
Journal of  Statistical Physics, Vol. 7, No. 4, 1973 

A Comparison of the Shannon and 
Kullback Information Measures 
Arthur Hobson 1 and Bin-Kang Cheng I 

Received October 13, 1972 

Two widely used information measures are compared. It is shown that the 
Kullback measure, unlike the Shannon measure, provides the basis for a 
consistent theory of information which extends to continuous sample spaces 
and to nonconstant prior distributions. It is shown that the Kullback measure 
is a generalization of the Shannon measure, and that the Kullback measure 
has more reasonable additivity properties than does the Shannon measure. 
The results lend support to Jaynes's entropy maximization procedure. 
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I .  I N T R O D U C T I O N  

In fo rma t ion  theory was founded  in 1948 by Shannon  (1) and  Wiener,  t~) who 

int roduced the expression 

U~[P] = - - ~  Pi ln pi (~) 

as a measure of the missing informat ion,  or uncertainty,  in a probabi l i ty  

d is t r ibut ion P ~ ( P I ,  P2 ,..., P,).  Expression (1) is widely used in  communi -  
cat ion theory (3) and  is generally used to represent the physical entropy in  
statistical mechanics.(4) In  1951 Kul lback  iS) in t roduced 

I~[P : p0] : ~ Pi ln(pi/Pi ~ (2) 
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as a measure of the "information for discrimination" between two distri- 
butions P and p0. Expression (2) is widely used in statistics c6) and has been 
used in statistical mechanics, c7) 

The purpose of this paper is to compare the Shannon and Kullback 
information measures; we will find that the Kullback expression represents 
a generalization of the Shannon expression, and that the Shannon expression 
has several drawbacks not shared by the KuUback expression. The results 
will lend support to Jaynes's maximum entropy principle,~8-12! according to 
which the probability distribution representing any given data must maximize 
the uncertainty subject to the data. 

In Sections 2 and 3 we will review the basic properties of the two infor- 
mation measures and show the precise relation between them. In Section 4 
we will discuss the additivity properties of the two measures when information 
is given in two successive steps, and we will use Jaynes's principle to show 
that the Kullback measure (in contrast to the Shannon measure) is additive 
in precisely those cases for which the data are additive. We will discuss 
the results in Section 5. 

2. BASIC PROPERTIES O F  T H E  T W O  M E A S U R E S  

Shannon's expression (1) represents the uncertainty about which outcome 
(1, 2,..., n) will occur in one trial of a "random experiment" (i.e., one in which 
the outcome is not predictable) when predictions are based on the probability 
distribution P. In fact, Shannon ~1) proved a uniqueness theorem according 
to which (1) is the only expression having the following intuitively reasonable 
properties (see also the elegant proofs of Feinstein and Khinchin~13)): 

S-1. Us is a continuous function of the p~. 

S-2. When P = (n -x, n -1 ..... n-l), U~ is a monotonic increasing function 
of the integer n. 

S-3. Us is additive under decomposition of the sample space. By this 
we mean that, if the set (or "sample space") of possible outcomes 
(1, 2,..., n) is divided into r groups, with probability q~ associated 
with the kth group, then the overall uncertainty Us[P] should 
be the sum of the uncertainty U~[ql ,..., qr] about which group 
occurred, plus the weighted sum (with weighting factors qk) of the 
uncertainties as to which outcome occurred within each group. 

Kullback's expression I~[P : P ~ represents the information gained 
concerning the outcome of a random experiment when the probability 
distribution is changed from p0 to P. In fact, it has been proven ~1~ that, 
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except for a positive multiplicative constant, (2) is the only expression having 
the following intuitively reasonable properties: 

K-1. Ik is a continuous function of thepi  andpfl. 

K-2. I~ does not depend on the manner in which the outcomes (1, 2,..., n) 
are labeled. 

K-3. I~ = 0 when P = p0. 

K-4. When p0 = (no1, no1..., n~l) and P -- (n-I,..., n -1, 0,..., 0) (n ~ no) 
then Ik is an increasing function of the integer no and a decreasing 
function of the integer n. 

K-5. Ie is additive under decomposition of the sample space (see 
property S-3). 

These five properties are fully as natural and intuitive (when applied 
to the concept of information gain) as S-1 through S-3 (when applied to the 
concept of uncertainty), but they are somewhat more complicated since the 
information gain must depend on two probability distributions. Postulates 
K-l ,  K-4, and K-5 are the precise analogs of S-l, S-2, and S-3; they are 
intuitively reasonable for the same reasons that the corresponding Shannon 
postulates are reasonable. The "extra" postulates K-2 and K-3 were needed 
in the uniqueness proof given in Ref. 14; perhaps a proof could be devised 
without requiring K-2 and K-3. At any rate, K-2 and K-3 are simple and 
reasonable properties; any expression which did not satisfy K-2 and K-3 
could surely not be interpreted as information gain. 

