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Large-Scale Simulation of Avalanche Cluster 
Distribution in Sand Pile Model 

S. S. Manna 1 

Received 

The avalanche cluster distribution of the sand pile model of self-organized 
criticality is studied on the square lattice. A vectorized multispin coding 
algorithm is developed for this study with three bits per site. The exponents 
characterizing the size and the lifetime of the avalanches are slightly different 
from the previous estimates. 
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1. I N T R O D U C T I O N  

A wide variety of systems in nature behave in the following two ways. 
Objects with fractal geometry/1) obey long-range spatial correlations, 
whereas systems which follow long-range temporal correlations are charac- 
terized by 1/f-like power spectra. (2) Bak et al. ~ (BTW) proposed to unify 
these two phenomena. In the opinion of Bak and Chen, (3) "those two 
phenomena are often two sides of the same coin: they are the spatial and 
temporal manifestations of a self-organized critical state." 

BTW introduced a cellular automaton model which under time evolu- 
tion goes to a stationary state that lacks characteristic time or length 
scales; then it is called a critical state. Here I describe one version of the 
model for the square lattice. At each site of this lattice a variable z(i, j )  is 
associated which can take positive integer values. Starting from an initial 
empty lattice [all z ( i , j ) = O ] ,  the value of z is increased at randomly 
chosen sites of the lattice in steps of unity as 

z ( i , j ) = z ( i , j ) +  1 (1) 
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When the value of z at any site reaches a maximum Zm, its value is 
decreased by four units and each of the four nearest neighbors gains one 
unit of z as follows: 

z(i, j )  =z ( i ,  j ) - - 4  (2) 

z(i+_ 1, j+_ 1) = z ( i _  1, j +  1)+  1 (3) 

when z(i, j ) ) Z m .  At the boundary sites z = 0 .  
The variable z can be thought of as the local slope of a sand pile. 

Equation (1) represents the addition of slope to a site and Eqs. (2) and (3) 
represent the toppling of a particle when the slope is too high. (3) 

Initially the system starts with slopes growing at different sites. After 
a long time it will reach a stationary state in which the average slope will 
not increase any more because the slope which is coming into the system 
with Eq. (1) will flow out through the periphery to maintain z = 0 on the 
boundary. At this stage, the addition of unity to a site with z(i, j ) =  Z m -  1 
generally results in a series of topples in a chain reaction, forming an 
avalanche. When the addition of slope is followed by at least one topple, 
it is called an avalanche. The size (precise definition given below) and the 
lifetime of the avalanche vary over large scales. The probability distribution 
of the size and lifetime of the avalanche follow power laws: D ( s ) ~  s 1 - ~ and 
D ' ( t )  ~ t b, with r = 2.0 and b' = 0.43 according to ref. 3. 

Recently different version of this model have been introduced and 
studied. In a continuum version of this model in which z can vary 
continuously Zhang (4) suggested that z = 3 - 2/d. Other models introducing 
anisotropy {5) and directedness (6'7) have also been studied where the direct 
BTW model is found to be exactly solvable. (7) 

Here I report results of large-scale computer simulations on the 
isotropic BTW model for zm = 4. I estimate the critical exponent r = 2.22 
slightly different from both the theory (4) and earlier simulation (3) and 
obtain b ' =  0.85, different from earlier simulation. (3) In Section 2 I describe 
the multispin coding algorithm for studying sand pile automaton on the 
square lattice. In Sections 3 and 4, I report results on critical points and 
critical exponents, and finally conclude in Section 5. 

2. S I M U L A T I O N  M E T H O D  

The above-mentioned BTW model is studied on the square lattice 
using a multispin coding technique. For  the square lattice any site having 
z values 0, 1, 2, and 3 does not topple, while for z - - 4  it topples. This 
algorithm uses 3 bits for each lattice site and in a 64-bit integer word of the 
Cray computer, 21 lattice sites can be stored. Each set of these 3 bits 
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together is called a cell. The whole lattice is updatted simultaneously. Out 
of the 23 possibilities of a cell, I choose 000, 001, 010, 011, and 100 to 
represent z = 0 ,  1, 2, 3, and 4 respectively. I use an array IS(0: L +  1, 0: 
B + I )  with B=L/21 to simulate an L x L  lattice. Any Kth cell of the 
(I, J ) t h  elements of IS array has nearest neighbors at the Kth cells of the 
( I -  1, J), (I, J +  1), ( I+  1, J),  and (I, J -  1) elements. 

