and H fields in the r.f. plasma are sinusoidal 
with a frequency f, they can be expressed in the time domain as follows: 

A(r, t ) =  A~(r) e ~'  

E(r, t ) =  E~(r) e i'~ (10) 

H(r,  t )=  Ho(r) e i~ 

where the subscript c denotes a phasor and to = 2~'f. Substituting Eq. (10) 
into Eqs. (6)-(8) gives 

V2Ac - i/zocrtoAc = 0 (11) 

~oHc = V • Ac (12) 

E~ = - i toAc  (13) 

For a standard induction plasma torch with a coil geometry given in 
Fig. 1, it is reasonable to assume that the electric field, and thus the vector 
potential, has only a tangential component,  i.e. 

Ac=(0,  Ao,0) (14) 
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Fig. 1. Schematic diagram of the induction 
plasma torch. 
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where Ao is also a phasor quantity. Therefore 

1 8 (rOAo~ 02A~ [ .  +.~2)Ao= 0 
r f r  T: 

and 

(15) 

Eo = - iwAo (16) 

I~oH2 - ! a__ (rAo) (17) 
- r  Or 

IzoH, = - ~z ( Ae ) (18) 

The boundary condition for Eq. (15) is given as 

Ao(O, z) = 0 (19) 

Using Eq. (9), the boundary conditions on the wall will be evaluated 
in the following manner. 

Consider a cylindrical loop of radius Re, carrying a current/ ,  as shown 
in Fig. 2. The right-hand side of  Eq. (9) can be integrated and the resuIt is (Jz) 

Z o ( r , z ) = ~ - j ~ f ~ G ( k )  (20) 

Fig. 2. Schematic representation of a current 
loop of the induction coil. 
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where 

( 2 -  k2)K(k) - 2E(k)  
G ( k )  - (21) 

k 

k2 = 4Rcr 
(Re+ r) + (z - zc) 2 (22) 

K and E are the complete elliptic integrals315"16) 
This result can be used to develop an expression for the wall boundary 

conditions. According to Eq. (9), the vector potential at each point depends 
on all the current-carrying regions of space. Therefore the vector potential 
on the wall is determined by the superposition of the coil and the plasma 
effects. Since, in our numerical scheme, the plasma torch will be divided 
into a number of control volumes in the form of cylindrical loops, ~ the 
wall boundary conditions can be written as 

r ~ coil C V 
/*01 /*xc ~ k +/z~ " " - 

ao(Ro, z )=-~  ~/--~oo~=lG( i) 2rri~= ' ~tl~ooJ, S,G(k,) (23) 

where the first summation extends over the number of coils and the second 
one extends over the current carrying regions of the discharge. Here j~ is 
the current density of  the ith control volume, Ro is the radius of the plasma 
confinement tube, and q and Si are the radius and cross section of the ith 
control volume. 

The boundary condition for the inlet of  the torch may also be deter- 
mined in the same fashion. However, this condition does not have a 
significant effect on the solution obtained since the electrical conductivity 
in the inlet region is equal to zero. At the exit of  the torch, on the other 
hand, the intensity of the magnetic and electric fields gradually drops to 
zero with the increase of the distance from the downstream end of the 
induction coil. Simpler conditions will, therefore, be adopted for the inlet 
and the exit regions of  the torch. 

For the purpose of the numerical solution of Eq. (15) with the boundary 
conditions, Eqs. (19) and (23), the vector potential must be divided into its 
components, i.e. 

