CALCULATION OF SUPERSONIC FLOW AROUND V~-SHAPED
WINGS BY THE FITTING METHOD

V. I1. Lapygin UDC 533.695.11

The problem of flow around a V-shaped wing with supersonic leading edges is solved. The
method employed is that of fitting with respect to a space variable in which the system of
equations of motion is hyperbolic, using the computing scheme of V. V., Rusanov. A com-
parison between the results of these calculations and experimental data in relation to the
pressure distribution along the wing span reveals excellent agreement, except for a limited
region, in which the compression jump incident on the plane of the wing interacts with the
boundary layer. A comparison between the results obtained by means of the oblique-jump
equations and by numerical calculations indicates that the method in question is reasonably
accurate.

It has been established experimentally that, when a flow of air passes around a set of V-shaped wings,
a complicated system of shock waves is set up in the field of flow, starting from a certain angle of the V
[1, 2]. At the present time no methods exist for calculating such flows, except in certain special cases
[3, 4].

The only effective method of studying flows characterized by the existence of several shock waves is
the fitting method involving difference schemes containing an "artificial viscosity," first introduced by
Neumann and Richtmyer [5].

In order to calculate complex spatial flows with a large number of shock waves, the use of the ordi-
nary procedure of the fitting method (in which the stationary or steady-state solution is obtained as a limit
of the nonstationary or transient solution for a large number of steps in time t) is practically impossible
owing to the limited memory and speed of modern highspeed computers.

There have been only a few examples of the calculation of three-dimensional flow around smoocth
bodies by the fitting method in the presence of one principal! shock wave, and these have involed a fairly
smooth change of parameters from the wave to the solid object. The smoothness of the change of flow
parameters from the wave to the solid means that a small number of mesh points can be taken in this di-
rection; this fact underlay the success of the calculations conducted in [6-8].

An important class of spatial flows comprises those of the supersonic, steady-state, conical type.
The equations of motion are here hyperbolic with respect to one of the spatial coordinates & » which may be
chosen in such a way that the flow is independent of this coordinate.

Here we are concerned with the idea of calculating such flows by fitting with respect to £ . The pres-
ent analysis is devoted to a study of the use of this approach for the case of the flow around a V-shaped
wing at a particular angle of attack.
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1. Principal Equations and Difference Scheme. Let us con-
sider the steady-state flow around a V-shaped wing at an angle of
attack o (Fig. 1). We shall solve the problem in a mixed coordi-
nat system: The components of the vector velocity u, v, w will be
calculated in Cartesian coordinates x, y, z, and the problem will
then be solved in the coordinates

E=Inz, n=y/2 L[=3/z
The equations of motion, written in divergence form in the

coordinates £, 1, ¢, take the form
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Here u, v, w, are the components of the velocity vector along the x, y, z axes respectively; e is the
internal energy of the gas.
Subsequently we shall consider a perfect gas:

[+
- p , k P
(k—i)p [

The system (1.1) has been written in dimensionless form: The velocity components are referred to
the modulus of the velocity of the unperturbed flow, the pressure to twice the velocity head of the unper-
turbed flow p. V2%, the density to the density of the unperturbed flow p .

We also introduce the column vector ¢ with elements u, v, w, p, p, which are uniquely expressed in
terms of the components of the vector f

u=EkR[(k+1)Q]* 4 {k*R*[(k
+1)Q]2 — 2(k — 1) [EQ!

— (S*+7%) /297 (k 4- 1)~} (1.2)
v=8/9Q w=7T/Q,
p=R—Qu p=Q/u

The x axis is taken in such a way thatu > a

at=1Fkplp
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The boundary conditions take the following form:
on the surface of the wing ¥ (£, n, £) = n —gl(¢) = 0 we have the condition that the fiow does not
pass straight through it

(v—un) — (w-—ul)g =0

(1.3)

on the symmetry plane ¢ = 0
v=0 (1.4)

at infinity in front of the body
4 = co8 ¢, v = —sing, w =19, p=-v1—, p=1 {1.5)

The boundary problem {(1.1), (1,3)-(1.5) was solved by the fitting method with respect to £ . In our
calculations we used the principles laid down by V. V. Rusanov [9}. Analysis of the several differencing
schemes of the fitting method [10] shows that the Rusanov and Lax-Wendroff schemes give similar results,
the expenditure of machine time being several times smaller in the former case.