One starts with an initial empty lattice having all elements of IS array 
set equal to zero. To choose a cell randomly, one calls three random num- 
bers I, aT, and K, where (1 <~I<~L), (1 ~J~B) ,  and (1 ~<K~<21). Then to 
add unity at this cell as in Eq. (1) one adds 8 x-1 to the (/, J ) th  element 
of the array IS, which increases the value of the Kth cell of IS(/, J) by 1. 
Next, to vectorize Eq. (3) one uses a second array IN(0: L + 1, 0: B + 1) to 
store the contributions due to the topplings. A cell has the third bit equal 
to 1 when its value is greater than 3. The first DO loop uses this fact to 
calculate the contributions by using a mask M100 (21 repetitions of the 
three bits ... 100100100), a logical AND, and a right SHIFT as 

IN(/, J ) =  RSHIFT((IS(/, J ) .AND.M100),  2) 

In a second DO loop the IS array is updated by adding the contribu- 
tions from the nearest neighbors and decreasing the values for topplings by 
using another mask M011 (21 repetitions of the three bits ...011011011) as 

IS(L J ) = I N ( 1 -  1, J)  + IN( / ,  J +  1 ) + I N ( l +  1, J) + I N ( L  J -  1) 

+ (IS(/, J ) .AND.  M011 ) 

To take into account the boundary condition z--0,  one adds to the 
first and last J columns as 

IS(/, 1)= IS(/, l) + RSHIFT(IN(I, B), 3) 

IS(L B) = IS(L B) + LSHIFT(IN(I,  1), 3) 

This algorithm is fully vectorized and one has a speed of 322 cell 
updates/#sec for a lattice size L = 168, increasing to 400 cell updates/#sec 
for a lattice size L = 672 (without analysis, in one processor of Cray YMP). 
With this high-speed program I simulated lattices of linear lengths which 
are multiples of 21 and reached up to L = 672. Note that at any instant of 
time during the avalanche only a fraction of the lattice sites topples, i.e., 
need to be updated, but one has to update the whole lattice to maintain the 
vectorization condition. 

822/59/1-2-33 
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3. CRITICAL P O I N T  

One uses Eq. (1) when at all sites of the lattice, z values are below 
Zm----4. If the z value of a site is less than 3, this addition results in no 
toppling. Therefore, sites having z values 0, 1, and 2 are inactive sites. 
However, sites with z = 3 are active sites, as they initiate a series of 
topplings when one unit is added. After some time all sites of the lattice 
have z values less than Zm = 4 again and no longer change; then the next 
unit is added. At the critical state the average z per lattice site attains a 
steady value < z ) = z c .  Tang and Bak (3) have drawn an analogy between 
this BTW model and ordinary critical phenomena by recorgnizing z c as the 
critical point, because for <z)  above and below zc there will be the 
presence and absence of spontaneous flow of slope in the system. In his 
continuum version (z values vary continuously) of the BTW model, 
Zhang (4) has estimated numerically the distribution of z values. He 
observed that the probability distribution P(z) has four sharp peaks and 
the fractions of sites belong to these peaks are 0.10, 0.16, 0.32, and 0.42 in 
ascending order of z values. He recognized that z values for these peaks 
correspond to z = 0, 1, 2, and 3 of the discrete BTW model. 