Ao = AR+ iAl (24) 

where AR and A~ are, respectively, its real and imaginary parts, and i -- ~---1. 
The individual equations and the boundary conditions for these components 
are given in the next section along with the governing equations for the 
conservation of mass, momentum, and energy. 
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2.2. Governing Equations 

These equations are as follows: 

Con tin uity: 

?,(pu) 1 8(prv) 
- - + -  - o ( 2 5 )  

Oz r Or 

Momen turn: 

P"o-;+o~a-7 = az az~ a=l 7o-TL~rk~'~)j +~ (26) 

E. (27) 
PVor-  Or Oz L \Or/ 

l 

Energy: 

pu . . . . . . .  t ) l ~  oz+PVar-Oz  -~p~z r O r \ e  e Orl 
(28) 

Vector potential: 

02AR ~-l-O ( r a A a ~ - - ~ + / a o ~ w A , = O  (29) 
oz 2 r ~ \ -771 

O2A'# -li O l / J r  OA'\ A, 
Oz 2 r ~rr \ --~r] -7- /Zo~wAa = 0 (30) 

where u and v are, respectively, the axial and the radial velocity components;  
p,/~, A, and Cp are the density, viscosity, thermal conductivity, and specific 
heat at constant pressure, respectively; h is the enthalpy, p is pressure, and 
P and /~  are the local energy dissipation rate and volumetric radiation heat 
losses. 

Fr = �89 Real [EoH*] (31) 

F~ = -�89 Real [EoH*] (32) 

p = �89 (33) 

the superscript * denotes the complex conjugate. The boundary conditions 
for the conservation equations are: 

Inlet conditions (z = 0): 

Qo , l = r ~  r < r, 

r 1 ~ r ~  r 2 
N = ~  2 2 Q2/ ~r( r3 - r2) r2 < r <_ r3 

{ 2 2 Q3/Tr(Ro-r3) r3<r<-Ro 
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v = 0  (34) 

T= T, 

02AR -- 02AI = 0 
OZ 2 OZ 2 

Centerline (r = 0): 

au oh 
- - =  v = - - =  AR = At=O 
Or Or 

(35) 

Wall (r = Ro): 

u = v = 0  

OT Aw 
A - - =  (T~- Tw) 

- ~ o i ~ i :  +~z~176 AR = R~ E G(k,) ~ , = ,  , 

A , =  /z~ ~=, ~o ' iAR,~S ,G(k i )  

(36) 

where Aw is the thermal conductivity of the quartz plasma confinement tube 

(Aw = 1.047 W/mK)  and ~w is the tube wall thickness. T~ and Tw are respec- 

tively, the inside and external surface temperature of the quartz tube. Since 

the real part of the vector potential at the wall is dominated by the coil 
current, the second term for this boundary condition can be neglected. 

In Eq. (36), for the vector potential boundary condition, either the coil 

current I or the total power dissipated into the discharge Po can be specified. 

The latter is defined as 

Po = f~, P(v') dr' (37) 

where P(v') is local energy dissipation rate, Eq. (33). 

Exit (z = Lr):  

O(pu) Ov oh o2AR 02AI 
- - - -  - - = 0  ( 3 8 )  

Oz Oz Oz Oz 2 Oz 2 
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2.3. Thermodynamic and Transport Properties 

The density, thermal conductivity, enthalpy, and viscosity data for 
atmospheric argon are obtained from Ref. 17. The radiation properties used 
here are those of Ref. 18, and the electrical conductivity is from 19. 

3. RESULTS AND DISCUSSION 

In this section the proposed formulation of the vector potential model 
is first tested and validated against exact standard solutions for the relatively 
simple cases of conductors, with a uniform electrical conductivity, sur- 
rounded by different solenoids. Results obtained using the model for the 
induction plasma are presented next. These are compared against flow, 
temperature, and electromagnetic fields obtained using our earlier, one- 
dimensional electromagnetic fields model. (1"2) 

3.1. Cylindrical Load in the Infinite Solenoid 

Computations were first carried out using the vector potential model 
for a cylindrical load of a constant electrical conductivity placed inside an 
infinite solenoid. (2~ Figure 3 shows a comparison between the normalized 
magnetic field intensity profiles in the radial direction obtained using the 

