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A large class of classical lattice models describing the coexistence of a finite 
number of stable states at low temperatures is considered. The dependence of 
the finite-volume magnetization Mper(h , L) in cubes of size L d under periodic 
boundary conditions on the external field h is analyzed. For the case where two 
phases coexist at the infinite-volume transition point hr, we prove that, 
independent of the details of the model, the finite-volume magnetization per 
lattice site behaves like 

Mper(ht) + M tanh [ MLJ(h  - h,)] 

with Mp~(h) denoting the infinite-volume magnetization and M =  
�89 [-Mp~r(h t + O) - Mper(h t - 0)]. Introducing the finite-size transition point hm(L) 
as the point where the finite-volume susceptibility attains the maximum, we 
show that, in the case of asymmetric field-driven transitions, its shift is 
h ~ - h m ( L  ) = O(L-2d) ,  in contrast to claims in the literature. Starting from the 
obvious observation that the number of stable phases has a local maximum at 
the transition point, we propose a new way of determining the point h t from 
finite-size data with a shift that is exponentially small in L. Finally, the finite- 
size effects are discussed also in the case where more than two phases coexist. 
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1. I N T R O D U C T I O N  

The behavior of lattice systems at first-order transitions for finite lattices 
has been recently intensively studied. (1-5) The discontinuity that appears in 
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the thermodynamic limit is smoothed for finite volumes. The widely 
accepted view is that the nature of this smoothing does not depend on the 
details of the model. For symmetrical models, like the Ising model, with the 
symmetry h ~ - h  with respect to the ordering filed h, the finite-size effects 
respect this symmetry. In fact, one expects that the magnetization m p e  r 

under periodic boundary conditions in a cube of size L behaves like 

mper(h, L) ~ M tanh(m, hL d) (1.1) 

where M is the (infinte-volume) spontaneous magnetization and d is the 
dimension of the lattice (the inverse temperature /~ is included in h). This 
dependence follows already from the rough low-temperature approxima- 
tion of the partition function 

Zpe~(h, L) ~ e hMLd + e - h~zLa (1.2) 

There is a certain controversy in the literature once the models without 
such a symmetry are considered. It concerns both asymmetric field-driven 
transitions as well as temperature-driven transitions for the Ports model. 
Different versions of the formula (1.1) were obtained assuming different 
ansfitze (4'5) on equilibrium probability distribution PL(~) of the corre- 
sponding order parameter. 

Our aim in this paper is not only to resolve this controversy, but, in 
general, to put the theory of finite-size effects on a rigorous footing. The 
theory presented here starts from the observation due to Borgs and 
Imbrie (6) that the partition function (under periodic boundary conditions) 
of a model that describes the coexistence of N phases, q = 1 ..... N, is well 
approximated 4 by 

N 

Zper(L , h)~- ~ exp( - f ' qL  d) (1.3) 
q = l  

Here f'q is some sort of "metastable free energy" of the phase q. It equals 
the equilibrium free energy f of the considered model whenever q is a 
stable phase; otherwise f'q > f and the phase q is exponentially damped in 
(1.3). As an implication, one can show that 

lim ZPer(h '  L) - N ( h )  (1.4) 
L~ ~ exp(--/~fL ~) 

where N(h) denotes the number of stable phases at the particular 
temperature and for the particular value of the (generalized) magnetic 
field h. 

4 This result as well as the results of the present paper are valid for a large class of lattice 
models at low temperatures that can be rewritten in terms of contours with small activity. 
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The main idea of the present work is to substantiate the finite-size 
behavior [like than in (1.1)] by showing that the functions f'q can be 
replaced by sufficiently smooth functions (for our purposes it is convenient 
to consider four-times differentiable functions) and by carefully estimating 
the involved errors. Considering the generalized magnetization 

1 dlog Zper(h, L) (1.5) 
Mper(h, L)  = ~ dh 

we can approximate it from (1.3) by 

N 
Mper(h, L ) =  ~ Pq(h).Mq(h) (1.6) 

q=l 

with 

df'q exp( - f'qL a) 
Mq=----d~ and Pq= N 

•m =1 exp(-f ' , , ,L a) 

Expanding now Pq and Mq around the point h (~ of coexistence of all 
phases, we get the finite-size effects in the case of the multiple phase 
coexistence. To our knowledge, the closed formula for the finite-size 
behavior around the point of coexistence of more than two phases has not 
been considered before in the literature (with a possible exception of the 
Potts models, where, however, all the ordered phases are linked by a 
symmetry). 