Let us introduce the following notation:

AE=1, Al=1hi, A= hy b= Vhe® + ho?

hy = hcos vy, by = hsiny, ni =1/ h; % = Prs® L %ot

The value of A at the point with coordinates (n7, Ih,, mh,) we shall call A7, n.

Let us confine attention to the case in which the surface of the V-shaped wing are flat and the trace
of the plane of the wing on the plane x = const passes through the mesh points along the diagonals of the
cells (Fig. 2).

We approximate the system (1.1) by a three~point difference scheme in accordance with [9]:

Bt+1

n T2 He
fim = fim — = {(FY — ) rram — (F¥ — 0f)im,m}™ i {(F? — L) tms

t : n (1.6)
—(F2— ) im-1}" + ——‘2{(1)l+l‘:/2,m — (Dzj/z,m + q)l,::l+l/2 ~ Pim—y,} = 2T 1m
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where

— 2
Diptzym? = Yo (Brerm + Bim) Froem— frm),  Pim = w@0ym cos®

(® == const)
D mi1yy? = Yo(@mes + @m) (Frmes — frm), O m = KOCLm SiN?Y
! , (1.7)
Oim = [ (v? + w?) '+ a(u? + v? + w? — a?) /2]}
' u? — a? lm

Analysis of the stability of the difference scheme (1.6) was based on the Fourier method. The stability
condition takes the form

<0< (0o = mMax;m01,m, 6o < 1)

)

The value of o, may be specified in advance as identical for all the layers, and we may then take w
and in each layer determine »" and hence 7@ from the equations

%" = Go / MaX;mO1,m", = whiha /B

In the calculation it is quite easy to automate the choice of ® in every layer. In order to ensure
stability, it is then necessary that the constant parameters of the scheme o and w should satisfy Eq. (1.8).

2. Computing Formulas. The point O, (Fig. 2) belongs both to the symmetry axis and to the plane of
the wing. It follows from (1.3) and (1.4) that Ty,q= Sy, = 0 and at this point it is only necessary to deter-
mine the first, second, and fifth components of the vector f. In obtaining the computing formula, a trans-
formation to an acute-angled coordinate system was employed (Fig. 2).

E=E, n=mnt+hsiny, §=~=Cicosy

The formula takes the form
(%)~ [fo,0 1 — (4~ 2T%) fo,0"]

= —siny (F* — f) 14" — cos X (F¥ — nf) 10"
+ Y40 cos? y sin? % (61,1 — G0,0)* (f1,1 ~ fo,0)} ™
A point on the symmetry plane ¢ = 0,

1t follows from the boundary condition (1.4) that Ty ,0= 0, so that at this point all the components of
the vector f except the fourth are determined,

(™) 7 fro™t — (1 - 2t%) fr0"] = —sin 1 (F* — §f)1.4™ — Yocos % {(FY —nf) 11,0
~ (F¥ —nf)1—1,0}* + o0 sin® ¥ (01,0 + 611) (fra — fro)™
+ Ysw c0s® % {(014.4,0 - 01,0) (fr41,0 — fr6) — (61,0 + G1—1,0) (f1,0 — fi—1,0)}*

A point on the plane of the wing.

In deriving the formulas, a transformation was made to a new coordinate system in the neighborhood
of the plane of the wing (Fig. 2)

Bi=§ s={cosy+msiny, n= —{Lsiny+ncosy
() = e = ot (1 — 20%)] = — 4/a siny 008 4 {(F* — T¥) 1peins
—(F* = T*) - — {(F* — 0%f%) 10 si02 1 - (PR — 0%f*) 1144 cos® g}

+ /s 0 sin? y cos? x {011,044 + 61) (f:.i,zﬂ — szz)—(O‘z,: 4+ 01g,01) (f:l - fl*—i.l»—t)}n'

All the quantities marked with an asterisk * are computed by the same formulas as the corresponding
quantities without the asterisk, except that v, w, n, ¢ are everywhere replaced by
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p¥ = —wsinyg -+ v cos Y, w* = wcosy+vsiny

n* = —fsiny+ncosy,  L¥==CLcosy+nsiny

The third component of the vector f; ;* is not calculated, since from the boundary condition (1.3)
Sg,1*=0.