I estimate the value of z~. for the above-mentioned BTW model. 
] also estimate the fractions of sites having z values 0, 1, 2, and 3. I start 
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from an initial empty lattice and then add slopes one after another by 
Eq. (1). Some additions result in avalanches and some do not. I count the 
avalanches only and wait a long time to reach the critical state. The 
average z increases from zero and reaches a steady value. At this stage 
I start data collection by estimating the cumulative average of z at the 
interval of 100 avalanches. I follow a similar procedure to estimate the 
fractions of sites fo, f , ,  f2, and f3. I vary the lattice size L from 21 to 672. 
For  L = 21 and 672, I wait for 10,000 and 130,000 avalanches and average 
over 2 million and 50,000 avalanches, respectively. I plot the data of z, with 
respect to l/L, which fits quite good to a straight line (see Fig. 1). 
Extrapolation of the L ~ oo limit gives z C = 2.124. In a similar way one gets 
f0 =0.073, f l  =0.174, f2,=0.307, and f3 =0.446. Typical errors in these 
estimates are of the order of 0.003. The value of f0 is very consistent with 
the exact value (12) fo = (2 - 4/~)/7r 2 ~ 0.0736. 

4. C R I T I C A L  E X P O N E N T S  

I study three different definitions of the cluster size s. They are as 
follows. 

De f in i t i on  1. The cluster size s is the total number of distinct sites 
which have at least one toppling during the avalanche process. 

To get the cluster size s, use a third array ID(0: L + 1, 0: B + 1) (set 
this equal to zero before addition of each unit of slope) and introduce 

[D(I,  J )  = (IS(/, J ) . O R . I N ( I ,  J ) )  

in the first D O  loop. After the avalanche stops, I count the number of non- 
zero cells in ID using a P O P C N T  in the C r a y .  This gives the cluster size 
s, and the sth element of an array NS(1 : L ' L )  is increased by 1. Here, I 
have considered all clusters which reach the boundary or remain within the 
lattice. For finite lattice size and finite number  of clusters, the number of 
s clusters fluctuates rapidly. I reduce the fluctuation by the standard 
coarse-graining method. I sum up the data of NS together for bins of sizes 
1, 2-3, 4-7, 8-15, 16-31, and so on, bin size increasing exponentially. I plot 
this integrated distribution on a log-log scale. For  a particular bin I tak.e 
the geometric mean of the two border s values as the s value of that bin. 
Now, if the value of the size exponent r were equal to 2, then this 
integrated plot should fit to a straight line parallel to the s axis (as the 
value of the right bin edge is almost double that of the left edge). However, 
instead of that one gets a monotonically falling curve which fits reasonably 
well to a straight line when very small and very large values of s are not 
considered. The slope of this straight line gives an estimate of 2 - r .  One 
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Fig. 2. Log-log plot of cluster size distribution D(s) integrated over bins with respect to s, 
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estimates the slope by a standard least square fit and finds that the slope 
systematically changes with the lattice size (see Fig. 2a). One then tries to 
estimate the asymptotic value of the slope for the L ~  oo limit by 
extrapolation. Without having any prior knowledge of the extrapolation 
procedure, I tried 1/log L, which seems to work well (see Fig. 3). This 
analysis gives the value of r = 2.22, which is somewhat larger than 2, as in 
the percolation theory. (8) This value of v somewhat higher than 2 is also 
obtained by Kert6sz. ~9~ Duarte also studied the BTW model on the cyclic 
triangular lattice and obtained a v value greater than 2 and increasing with 
lattice size. u~ 

I have studied two more cluster size definitions, as follows. 

D e f i n i t i o n  2. The cluster size s is total number of topplings in an 
avalanche process. This number is in general greater than the s value in 
Definition 1 because one site may topple more than once. 

D e f i n i t i o n  3. In a comparison between two lattice configurations 
before and after the avalanche, the cluster size is the number of sites which 
differ in z values. 

I estimated the exponent z for cluster size definitions 2 and 3 following 
the above method. The cluster size distribution function integrated over 
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Fig. 3. Plot of exponent ( ~ - 2 )  for different lattice sizes L with //log L, for cluster size 
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different bins is plotted with cluster size s in a log-log scale (see Figs. 2b 
and 2c). Here also I find a systematic variation of the slopes of these curves 
with lattice size L. I extrapolated these slopes with 1/logL and obtain 
r = 2 . 2 2  and 2.31 for cluster size definitions 2 and 3, respectively (see 
Fig. 3). It seems that the exponent r for Definition 2 is the same as that in 
Definition 1, but both are different from Definition 3. 