0 . 8  ~ ~ ~ ~ 

o.6 

" 0 .4  

-1- 
0 .2  

l 
0 A f x ,, ,l ,___~ 

0 0 . 2  0 . 4  0 . 6  0 . 8  1,0 

( r / r  n ) 

Fig. 3, Radial profiles of  the axial magnetic  field for a load of uniform electrical conductivity 
in an infinite solenoid. 
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present model (circles) and those of an exact solution (solid lines) for two 
cases, with values of  r,/6 = 1.41 and 2.83, respectively. Here r,  is the radius 
of  the cylindrical load and 8 is the skin depth, defined as 

8 = ,/2//ZoO'tO (39) 

where o- is the electrical conductivity of  the load. The agreement between 
the two results is excellent for both cases considered. 

3.2. Cylindrical Load in a Short Solenoid 

In contrast to the infinite solenoid case, the use of  a short solenoid 
results in variation of the magnetic field intensity in both the radial and 
axial directions. 

Figure 4 shows the axial magnetic field intensity profiles along the 
centerline of  a 3-turn short solenoid, 66 m m  in diameter and 40 mm long, 
in which a load of uniform electrical conductivity, 50 mm in diameter, is 
placed concentric with the solenoid. The total length of  the load is assumed 
to be identical to that of  the solenoid, i.e., 40 mm, and the electrical 
conductivity of  the space beyond the load is assumed to be zero. Computa-  
tions were carried out for different oscillator frequencies giving rise to 

40  ' ' ' ' I ' ' ' ' I ' ' ' ' I ' ' ' ' 

r n = 25tara ~ rn =l.41 
R c ; 3 3 r n m  ~ ~ 

i i ( ' ~ "  

0 ~ , , I % - - ' ~ ( . - "  I , , I . . . .  

- I 0 0  - 5 0  0 50 tO0 

Z [ m m ]  

F i g .  4 .  A x i a l  m a g n e t i c  f i e l d  d i s t r i b u t i o n s  a l o n g  t h e  c e n t e r l i n e  o f  s h o r t  s o l e n o i d  i n  t h e  a b s e n c e  

and presence of a load of uniform electrical conductivity for various oscillator frequencies 
(1.41 < r,/~ <8.94). 
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variations of  the ratio rn/6 between 1.41 and 8.94. The solid line on Fig. 4 
corresponds to the exact solution for the case of  "no-load,"  for comparison. 

It may be noted that at low oscillator frequencies, and values of  
rn/6<1.5-2.0,  the presence of the load has relatively no effect on the 
magnetic field distribution along the centerline of  the solenoid. With the 
increase of the oscillator frequency, the induction currents are limited to a 
decreasingly small region around the outer shell of the conductor. The 
increase of  the current density in these regions of the toad results in an 
increase of the induced magnetic field in the center of the discharge. Since 
both the applied and induced magnetic fields are out of  phase, the resultant 
magnetic field intensity along the centerline of the solenoid will drop within 
the load and, to a lesser extent, in the region of  influence surrounding it. 
As shown in Fig. 4, the effect increases substantially with the decrease of 
the skin depth, or the increase of the r j 6  ratio. 

In most of the earlier induction plasma modelling work, (1'2) based on 
the one-dimensional formulation of  the electromagnetic fields, it was 
assumed that the axial magnetic field distribution along the centerline of 
the coil was that of a short solenoid in vacuum. As shown in Fig. 4, this 
may still be considered as a reasonable approximation for plasmas generated 
at low oscillator frequencies, for which the value of the ratio r , /a  is in the 
range of  1.4-2.0. The situation, however, is quite different at higher 
frequencies, for which the two-dimensional formulation of  the electro- 
magnetic fields will offer a means of taking into account the interaction 
between the applied and the induced magnetic fields in the coil region. 