In the particular case of coexistence of two phases, we get for 
Mper(h, L), also in a nonsymmetric case, a formula that resembles (1.1). 
The (infinite-volume) coexistence point ht may be shifted due to finite-size 
effects. One can imagine different ways to locate the point ht from (say, 
Monte Carlo) data for a finite cube. An obvious possibility is to consider 
the point hm(L ) where the finite-volume susceptibility Zper(h, L) is maximal. 
We prove that this point is shifted by a term proportional to L -2a with 
respect to ht (the shift predicted in ref. 5 is proportional to L-d). It turns 
out that a more natural and also more accurate estimate can be gained by 
considering a finite-size approximation N(h, L) of the number of phases 
N(h) as given by (1.4). Observing that the number of phases has a local 
maximum at the coexistence point h~ [actually, it abruptly jumps from 
N(h)= 1 for hr  to N(h , )=2] ,  we define ht(L ) as the point where the 
function N(h, L) attains the maximum. It can be shown that it is, in fact, 
the point where 

Mper(h , L)  ~ Mper(h , 2L) (1.7) 
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and that its shift with resxpect to the infinite-volume value ht is exponen- 
tially small in dependence on L. 

Before summarizing the content of the paper, we stress two points. 
First, in the case of asymmetric first-order transitions it is not essential 
whether they are field driven or temperature driven. Thus, the parameter h 
actually may be replaced by/~ and the methods of the present work can be 
used also for, e.g., the Potts model. (7) Second, the class of models that can 
be treated contains not only standard lattice models with finite numbers of 
spin states, but covers also first-order transitions for some models with 
"continuous spin" such as P(~o)2 models (both on a lattice and a 
continuous space-time) (s) or lattice Higgs U(n) models with large n. (9) 

We start in Section 2 by introducing the class of models to be studied. 
t Then we show how to introduce the smooth functions fq.  Some proofs are 

delegated to the Appendix. Section 3 is devoted to a detailed discussion of 
finite-size effects in the case of coexistence of two phases and to the 
evaluation of shifts of several finite-volume transition points. The proofs 
are collected in Section 4. The general case of multiphase coexistence is 
studied in Section 5. 

2. CONTOUR MODELS, TRUNCATED PARTITION 
FUNCTIONS, STABLE AND UNSTABLE PHASES 

In this section we introduce a class of models describing the systems 
we want to analyze. Following refs. 6, 10, and 11, we then introduce certain 
truncated contour models that on one hand can be analyzed by convergent 
cluster expansions and on the other hand agree with the original model for 
stable boundary conditions. The truncated partition functions and their 
free energies will play an important role in the analysis of this paper. 

2.1. Definition of the Model 

We start with the definition of the partition function Zq(V) in a region 
V with boundary condition q ~ Q = {1, 2,..., N}. The index q labels the 
possible "ground states" of the system, and V is a finite union of unit cubes 
in ~a, with d~> 2. We use the notation V q to indicate boundary conditions 
q on V, and to each ground state q ~ Q  we associate a "ground-state 
energy" eq ~ ~. We define Zq(V) as a sum over contours Y in V, so we 
begin by defining these objects. 

A contour is a pair (Y, q(-)) where Y is a connected union of closed 
unit cubes and q(.)  is an assignment of labels q(F)E Q to the boundaries 
F of the components C of yc = ~ a \  y. If q(-) = q on the external boundary 
component of Y, we call Y a q-contour and we sometimes emphasize this 
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by a superscript q on K To simplify formulas, we use the symbols Y or Yq 
to denote the pair (Y, q(.)) as well as the region Y. We use Intm Y to 
denote the union of all finite components C of yc for which q(OC) = m, and 
write Int Y= N Um=l Int,~ Y, V(Y)=Int Y w  Y. Finally, each contour Y has 
a translation-invariant activity p(Y) e N satisfying the following bound for 
some large ~: 

IP(Yq)I <~ exp[ - (~ + eo) I Yql ] (2.1) 

Here I Yql denotes the volume of Yq and e 0 is defined as the energy of the 
lowest ground state, 

e0 = min eq (2.2) 
q 

An allowed configuration of our system is a collection { Y, } of non- 
overlapping 5 contours with compatible boundary labels. The compatibility 
is determined by the requirement that any connected component of 
v\U~ Y~ has constant boundary conditions. In addition, we require that 
the distance of Y~ and ~ V q is greater than or equal to one for all contours 
Y~. If the complement V c of V is not connected, we do not allow contours 
whose interior intersects V c. Given a collection of countours, we finally 
attach energy densities to the regions occupied by each phase of the model. 
A connected component of v\U~ Y~ that has boundary condition m is 
considered to be part of Rm, the region "in the mth phase." Thus, we have 
partitioned v\U~ Y~ a s  U m  Rm" Associating the energy density e m with the 
r e g i o n  Rm, we get the expression for the partition function: 

N 

Zq(V)= ~ l ]p (Y~)  ]-I exp(-e~ IRml) (2.3) 
{r~} ~ m = l  

The connection between this partition function and the Peierls contour 
picture of spin systems is clear--we have just replaced sites with cubes 
and thickened contours to include neighboring cubes. 