Difficulties arise when the Shannon uncertainty is extended to continuous 
sample spaces (9-11). Equation (1) cannot be generalized to continuous sample 
spaces without arbitrarily "renormalizing" the uncertainty (i.e., throwing 
out an infinite contribution); furthermore the usual expression for Us in the 
continuous case, 

us[p] = - f p(x) In p(x) ,ix (3) 

(obtained after renormalization) is not invariant under a change of variables, 
and is obviously incorrect dimensionally whenever x has dimensions. The 
Kullback information measure does not suffer from these difficulties: For 
continuous sample spaces, (2) may be generalized (without renormalization) 
to 2 

/~[p : po] = f p(x) ln[p(x)/p~ •x (4) 

Equation (4) is invariant under a change of variables, and is dimensionally 
correct:. 

2 More precisely, there exists a single Lebesgue-Stieltjes integral which reduces to (4) 
in the continuous case and (2) in the discrete case. See Ref. 6. 
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Jaynes 19) has obtained (4) from (1) [rather than from (2)] by introducing 
po(X) as a "measure function" in making the transition from the discrete 
to the continuous case. Jaynes's procedure circumvents the invariance and 
dimensional difficulties associated with (3), but still contains the divergence 
difficulty noted above. 

The difficulties exhibited by (1) represent inconsistencies in the theory of 
information; these inconsistencies will apparently be present in any theory 
which extends to continuous sample spaces and which is based on (1). 
Such inconsistencies should be tolerated only if no consistent theory is 
available. Fortunately, a consistent theory is available, starting from the 
Kullback information rather than from the Shannon uncertainty. 

3. R E L A T I O N  B E T W E E N  T H E  T W O  M E A S U R E S  

If  we take 0-8 to be the fundamental expression for missing information, 
then the information gained when the distribution changes from p0 to P 
must be 

Is[P : p0] = U,[P0l _ Us[P] = ~ Pi lnpi  --  ~ Pi ~ in p0  (5) 

since this is the decrease in the missing information. If, on the other hand, 
we take the viewpoint that I~ is the correct expression for information gain, 
then the missing information in the distribution P must be 

Uk[P : po, p~] = i~[p~ : po] _ Ik[P : po] 

= E P,~ In(p'm/P' ~ -- E P, In(pffP, ~ (6) 

where P'~ is that distribution representing the maximum information con- 
sistent with the fundamental physical constraints of the random experiment. ~ 
The Kullback uncertainty (6) is the difference between the maximum 
obtainable information Ik[P"~:P ~ and the actual information I~[P:P~ 
hence, (6) gives the amount of information which is still missing, relative 
to po and P~. 

For  discrete sample spaces the precise relation between U, and U~ is as 
follows: Let p0 and P~  be given by p O = n-Z and p ~  = 3~j (i = 1 .... , n; 
j fixed); then (6) becomes 

Uk = - - ~ p ~  lnp,  = U~ (7) 

Thus U~ reduces to U~ in the special case of a constant prior distribution and 
a "zero or one" distribution of maximum information. 

3 For discrete sample spaces, P'~ will usually be a "zeroor one" function: p~ = ~ (]fixed). 
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For continuous sample spaces a ~< x ~ b, the Kullback uncertainty 
is given by the generalization of  (6): 

U~[P : po, p~] = f pm(x ) ln[pm(x)/pO(x)l dx -- f p(x) ln[p(x)/p~ dx (8) 

The relation between U~ and U~ is as follows: Assume p~ = (b - -a)  -~ 
(a ~< x ~< b) and pro(x) = L-~OR(x), where OR(x) is the characteristic function 
(zero-or-one step-function) of some Lebesgue-measurable region R having 
measure L; for this case (8) becomes 

U~ ~- -- f p(x) ln[Lp(x)] dx (9) 

which is the same as (3) except for the factor L; this factor removes the 
dimensional and transformational difficulties associated with (3). Thus 
(except for the factor L) Uk reduces to U, in the special case of  a constant 
prior distribution and a "step-function" distribution of maximum infor- 
mation. Note that if L --+ 0, then U~ --~ oo; i.e., it is "infinitely difficult" 
to pick a precise point out of a continuum, which seems reasonable. 

We have already seen, in Section 2, that there is some reason for 
regarding the Kullback expression as more general and fundamental than the 
Shannon expression. If  we accept this notion, then the above results show 
that the Shannon uncertainty is a special case, valid only for constant prior 
distributions, o f  the Kullback uncertainty. 