3.3. Induction Plasma Torch 

In an attempt to compare the predictions of the present 2-D E&H fields 
model with those of our earlier model in which the E&H fields were assumed 
to be I-D, computations were carried out using vector potential formulation 
combined with the two-dimensional continuity, momentum and energy 
conservation equations, and the appropriate boundary conditions, for an 
induction plasma torch of  a standard design. Details of the torch geometry 
and its characteristic dimensions and operating conditions are given in Fig. 
1 and Table I, respectively. The plasma gas is taken as argon at atmospheric 
pressure, the oscillator frequency is 3.0 MHz, and the net energy dissipated 
into the discharge is 5.0 kW. The equations were solved using the SIMPLER 
finite difference scheme (21~ with a 23 x35 grid network in the radial and 
axial directions, respectively. 

Computations were also carried out for the same torch geometry and 
operating conditions using the earlier compute code by Mostaghimi et al. (1"2~ 
based on the one-dimensional electromagnetic field formulation. 
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Table I. To rc h  Charac te r i s t ic  D imens ions  and  Opera t ing  Condi t ions  

r 1 = 1.70 m m  Q, = 1.0 l i t e r /min  [Ar  STP] 

r 2 = 3.70 Q2 = 3.0 l i t e r s /min  [Ar  STP] 

r a = 18.80 Q3 = 21.0 l i t e r s /min  [A t  STP] 

R o = 25.00 Inlet  Reynolds  n u m b e r  = 625 

R c = 33.00 L1 = 10.00 m m  

Coil = 3 turns  L 2 = 74.00 

d c = 5.00 m m  L T = 150.00 

f = 3.0 M H z  

Po = 5.o kW 

The results for each of these two cases are presented in Fig. 5-10 in 
terms of the following parameters: 

�9 Two-dimensional flow and temperature fields (Fig. 5). 
�9 Axial profiles of  the temperature and velocity fields (Fig. 6). 
�9 Axial profiles of the magnetic field intensity along the centerline of 

the torch (Fig. 7). 

Z = 0 - - ,  , ~.xx ~, Z : 0 - -  

Z : 150 m m  - Z : l S O m m  _ 

.J 

k 

Ca) 

r = 0  2 5 , 0  r n m  r = 0 2 5 . 0  m m  

) 3 K j  

J 
),0 

\ 

(b) 

. J  

O 

Fig. 5. T e m p e r a t u r e  and  flow fields ob ta ined  using (a) the 2-D E & H  field mo d e l  and  (b) for 

the 1-D case. 
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�9 Radial distributions of the magnetic and electrical fields and the 
phase difference between them, the electromagnetic body forces 
acting on the plasma, and the-local energy dissipation profile at 
Z = 52 mm (Fig. 8). 

�9 Axial distribution of the integral energy dissipation rate, and the 
heat flux to the wall of the plasma confinement tube (Figs. 9 and 10). 
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Fig. 6. Temperature (a) and velocity (b) profiles along the centerline of the plasma torch. 
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2 0 0 0  I I / I I 
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"" 2-D 
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- COIL ~"~"~ "~" 
0 I I I / I  I - F  . . . . .  

0 25 50 75 I00 125 150 

Z [ m m ]  

Fig. 7. Axial magnetic field distribution along the centerline of the plasma torch. 

From a comparison of the isotherms and the flow streamlines given in 
Figs. 5a and b for the 2-D and the 1-D E&H fields models, respectively, it 
is noticed that while both discharge configurations have essentially similar 
shapes, the higher temperature region ( T > 9600 K) is slightly shifted toward 
the downstream end of  the coil in the 2-D case compared to that for the 
1-D case. This could be partially due to the presence, for the first time, of 
an axial body force term, Fz, acting on the plasma. The corresponding flow 
fields in each case are essentially similar, giving rise to a flow separation 
near the wall on the downstream end of the induction coil, in addition to 
the characteristic recirculation eddy observed in the center of the discharge. 

