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The problem of flow around a V-shaped wing with supersonic leading edges is solved. The 
method employed is that of fitting with respec t  to a space variable in which the sys tem of 
equations of motion is hyperbolic,  using the computing scheme of V. V. Rusanov. A com-  
par ison between the resu l t s  of these calculations and experimental  data in relat ion to the 
p r e s s u r e  distribution along the wing span reveals  excellent agreement ,  except for a limited 
region, in which the compress ion  jump incident on the plane of the wing interacts  with the 
boundary layer .  A compar ison between the resul ts  obtained by means of the oblique-jump 
equations and by numerical  calculations indicates that the method in question is reasonably 
accurate .  

It has been established experimental ly that, when a flow of air passes  around a set of V-shaped wings, 
a complicated sys tem of shock waves is set  up in the field of flow, start ing f rom a cer ta in  angle of the V 
[1, 2]. At the presen t  time no methods exist for calculating such flows, except in cer tain special eases  
[3, 4]. 

The only effective method of studying flows charac te r i zed  by the existence of several  shock waves is 
the fitting method involving difference schemes containing an "art i f icial  viscosity," f i rs t  introduced by 
Neumann and Richtmyer  [5]. 

In o rder  to calculate complex spatial flows with a large number of shock waves, the use of the ord i -  
nary  procedure  of the fitting method (in which the stat ionary or  s teady-s ta te  solution is obtained as a l imit 
of the nonstat ionary or t ransient  solution for a large number  of steps in time t) is pract ical ly  impossible 
owing to the l imited m e m o r y  and ~peed of modern highspeed computers .  

There have been only a few examples of the calculation of three-dimensional  flow around smooth 
bodies by the fitting method in the p resence  of one principal!  shock wave, and these have involed a fair ly 
smooth change of pa rame te r s  f rom the wave to the solid object.  The smoothness of the change of flow 
pa rame te r s  f rom the wave to the solid means that a small  number of mesh points can be taken in this di- 
rect ion;  this fact  underlay the success  of the calculations conducted in [6-8]. 

An important  c lass  of spatial flows compr i ses  those of the supersonic,  s teady-s ta te ,  conical type. 
The equations of motion are  here  hyperbolic with respec t  to one of the spatial coordinates ~, which may be 
chosen in such a way that the flow is independent of this coordinate.  

Here we are concerned with the idea of calculating such flows by fitting with respec t  to $ . The p re s -  
ent analysis is devoted to a study of the use of this approach for the ease of the flow around a V-shaped 
wing at a par t icu lar  angle of attack. 
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1. P r i n c i p a l  Equa t ions  and D i f f e r e n c e  Sc he me .  Le t  us  con -  
s i d e r  the  s t e a d y - s t a t e  f low a r o u n d  a V - s h a p e d  wing at  an angle  of 
a t t a c k  a ( F i g .  1). We sha l l  so lve  the  p r o b l e m  in a m i x e d  c o o r d i -  
na t  s y s t e m :  The c o m p o n e n t s  of  the  v e c t o r  v e l o c i t y  u, v, w wi l l  be 
c a l c u l a t e d  in C a r t e s i a n  c o o r d i n a t e s  x,  y,  z,  and the p r o b l e m  wi l l  
then  be  s o l v e d  in the  c o o r d i n a t e s  

The equa t ions  of mot ion ,  w r i t t e n  in d i v e r g e n c e  f o r m  in the  
c o o r d i n a t e s  ~ ,  7 ,  ~, t ake  the  f o r m  

/ =  

Ol o o 
+ --:-(F~ - -  ~1) + - - ( F ~  - -  ~/) + 2 / =  0 

o; (1.1) 

R 
S , F u =  

T 
E 

12 : pu, 

T S [ Ou [ R - -  Qu -7- T2 / ~ u  

E S  [ ~ u  t E T  / ~ u  

R = p -l- pu  2, S ~ pav ,  T ~ p u w  

H e r e  u, v ,  w, a r e  the  c o m p o n e n t s  of  the  v e l o c i t y  v e c t o r  a long the  x, y,  z axes  r e s p e c t i v e l y ;  e is  the  
i n t e r n a l  e n e r g y  of the  g a s .  