The magnetic fields are introduced as real parameters {hi} on which 
the activities p and the energies eq may depend. There should be at least 
N - 1  such parameters, and we need a degeneracy-breaking condition. 
Namely, we suppose that the matrix 

E = -dffii (eq - eN)  (2 .4)  
/ q , i =  1,... ,N-- 1 

5 Since contours were defined as union of closed unit cubes, this condition is equivalent to the 
condition that dist(Y~, Yp)~> 1 for all c~ ~ p. 
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is nonsingular. We further assume that p and eq 
h = ( h i , . . .  , hN_l) satisfying the bounds 

d eq 
dh k <~ Ck 

dkp(Y) 
dh k <~ Ck e-O:+eo)lYI 

a r e  C 4 functions of 

(2.5) 

(2.6) 

I[ E -  11[ ~ _ max ~ [(E - 1)iq [ ~ const < oc (2.7) 
i q 

where the constants are independent of r and k: { 1 ..... N -  1 } --, {0, 1,... } is 
a multi-index of order [k[ --- 52 ki between 6 1 and 4. We also assume that 

eq(h=O)=eo(h=O ) for all q ,~eQ (2.8) 

For many purposes we need a second expression for Zq(V) which 
eliminates the compatibility of boundary conditions on contours. To this 
end, we first sum in (2.3) over all sets {Y~} with a fixed collection of 
external contours (those that are not contained in Int Y~ for any e). For  
each external contour Yq (external contours in V q must of course have 
boundary condition q) this resummation produces a factor Z,,(Intm Yq). 
This yields the expression 

Zq (V)~ S 1-IIP(Yq) l-IZm(IntmYq)exp(-eqlExt[)] ( 2 . 9 )  
{ Yq} . . . .  ~ L  J 

q where the sum runs over sets { Y~}ext of mutually external contours, i.e., 
Y~ ~ Int Y~ and Y~, ~ Int Y~, do not overlap for c~'r ~. Also, we have 

q denoted Ext = V\U~ u Intm Yq). Assuming that Zq(Intm Y~):~ 0, we divide 
each Z~ by the corresponding Zq and multiply it back again in the formula 
(2.9). Iterating the same procedure on the terms Zq(Int,~ Yq), we eventually 
get 

Zm(int m Yq)~ 
Zq(g) = [exp(-eqlVI)] ~ l-I P(Yq)[exp(eqlYql)] 1-I NJ Zq(Intm { rq} m 

=-- [exp(--eqlV[)] ~ I-I K(Y q) (2.10) 
{rq} 

The only conditions on the collections { Yq} are that the contours do not 
overlap and all have outer boundary q. The expression {2.10) is useful for 

6 The reason  why we take the der ivat ives  up to namely  fourth order  here is tha t  eventual ly  
we will  use such a condi t ion  to evaluate  the loca t ion  of the m a x i m u m  of the susceptibi l i ty;  

see Section 4. 
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stable q (defined below), while (2.9) is better for unstable q in view of 
possible zeros of Zq(Int m Yq). 

Romark (i). For the Ising models defined in Section 1, N =  2. The 
parameter z can be chosen as O(/~), and the magnetic field H of these 
models is related to the magnetic field defined in this section by h =/~H. 

2.2. T r u n c a t e d  Par t i t ion  Funct ions,  S tab le  and 
Unstab le  Phases 

We are going to define truncated contour activities K'(Y q) and the 
corresponding partition functions 

Z ; (V)=  [exp(-eqlVI)] ~ 1-[ K'(Y q) (2.11) 

in such a way that 
(i) log Z•(V) and the corresponding (infinite-volume) free energy f ;  

can be analyzed by a convergent cluster expansion, and 
(ii) Zq(V)=Zq(V) if fq=f=minm~Qf'm, SO that the truncated 

model is identical to the original model if f'q = f  (following ref. 10, we call 
these q "stable"). 

A possible choice, essentially identical to that of ref. 6, would be the 
definition K'(Y)=K(Y) if IK(Y)] ~ e  -(r-sd)lYI and K ' ( Y ) = 0  otherwise. 
This definition leads to truncated partition functions obeying the above 
conditions (i) and (ii), but the corresponding free energies f'q will not be 
smooth functions of the magnetic fields h. While this was of no importance 
in the context of ref. 6, it would be inconvenient for us. We therefore prefer 
a different definition, motivated by ref. 11. 