Now I investigate the variation of the average cluster size (defined by 
( $2 ) = Z s2ns/S~ ns and ( s )  = Z sn,/S n~) with lattice size (s  2) ~ L y and 
( s )  ~ L  x. Here n, is the number of clusters of size s within the total 
number of avalanche clusters considered after reaching the critical state. 
I plot the average cluster size ( s 2 ) / L  4 and ( s )  with L in a log-log plot, 
varying the lattice size from 21 to 672 (see Figs. 4 and 5). I estimate the 
values of y as 3.66 and 2.96 and the values of x as 1.64 and 1.13 for 
Definitions 1 and 3, respectively. For Definition 2 there is curvature in both 
( s )  and ( s 2 ) / Z  4 plots. For  ( s )  the slope varies as 1.82, 1.91, 1.96, 1.98, 
and 1.99 when the lattice size is increased by a factor of 2 starting from 21. 
Extrapolation of slopes with 1/L goes nicely to the value 2. The estimate 
for the exponent x for Definition 2 is 2.00 + 0.05. For the exponent y I take 
the largest value of the slope between lattice size 336 and 672 and estimate 
y = 4 . 7 9  for Definition2. Dhar ~13) has exactly calculated the ( s )  for 
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Definition 2. The present data are in very good agreement with his formula 
for ( s )  for all L values and the exponent x = 2 .  

Next I study the distribution of lifetimes D ( t ) ~  t b. For that I count 
the number of sweeps t of the lattice needed for the avalanche to become 
quiet and the number of avalanches D(t) which have same t. At the end of 
the simulation this distribution is integrated over bins and divided by the 
bin length. The resulting distribution is plotted with t in a log-log scale, 
and the slope of this straight line gives the value of b (see Fig. 6). Here also 
one finds a finite-lattice-size effect on the slope and extrapolates to obtain 
b = 1.38 for the infinite limit (see Fig. 7). I also study, following BTW, (3) 
the distribution of lifetimes D'(t)  ~ t b' weighted by the average response 
sit. Different avalanche clusters can have the same value of t corresponding 
to different s values. I equate D'(t)  to the sum over all s values for a fixed 
t and then divide this sum by t. Here I use Definition 1 for the cluster size 
s. I plot these data again by integrating D'(t)  over different bin sizes and 
then dividing by the bin size (see Fig. 8). Extrapolation of the slopes for 
different lattice sizes gives the value of b' = 0.85 (see Fig. 9). 

Finally, I estimate the correlation exponent v using the formula (8) 

A = ( ( z  2 } - <z  }2)1/2 ,.~ Z - l / v  (4) 
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I calculate the value of A for different lattice sizes after the critical state is 
reached and plot A with L in a log-log scale (see Fig. 10). F r o m  the slope 
of this curve I estimate v = 0.98. A similar value of v close to 1 is also 
obtained by Burke. (m 

F r o m  the ordinary critical phenomena  one recognizes our  x = 7/v and 
y = (27 + fl)/v. For  cluster size Definition 1 one has x = 1.64 and y = 3.66, 
which gives f l / v = 0 . 3 8 .  Using these values gives (7 + 2 f l ) / v = 2 . 4 ,  which 
shows that  the hyperscaling relation may  not  be valid in this model. 

5. C O N C L U S I O N  

I study the avalanche cluster size distribution in the sand pile model  
of BTW (3) on the square lattice with better computer  simulations using 
25 hr of Cray  Y M P  time. I estimate the exponents ~ and b' characterizing 
the cluster size and the weighted lifetime of the avalanches. I obtain 
r = 2.22 and b ' =  0.85, somewhat  different f rom the theory (4~ and previous 
numerical study. (3) 
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