Subsequen t ly  we s h a l l  c o n s i d e r  a p e r f e c t  g a s :  

p C p  
r k - -  

( k - - l ) p  c, 

The s y s t e m  (1.1) has  been  w r i t t e n  in d i m e n s i o n l e s s  f o r m :  The v e l o c i t y  c o m p o n e n t s  a r e  r e f e r r e d  to 
the  modu lus  of the v e l o c i t y  of the  u n p e r t u r b e d  f low, the  p r e s s u r e  to tw ice  the  v e l o c i t y  head  of  the  u n p e r -  
t u r b e d  flow p ~ V ~ ,  the  d e n s i t y  to  the  d e n s i t y  of the  u n p e r t u r b e d  flow p ~ .  

We a l s o  i n t r o d u c e  the  c o l u m n  v e c t o r  ~0 wi th  e l e m e n t s  u, y ,  w, p,  p ,  wh ich  a r e  un ique ly  e x p r e s s e d  in 
t e r m s  of the  c o m p o n e n t s  of  the  v e c t o r  f 

a = k R  [(k + 1)ll]-' § {k2R z [(k 
-~ 1)12] -2 -- 2(k -- i) [E.Q-' 

- -  (S 2 -}- T 2) / 2122] (k -~ t) -t}'l~ (1.2) 

The  x ax i s  i s  t aken  in  such  a way  tha t  u > a 

a ~ ~ kp  I P 
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The boundary conditions take the following form: 

on the surface of the wing r ~, ~) = V -g(~) = 0 we have the condition that the flow does not 

pass straight through it 

(v -- un) -- (w -- a~)g' = 0 
( 1 . 3 )  

on t h e  s y m m e t r y  p l a n e  ~ = 0 

( 1 . 4 )  

a t  i n f i n i t y  in  f r o n t  o f  t h e  b o d y  

i 
= c o s  a ,  , = - s i n  ~ ,  ~ = o ,  p = ~ - : : - : - ,  p = l ,-r 

kM~ ~ 

The boundary problem (i.i), (1,3)-(1.5) was solved by the fitting method with respect to } . In our 

calculations we used the principles laid down by V. V. Rusanov [9]. Analysis of the several differencing 

schemes of the fitting method [i0] shows that the Rusanov and Lax-Wendroff schemes give similar results, 
the expenditure of machine time being several times smaller in the former case. 

L e t  u s  i n t r o d u c e  t h e  f o l l o w i n g  n o t a t i o n :  

h~ = ~, A~ = h~, Aq ~ h~, h = ]/h~ 2 q- h2 z 

h, = h cos ;~, h2 = h sin Z, • : T / hi, ~ = 1r215 ~_ Z22 

T h e  v a l u e  o f  A a t  t h e  p o i n t  w i t h  c o o r d i n a t e s  (n~-, lh2 ,  mh~) w e  s h a l l  c a l l  A / , m n .  

L e t  u s  c o n f i n e  a t t e n t i o n  to  t h e  c a s e  in  w h i c h  t h e  s u r f a c e  of  t h e  V - s h a p e d  w i n g  a r e  f l a t  a n d  t h e  t r a c e  

o f  t h e  p l a n e  o f  t h e  w i n g  o n  t h e  p l a n e  x = c o n s t  p a s s e s  t h r o u g h  t h e  m e s h  p o i n t s  a l o n g  t h e  d i a g o n a l s  o f  t h e  
c e l l s  ( F i g .  2 ) .  