We proceed by induction. Assuming that K'(Y) has already been 
defined for all contours Y with diam Y<n, n e N, and that it obeys a 
bound 

IK'(Y)I ~< ~'~J (2,12) 

for some small e, the truncated partition functions Z',,(V) are defined for 
all q and all volumes V with diam V ~< n. Their logarithm can be controlled 
by a convergent cluster expansion and Z ' ( V ) #  0 for all m e Q. We then 
define K'(Yq) for q-contours of diameter n by 

Zm(Int m Yq) 
K'(Yq) = z ' (Xq)  p( Yq)[exp(eq I Yql) 11 ~ y.) (2.13a) 

X'(rq) = l-I x(log [Z'q( v( Yq))l - log [ z ' (  v( rq))l + ctl rol) (2.13b) 
m 
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where c~ will be chosen later and :g is a smoothed characteristic function. 
We assume that Z has been defined in such a way that Z is a C 4 function 
that obeys the conditions 

0 ~< g(x) ~< 1 (2.14a) 

Z(x)=0  i f x ~ - l ,  Z ( x ) = l  if x~>l (2.14b) 

d 
0 ~< dxx Z(x) ~< 1 (2.14c) 

d~xk Z(x) <~ Ck for 0~<k~<4 (2.14d) 

where the constants Ck depend only on k. 
As the final element of the construction of K', we have to establish the 

bound (2.12) for diam Y= n. We defer the proof, together with the proof 
of the following Lemma 2.1, to the Appendix. We use f'q to denote the free 
energy corresponding to the partition function Z'q, 

f 'q = - -  lim 1 log Z'q(V) (2.15) 

and f, aq are defined by 

f = min f~, 
m 

t 

aq = f q - f  

(2.16) 

(2.17) 

Lemma2.1. Assume that [p(Yq)l<~exp[-(~+eo)LYql] for all 
possible q-contours Yq. Then there exists a constant t 0 (depending only 
on d and N) such that, for z~>T o and 0 ~ - 3 ~ v - % ,  the contour 
activities K'(Y) are well defined for all Y and obey (2.12) with e =  
e x p [ -  ( 3 -  2 d -  2 -  ~)]. In addition, the following statements hold for 
r>~Zo and 0 ~ < a - 3 ~ - Z o :  

(i) ]Zq(V)[ ~<exp(-f lV[ +IOV[). 

(ii) If aq diam Yq ~< ~ - 2, then K(Yq) = K'(Yq). 

(iii) If aq diam V~<, - 2, then Zq(V) = Z'q(V). 

Remark (ii). Due to the bound (2.12), the partition function Z'q(V) 
can be analyzed by a convergent cluster expansion, and 

Ilog Z'q(V) +f'qlVll ~< O(e)13 VI (2.18) 

[f'q -- eq[ ~ O ( e )  ( 2 . 1 9 )  
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Remark (iii). Due to Lemma 2.1(iii), Z q ( V )  and Z'q(V) are equal if 
aq = O. One therefore says that q is stable if aq = O. 

We finally turn to the continuity properties of Zq and Z'q. As a finite 
sum of C 4 functions, Zq(V) is a C 4 function of h. The following lemma 
gives a bound on the derivative of Zq(V). 

kemrna 2.2. Assume that z > z o. Then 

I I [Zq(V) exp(eq 1VI )] ~< O(exp( - 0 ) 1 V J  lkl exp[(eq - f ) [  VI + IOgl ] 

for all multi-indices k of order 1 ~< Ikl ~< 4. 

L e m m a  2.3. There are constants Zo and K <  oo such that, for z > ~o 
and 0 <~ ~ - 3 <~ r - %, K'(Yq) and log Z'q(V) are C 4 functions of h, and 

~hk K'( Yq) <~ (Ke) trql 

for all multi-indices k of order Ikl ~< 4. 

ProoL The proofs of these lemmas are given in the Appendix. 

Remark (iv). By Lemma 2.3, Sq = f ' q -  eq is a C 4 function of h and 

d , 
( f q -  eq) ~< O(e) (2.20) 

Using the a priori assumption (2.7), we conclude that 

/q , i= 1,...,N-- 1 

obeys a bound of the form (2.7) as well, with a slightly larger constant on 
the right-hand side; when one combines this with the inverse function 
theorem, one immediately obtains the existence of a point h, for which all 
aq a r e  zero, i.e., all b.c. are stable; more generally, one may construct 
differentiable curves hq(t) going out of h,, on which only q is unstable, sur- 
faces h@(t, s) on which q, c] are unstable, etc. A possible parametrization of 
these curves, surfaces, etc., is given by am(hq(t))=fmqt, am(hqo(t,s))= 
(~mq t + ~)mgiS ..... 