After determining f7 ;* the vector f; ; is obtained from the equations

Ql,l = Ql,l’i‘, Rz,z == Rz,z*, Sz,z == Tz,z* sin X
Frp=Tr*cosy, Ey = En*

An internal point in the field of flow:

1 ntd n —1 .
—frm — {1 =2t fim] = —2 sin 4 {(F* — Y imes —(F* — L) 1m—1}™
x'n.

— Yacos ¥ UFY — nf) tr1m ~ (FY = Nf)1mm}™ 4 Vs0 sin? f, {(1mr1+ Oim) (frmes— frm)
—(Ot,m + Orm—1) (fom — frm—1)}" + /s @ €08 o {{Or1,m + O1m) (Frrtm — frm)

_‘(Gl,m -+ Gl—i,m) (il,m - fl-—i,rn)}n

The computing region constitutes a right-angled trapezium O;DCB (Fig. 2). On the boundary BC, the
values of the parameters of the unperturbed flow remained intact during the calculation, on the boundary
DC the values of the parameters corresponding to flow around the leading edge were retained with an addi-
tional slight oblique jump, on the wall O;D the condition of nonpenetrating flow was maintained, while on the
symmetry plane OyB,w=0.. As zerc approximation, the field of the flow behind the plane jump attached to
the leading edge of the V-shaped wing was employed. The solution was considered as being steady-state if

i . n n
max;m {(jlm - fl,m)/fLm} = g

for all components of the vector f (in our calculations & ~ 1072-1073),

The calculations were carried out on the BESM-6 computer. The number of points in the field of
flow was 1254 in all the versions computed, which corresponded to 50 mesh points on the side of the angle
BO,A (Fig. 2). Depending on the angles y and «, the number of fitting cycles varied from 500 to 1500, The
computing time for one version with 1500 such cycles was 50 min.

3. Results of the Calculations. In order to verify the efficiency of the method, we compared the re-
sults of our calculations based on the proposed scheme with the experimental results of A. L. Gonor and
A. 1. Shvets. The comparison was made for a wing with an angle of § = 29°30' at the tip for various values
of the V angle and M, = 3.95. The Reynolds number in the experiment was Re = 6.8 - 108, Figure 3 shows
the pressure distribution Cp= 2(P = Pw)/p,, V2, obtained by computation (continuous lines) and experimen-
tally. In these graphs, r is the distance from the symmetry plane to the edge of the wing. Figure 3a gives
the data for v = 120°, Fig. 3b the data for y = 80°, and Fig. 3¢ the data for y = 40°, The calculations were
carried out for attack angles of @ = 5, 10, 15°. We observe excellent agreement between the experimental
and computed, data, except for the region in front of the jump of compression falling on the wall, in which
experiment indicates a pressure much larger than theory. A similar increase in pressure was noted in
[11] and explained as being due to the interacting between the jump of compression falling on the wall and
the boundary layer [12]. Figure 4 illustrates the isobars for y = 80°, @ = 10°, The character of the isobars
indicates a mode of flow involving Mach reflection of the jump falling from the leading edge by the symme-
try plane. Figure 5 shows the isobars for y = 40°, o = 15°; the character of these indicates a mode of flow
with the regular reflection of a plane jump from the symmetry plane. The results of the calculation of a
regular reflection from the symmetry plane, with a strong reflected jump, based on the oblique~jump for-
mulas for y = 40°, a = 15° differ from the results of numerical calculation for p and p by no more than 3%.
The broken line in Figs. 4 and 5 indicates the position of the plane jump falling on the symietry plane from
the leading edges of the V-shaped wing. ‘

In conclusion, we note that the values of the vector components <77 behind the plane jump formed at
the leading edge obtained by the numerical calculation differ from the values obtained by the oblique-jump
formulas by no more than 3%. The span of the jump is no greater than five or six mesh points.

The author is grateful to A. L. Gonor and V. V. Rusanov for interest in this work.
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