W e  a p p r o x i m a t e  t h e  s y s t e m  (1.1)  b y  a t h r e e - p o i n t  d i f f e r e n c e  s c h e m e  in a c c o r d a n c e  w i t h  [9]: 

] l ,m = :t,,,~ - -  ~ { ( Fu  - -  ~ l / )  z+ l , ~  - -  ( F ~  - -  11I) ~-  i , .~)  ~ - -  ~ -  { ( F ~  - -  ~ / )  ~ , - ,+l  

~ r ~ �9 " ~ ~ ~ (1.6) 
- - ( F  ~ - -  ~ / ) z , ~ - i }  ~ + - - ~ { O l + , 1 2 , m  - -  z - , /~ ,~  + t,.~+,t2 - -  r  - -  2 ~ 1 1 , ~  
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w h e r e  

O ~ + , / ,  ~ "  = ~/~(p~+t ~ + ~ )  (1 ,+t  ~ - -  h , ~ ) ,  ~ = x c o z t  ~ c o s  ~ Z 

((o = const) 
(P~,..+,f~ = ~A(a~,~+t + at,,.) (/z,~+~ -- It,,,,), at,,~ = xco(~,,~ sin ~ X 

~St ,== ~ i a . [ o , ( P 2 + w 2 ) t l : t J ~ a ( u . Z ' 3 L v 2 " a l - w Z - - a Z ) l / ~ l  z,r a 

A n a l y s i s  o f  t h e  s t a b i l i t y  of  t h e  d i f f e r e n c e  s c h e m e  (1.6)  w a s  b a s e d  o n  t h e  F o u r i e r  m e t h o d .  
c o n d i t i o n  t a k e s  t h e  f o r m  

e 0 <  ta < (~o = max~,~e~,.., ~o < t) 
(Io 

( 1 . 7 )  

T h e  s t a b i l i t y  

T h e  v a l u e  o f  ~0  m a y  b e  s p e c i f i e d  in  a d v a n c e  a s  i d e n t i c a l  f o r  a l l  t h e  l a y e r s ,  a n d  w e  m a y  t h e n  t a k e  ~o 
a n d  in  e a c h  l a y e r  d e t e r m i l l e  x n  a n d  h e n c e  ~ n  f r o m  t h e  e q u a t i o n s  

• = ~0 / raaXt ,mff t ,m n, -~n ~ xnhih2  / ]~ 

In t h e  c a l c u l a t i o n  i t  i s  q u i t e  e a s y  to a u t o m a t e  t h e  c h o i c e  o f  ~t n in  e v e r y  l a y e r .  In o r d e r  to  e n s u r e  

s t a b i l i t y ,  i t  i s  t h e n  n e c e s s a r y  t h a t  t h e  c o n s t a n t  p a r a m e t e r s  of  t h e  s c h e m e  a 0 a n d  co s h o u l d  s a t i s f y  Eq .  (1 .8 ) .  

2 .  C o m p u t i n g  F o r m u l a s .  T h e  p o i n t  O1 ( F i g .  2) b e l o n g s  b o t h  to  t h e  s y m m e t r y  a x i s  a n d  to  t h e  p l a n e  of  

t h e  w i n g .  I t  f o l l o w s  f r o m  (1.3)  a n d  (1.4)  t h a t  T0, 0 = S0, 0 = 0 a n d  a t  t h i s  p o i n t  i t  i s  o n l y  n e c e s s a r y  to d e t e r -  

m i n e  t h e  f i r s t ,  s e c o n d ,  a n d  f i f t h  c o m p o n e n t s  of  t h e  v e c t o r  f .  In  o b t a i n i n g  t h e  c o m p u t i n g  f o r m u l a ,  a t r a n s -  

f o r m a t i o n  to  a n  a c u t e - a n g l e d  c o o r d i n a t e  s y s t e m  w a s  e m p l o y e d  ( F i g .  2 ) .  

T h e  f o r m u l a  t a k e s  t h e  f o r m  
(• [fo.o.+l _ (1 - 2~.)1o,o ~] 

- -  sin Z (F �9 -- ~]) t,~ --  cos X (Yv -- ~l[) t,o ~ 

+ ~/~co c o s  z X s inZ X ((~1,t - -  (~o,0) n (f~,t  ~ 1o,o) ~ 

A p o i n t  o n  t h e  s y m m e t r y  p l a n e  ~ = 0.  