As shown in Fig. 6a the predicted temperature profiles along the axis 
of  the discharge are essentially similar for the 1-D and 2-D cases studied. 
Figure 6b, on the other hand, shows a relatively more important effect of 
the electromagnetic field formulation (1-D vs. 2-D) on the axial velocity 
profiles along the centerline of the torch. It may be noted from Fig. 6b that 
the 2-D E&H field formulation gives rise to a lower backflow caused by 
electromagnetic pumping on the upstream end of the coil compared to that 
for the 1-D case. 

As expected, the principal difference between the predictions of the 
two models is in the electromagnetic field distributions obtained (Figs. 7 
and 8). It should be emphasized that in Fig. 7 the shape of the distribution 
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Fig. 8. Radial profiles, at Z = 52 ram, of the magnetic field (a), the electrical field intensity 
(b), the phase difference between them (c), the electromagnetic body forces acting on the 
plasma (d), and the local energy dissipation due to ohmic heating (e). 
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(c) 
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Fig. 8. Continued. 

of the axial magnetic field along the centerline of the torch for the 1-D case 
is an imposed boundary condition which is taken as that for a short solenoid 
in vacuum, while the profile given for H~ in the 2-D case is one that is 
obtained in the course of the computation. It may be noted in the latter 
case that the axial magnetic field distribution is not symmetric with respect 
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Fig. 8. Continued. 
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Fig. 9, Axial distributions of the integral energy dissipation in the torch. 
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x 105 
2.0 I I I i I 
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Fig. 10. Axial distributions of the heat  flux to the wall of  the plasma confinement tube. 

to the coil and rather drops monotonously from one end of the coil to the 
other. The fact that the magnetic field intensity does not drop on the upstream 
end of the coil is, however, only a consequence of the fact that, in the torch 
configuration used, the induction coil is very close to the upstream end of 
the torch, with its first turn at only 10.0 mm from the upstream boundary 
of the computation space. Obviously, if the computation domain were 
extended further upstream, the magnetic field intensity would eventually 
decrease with distance from the coil. 

It may be noted from Fig. 8a that while the computed radial magnetic 
field intensity (Hr) is considerably smaller than the axial component of the 
magnetic field (Hz), values of Hz obtained using the 1-D and 2-D models 
are substantially different. Corresponding differences, although smaller in 
absolute terms, are observed between the computed Eo and X fields in each 
case, as shown in Figs. 8b and 8c. 

Figures 8d and 8c show, respectively, the corresponding radial distribu- 
tions of the body forces IFI and the local energy dissipation o-E 2. The 2-D 
model gives rise to body forces in the radial, Fr, and axial, F~, directions 
in contrast to the 1-D model which, by definition, can account for the radial 
body forces only. Corresponding differences are noted in the local energy 
distribution profiles. These are responsible for the modification of the axial 
distributions of the integral energy dissipation in the torch and of the heat 
flux to the wall of the plasma confinement tube as shown in Figs. 9 and 10 
respectively. 
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4. CONCLUSIONS 

A two-dimensional representation of the electromagnetic fields in an 
inductively coupled r.f. plasma is presented using the vector potential 
approach. Computations carried out for a short coil in which a cylindrical 
load of uniform electrical conductivity is placed show an important effect 
of the operating frequency, or the ratio rn/,5, on the resultant magnetic field 
distribution in the coil region. The magnetic field along the centerline of 
the coil approaches that of a short solenoid in vacuum for a value of rn/8 
lower than 1.5. 

For an induction plasma under typical operating conditions, some 
differences are noted between the flow and electromagnetic fields predicted 
by the two-dimensional model compared to those obtained using the earlier 
one-dimensional model. The significance of the present model is, however~ 
in its ability to predict the effects of the coil geometry on the flow and 
temperature fields in the discharge. It also provides a more realistic rep- 
resentation of the electromagnetic fields in the coil region which can have 
an important influence on the energy distribution in the plasma specially 
under high-frequency operating conditions. 
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