4. A D D I T I V I T Y  O V E R  T W O - S T E P  PROCESSES 

Suppose that the distribution is altered from p0 to Pt, and then from 
PZ to p2. The Shannon information (5) obviously satisfies 

/~[p2 : po] = I~[p2: p~] + L[p~ : po] (10) 

for any p0, p1, p2; i.e., I~ is "additive over every two-step process." The 
Kullback information, on the other hand, is not generally additive over 
two-step processes. This is easy to verify by choosing p2 = po and noting 
that I~[P ~ : p0] ~_ 0 (see property K-3), whereas L~[P : po] ~> 0 whenever 
P V: p0.(5) 

But do we intuitively want the information to be additive over every 
two-step process ? Consider, for example, the above-mentioned case in which 
p~ =_ po  so that the two-step process is p0 _+ p1 _+ p0, and the information 
in the first step is completely canceled out by the information in the second 
step. In this case we do learn something in each step, since the distribution is 
changed at each step, but the overall effect of the two-step process is to put 
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us back where we started, so that the overall information is zero. We do not 
expect the information to be additive in this case. 

To further illustrate this point, consider another example. A die is 
thrown a single time. Consider the following four probability distributions 
over the six possible outcomes: 

p0 = (~,..., ~), p l  = (0,1~, 0, 1~, 0, �89 

p 2  = ( 0 , ~ , ~ , 1  1 ~, ~, ~), P~ = (0, 0, 0, ~, 0, -~) 

These distributions correspond (via Laplace's principle/TM or via Jaynes's 
principle--see below) to the following four data: 

D~ Any one of the six possible outcomes can occur. 

DZ: The outcome is even. 

D2: The outcome is two or greater. 

D~: The outcome is four or six. 

We do not expect the information to be additive in the process p0 __~ pz _+ p2, 
since the datum D 2 detracts f rom (rather than supplementing) the datum D 1 
and hence there is less information in the overall result p0 __+ p~ than there 
is in the individual steps p0 _+ p1 and p1 __~ PL Numerically, 

i~[p2: po] = ln(6/5) 

while 

I7c[p2 : p1] + I~[p1 : po] _~ oo + In 2 = oo 

(note that there is an infinite amount  of information in any statement which 
assigns a positive probability to an event whose prior probability was zero; 
this corresponds intuitively to the radical alteration in our "state of  
knowledge"). We do, on the other hand, expect the information to be 
additive over the process po__~ pz___~ pz, since the datum D ~ actually 
supplements D1; more precisely, D a may be expressed in the form "D ~ is true 
and, furthermore, the outcome ' two'  cannot occur." Numerically, 

i~[pa : p0] = in 3, i~[p3 : p~] + i~[pi : p0] = 1n(3/2) + In 2 = In 3 

As expected intuitively, Ik is additive over the process p0 _+ p~ __+ pa in which 
the data are additive, but In is not additive over po __~ p1 ~ p2. The Shannon 
information, on the other hand, is additive over both processes. 

Thus, the additivity of  the Shannon information over arbitrary 
processes is actually an undesirable property; the Kullback information, on 
the other hand, appears to be additive over precisely those processes for 
which the data are additive. 
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We will now generalize the above argument to arbitrary sample spaces 
and arbitrary two-step processes. We will prove that the Kullback information 
is additive in precisely those situations for which the data are additive. In 
order to show this, it is necessary to invoke the following basic relation 
between experimental data and probability distributions. (s-~2~ 

Jaynes's  max imum entropy principle: If  data D are given concerning 
the outcome of a random experiment, then predictions about the outcome 
should be based on that distribution P which maximizes Uk subject to the 
restrictions imposed by D. 

C o m m e n t .  This is a generalization of Jaynes's original formulation, 
which stated that P should maximize Us rather than U~. Jaynes's original 
formulation is applicable if the prior distribution is constant, in which case 
maximization of  Us is equivalent to maximization of U~. In case the prior 
distribution is not constant, then it is Uk rather than Us which should be 
maximized. This may be demonstrated by means of an example: Let the 
sample space be (0 ~ x ~ 1), let the prior distribution be p~ = 3x 2, and 
let the data be ( x ) =  1/4, where ( . . . )  denotes an expectation value. 
Maximizing Uk[Eq. (8)] subject to the data, we get pk(x) -~ A x 2 e - %  where 

and A are determined from (x )  = 1/4 and (1) = 1 (normalization). 
Maximizing Us [Eq. (3)] subject to the data, we get p~ ~ Be -B*. The distri- 
bution pk seems more reasonable than p~, since pk retains the effect of the 
original "weighting" 3x ~ of the sample space, whereas p~ does not. 