I t  f o l l o w s  f r o m  t h e  b o u n d a r y  c o n d i t i o n  (1.4)  t h a t  T 1,0 = 0, s o  t h a t  a t  t h i s  p o i n t  a l l  t h e  c o m p o n e n t s  o f  

t h e  v e c t o r  f e x c e p t  t h e  f o u r t h  a r e  d e t e r m i n e d ,  

(• - t  [/t,o.+~ __ (t --  2T n) It,o"] = --sin X (F ~ -- ~]) ,,1" -- lhcos Z { (Fv -- ~1]) ~+t,o 

- -  ( F ~ - -  n ] ) ~ _ t , o }  ~ + '/2co s i n  ~ ~ (Zz ,o  + ~z , t )  (11,1 - -  It ,o)" 

+ ~/4~ cos~ Z {(z~+~,o + ~t,o) (/~+~,o - -  f~,o) --  (zt,o + z~-~,o) (/~,o --  fz-t,o)}" 

A p o i n t  o n  t h e  p l a n e  o f  t h e  w i n g .  

In d e r i v i n g  t h e  f o r m u l a s ,  a t r a n s f o r m a t i o n  w a s  m a d e  to  a n e w  c o o r d i n a t e  s y s t e m  in  t h e  n e i g h b o r h o o d  

of  t h e  p l a n e  of  t h e  w i n g  ( F i g .  2) 

~ t : ~ ,  s = ~cos X-t- ~ sinx, n = --  ~sinx-t- 71 cos X 

* n + t  *n  j. 
(• [fz,l -- II,~ ( --  2Vn)] = -- 1/2 sin Z cos g {( F*z -- ~*]*)z+l,l+i 

- -  ( F*~ -- ~*I*)t-i,t-t} n _ { (F*Y -- ~l*]*)t,t-1 sin z X + (F*~ -- ~l*]*)t,z+i cos 2 Z}" 

* * $ 
+ t/~ co sin ~ X cos~" X {(~+t,t+l -}- a~,~) (]t+t,z+l -- It,z)-- (r T at-l,l-t) (ffl -- 1l-t,l--t) } L 

Al l  t h e  q u a n t i t i e s  m a r k e d  w i t h  a n  a s t e r i s k  * a r e  c o m p u t e d  b y  t h e  s a m e  f o r m u l a s  a s  t h e  c o r r e s p o n d i n g  

q u a n t i t i e s  w i t h o u t  t h e  a s t e r i s k ,  e x c e p t  t h a t  y,  co, ~?, ~ a r e  e v e r y w h e r e  r e p l a c e d  b y  
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u * = - - w s i n x q - v c o s x ,  w * =  w c o s x - } - e s i n x  

~1" = --~ sin X -t- ~1 cos X, ~* ~- ~ cos X -~ q sin X 

The third component of the vector fl,l* is not calculated, since from the boundary condition (1.3) 

Sl,l *= O. 

After  determiningfl,l* the veetorf l , l  is  ob ta ined  f r o m  the equa t ions  

~ , l  = f~t,z*, Rl , t  = R~,t*, St,t  = Tt,l* s i n  % 

f~,t  = Tt,z* cos  X, Et, t  = Et, t* 

An i n t e r n a l  po in t  in the f ie ld  of flow: 

- -  [[/,m - -  ( t  - -  2~n)]t,m] = 
x n 2 

sin X{(F'  - -  :./), ,~+, - - ( e ~  - -  ~/), . . . .  }~ 

-- V~ cos X {(F~ -- ~/)t+~,., - ( fy  - T1/)~_t,~} ~ + V~c0 sin ~ x {(a~,~+*+ ~,~) (h,~+l-/~,~) 

- ( ~ , ~  + ~ , ~ - ~ )  (.~l,,,, - / ~ , . . - d  } ~ + V~ o cos ~ z {(~+~,.~ + ~z,~) (1,~+~,,. - / t , m )  

-- (~,~ + ~ . . . .  ) (1~,~ -- I ...... )}~ 

The compu t ing  r e g i o n  c o n s t i t u t e s  a r i g h t - a n g l e d  t r a p e z i u m  OiDCB (Fig.  2). On the b o u n d a r y  BC, the 
va lues  of the p a r a m e t e r s  of the u n p e r t u r b e d  flow r e m a i n e d  in tac t  dur ing  the ca l cu la t ion ,  on the boundary  
DC the va lues  of the p a r a m e t e r s  c o r r e s p o n d i n g  to flow a round  the lead ing  edge w e r e  r e t a i n e d  with an addi -  
t iona l  s l igh t  obl ique jump ,  on the wal l  OlD the condi t ion  of n o n p e n e t r a t i n g  flow was ma in t a ined ,  while  on t.he 
s y m m e t r y  p l a n e  O~B,w =0. ,  As ze ro  a p p r o x i m a t i o n ,  the f ie id  of the flow behind  the p lane  j ump  a t tached  to 
the lead ing  edge of the V - s h a p e d  wing was  employed .  The so lu t ion  was  c o n s i d e r e d  as  be ing s t e a d y - s t a t e  if 

for all  componen t s  of the vec to r  f (in our  c a l c u l a t i o n s  g ~ 10-2-10-3).  

The c a l c u l a t i o n s  w e r e  c a r r i e d  out on the BI~SM-6 c o m p u t e r .  The n u m b e r  of po in ts  in the f ie ld  of 
flow was 1254 in  all  the v e r s i o n s  computed ,  which  c o r r e s p o n d e d  to 50 m e s h  po in t s  on the s ide of the angle  
BOiA (Fig.  2). Depending on the ang les  ~/ and a ,  the n u m b e r  of f i t t ing  cyc l e s  v a r i e d  f r o m  500 to 1500. The 
comput ing  t i m e  for  one v e r s i o n  with 1500 such cyc l e s  was  50 ra in .  

3. R e s u l t s  of the C a l c u l a t i o n s .  In o r d e r  to ve r i fy  the e f f ic iency  of the method,  we c o m p a r e d  the r e -  
su l t s  of our  cMcu la t i ons  ba sed  on the p r o p o s e d  s c h e m e  with the e x p e r i m e n t a l  r e s u l t s  of A. L. Gonor  and 
A. I. Shvets. The comparison was made for a wing with an angle of ~ = 29~ ' at the tip for various values 

of the V angle and M,o = 3.95. The Reynolds number in the experiment was Re = 6.8 �9 l0 G. Figure 3 shows 

the pressure distribution Cp = 2(p - Poo)/PooV 2, obtained by computation (continuous lines) and experimen- 

tally. In these graphs, r is the distance from the symmetry plane to the edge of the wing. Figure 3a gives 
the data for 31 = 120 ~ Fig. 3b the data for 31 = 80 ~ and Fig. 3c the data for T = 40~ The calculations were 

carried out for attack angles of c2 = 5, i0, 15 ~ We observe excellent agreement between the experimental 

and computed, data, except for the region in front of the jump of compression falling on the wail, in which 

experiment indicates a pressure much larger than theory. A similar increase in presmtre was noted in 

[ii] and explained as being due to the interacting between the jump of compression falling on the wall and 

the boundary layer [12]. Figure 4 illustrates the isobars for 3/ = 80 ~ c2 = i0 ~ The character of the isobars 

indicates a mode of flow involving Mach reflection of the jump falling from the leading edge by the symme- 

try plane. Figure 5 shows the isobars for ,/= 40 ~ c2 = 15~ the character of these indicates a mode of flow 

with the regular reflection of a plane jump from the symmetry plane. The results of the calculation of a 

regular reflection from the symmetry plane, with a strong reflected jump, based on the oblique-jump for- 

mulas for y = 40 ~ ~ = 15 ~ differ from the results of numerical calculation for p and p by no more tha~n 3%. 
The broken line in Figs. 4 and 5 indicates the position of the plane jump fMling on the symmetry pl~ae from 
the leading edges of the V-shaped wing. 

In conclusion, we note that the values of the vector components ~ behind the plane jump formed at 
the leading edge obtained by the numerical calculation differ from the values obtained by the oblique-jump 
formulas by no more than 3%. The span of the jump is no greater than five or six mesh points. 

The author is grateful to A. L. Gonor and V. V. Rusanov for interest in this work. 
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