In case the reader is not convinced, the following transformation 
argument proves conclusively that maximization of  Us is inconsistent with 
the principles of probabilistic reasoning: Change variables to y = x ~. The 
transformed prior distribution is riO(y) = 1 (0 <~ y <~ 1), the transformed 
data is ( y l /a )  = 1/4, and Jaynes's principle (applied to either Us or U1,, 
since the two are equivalent when the prior distribution is constant) yields 
riT~(Y) = ri~(y) = C exp(--yyl /a) .  We now note that rik(Y) is just the trans- 
formed form (under x --- y = x 3) of pk(x) = A x l e - %  whereas ri~(y) is not 
the transformed form of p~(x). That is, if we choose to maximize Us rather 
than Uk ,~ then our maximization procedure does not have the proper trans- 
formation properties. Another way of stating this is to note that the following 
diagram is commutative if our maximization procedure means "maximize U~" 
but not if our maximization procedure means "maximize Us": 

raaximization 
data in terms of x ~ p(x) 

1 i  y = f (x)  y : f (x)  

m a x i m i z a t i o n  
Data in terms of y ~ ~(y) 
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The above transformation argument (which is not difficult to generalize 
to arbitrary data and arbitrary transformations) constitutes yet another reason 
for preferring the Kullback measure over the Shannon measure. 

Addi t iv i ty  T h e o r e m .  4 Let the distribution PZ correspond (via 
Jaynes's principle) to the datum 

(f l (x) )  = F~ (11) 

and let p2 correspond to (11) supplemented by the new datum 

(f~(x)) = F2 02)  

Then, for arbitrary p o  the Kullback information is additive over the two- 
step process po __> p1 ___> p2: 

Ik[p2 : po] = i~[p~ : p~] + Ik[PZ : po] (13) 

C o m m e n t .  It  may seem that we are unduly restricting the significance 
of the theorem by assuming that the data are expressible as expectation values 
F, of  known functions f~(x). But to the authors' knowledge, the expectation 
value form is the only form in which data can be expressed in terms of a 
probability distribution. Note that data of the form "x  is in the region R"  
can be expressed in the expectation value form: simply take f ( x )  = OR(x) 
and F ----- 1. 

Proof of Theorem.  The distribution p1 must maximize (8) subject 
to (11). Since the first term on the right side of (8) is not varied, PX must 
minimize f p ln(p/p ~ dx subject to (11) and fixed p~ The minimizing 
distribution is 

where 

pI(x) = D~ e-~&(~ (14) 

where 

Z2(3, V) = f P~ e-~11(~)-~h(~) ,ix 

4 The theorem is stated and proved for continuous sample spaces; it also holds for discrete 
spaces. 

zl(~) = f p~ e -~1(~) dx 

with a chosen to satisfy (11). The distribution p2 minimizes ~ p ln(p[p ~ dx 
subject to (11) and (12). The minimizing distribution is 
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and where fi and 7 are chosen to satisfy (11) and (12). Using (4), (14), and 
(15), the right member of (13) becomes 

f P2(--fifl -- Yfa -- In Z2 -? ~fa q- In Z1) dx 4- f pl(--of~ -- In Z1) dx (16) 

while the left member of (13) becomes 

f P U ( - - f l f l  - -  Yf2 -- In Z2) dx (17) 

Using the relations 

terms (16) and (17) both reduce to --fiF1 -- yF~ -- In Z2. 

5. D I S C U S S I O N  

We have compared the Kullback and Shannon information expressions 
and found that the two are equivalent whenever the prior distribution p0 
is constant and the distribution of maximum information pm is ~j (discrete 
case) or L-IOR(x) (continuous case), and we have shown that the Kullback 
expression is preferable whenever these conditions do not hold. Briefly, the 
reasons for preferring the Kullback measure are as follows. 

1. I~ does not exhibit the divergence, transformational, and dimensional 
difficulties exhibited by I~. 

2. The uniqueness theorem for I~ implies that I~ is the only intuitively 
reasonable measure of information gain. 

3. The maximization procedure for finding the distribution corre- 
sponding to given data makes sense when applied to the Kullback 
measure but not (in general) when applied to the Shannon measure. 

4. Ik is additive over precisely those two-step processes for which the 
data are additive. On the other hand, Is is additive even when the 
data are not additive. 

It appears from these results that the Kullback measure can, but the 
Shannon measure cannot, form the basis of a consistent, general (i.e., 
extending to continuous sample spaces and nonconstant prior distributions) 
theory of information. 

We have also provided further support for Jaynes's maximum entropy 
principle, since additive data lead to the expected additivity of the Kullback 
information only when the distributions are chosen in accordance with 
Jaynes's principle. 
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