Remark (v). In the literature, one often assumes a bound of the form 
(2.1) with e 0 replaced by e o. As one may see from (2.5), (2.7), and (2.8), 
such a bound will usually hold only in a neighborhood of diameter O(r) 
of h = 0. Outside this neighborhood, one then has to distinguish between 
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states q for which eq-eo<.O(z ) and those for which eq-eo>O('c); the 
notion of a contour is then redefined in such a way that regions corre- 
sponding to a ground state q with eq - eo > O(z) are part of a contour. Our 
procedure avoids this procedure of redefining contours. 

Remark (vi). 
consequence, 

for all multi-indices 
aq diam Yq <<. z/4. 

For the rest of this paper we choose ~=z/2 .  As a 

ff.~hk K'( y q) <~ e -(~/4)lvql 

k of order ]k]~<4; and K'(Yq)=K(Y q) if 

3. COEXISTENCE OF TWO PHASES 

In this section we state our results for the finite-volume magnetization 
with periodic boundary conditions. We consider models defined on a 
d-dimensional torus T with sides of length L in each direction, whose 
partition function can be written as 

Zp~r(T)= ~ H [exp(-emlRml)] I-Ip(Y~) (3.1) 

Contours are again (Y, q(-)), where Y is a connected union of closed unit 
cubes in T and q(.)  is an assignment of q(F) e Q to the boundaries F of the 
components C of yc = T \  Y. And Rm is again the union of all components 
of T\U~ Y= which have the boundary condition m. For contours Y with 

diam Y <<. L/3 (3.2) 

we call them small in this section, it is clear which component of T \  Y is 
the exterior, Ext Y, of Y; and Int Y= T\ (YwExt  Y) may be decomposed 
in the same way as before: Int Y= (.Jm Intm Y. 

We will assume that the activities p(Y) of the small contours are the 
same as those introduced in Section 2 (in particular, p(Y) is translation 
invariant, and does not depend on L as long as L i> 3 diam Y). We do not 
need any special properties of the activity p for large contours, apart from 
the condition that 

[p( Y)[ ~< exp[ - (z + eo)[ Y[ ] (3.3a) 

and 
d k 
- ~ p ( Y )  <~ Q e x p [ - ( z  +eo)lY[] (3.3b) 
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Now, we restrict ourselves to the case of two ground states, 
Q = { -  1, + 1 }. We assume the bounds (2.1) and (2.5)-(2.7) for some large 
z, and denote by h, the magnetic field corresponding to the coexistence 
point; see Remark (iv) of Section 2. We suppose also that signs have been 
chosen in such a way that 

d ~(e+ --e_)<O (3.4) 

so that + is stable for h>>.h, and - is stable for h~<ht. We introduce 
further the infinite-volume magnetizations, 

M + ( h ) =  lim 1 d 
- v ~  ~d I vI ~ log Z • (V) (3.5) 

where Z•  are the partition functions introduced in the last section, and 
the finite-volume magnetization with periodic boundary conditions, 

1 d 
Mper(h , L ) = ~ - ~  log Zper(r ) (3.6) 

Note that M+(h) can be analyzed by a convergent cluster expansion if 
h ~> h,, while for M_(h) we have a convergent cluster expansion if h ~< hr. 

Remark (i). As a finite sum of C a functions, Zper(T) is a C 4 function. 
Therefore Mpe~(h , L) is well defined as long as Zper(T ) ~ 0. 

The following lemma, together with Theorem 3.2 below, is proven in 
Section 4. 

L e m m a  3.1.  
only on d, the following statements are true: 

(i) Mper(h, L) is well defined for all L E N. 

(ii) The limit Mper(h ) = lim L_, oo mper(h, L) exists and 

For  Z>Zo, where z o < Go is a constant that depends 

fM_(h) for h<h, 
Mper(h)=~�89 (h)+M+(h)] for h=h, 

[.M+(h) for h>h, 
(3.7) 

Zper(h , L) e f(h)La 

Remark (ii). Lemma 3.1 is an immediate generalization of a theorem 
proven in ref. 6, which states that the quantity 
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goes to the number  N(h) of stable phases 7 as L ~ oo [-we use f(h) to 
denote  the free energy] .  

We  now turn to the f ini te-volume behav ior  of Mper(h,L ). We 
in t roduce  the susceptibil i t ies 

dM+(h) h (3.8) 
)~• - - T  =ht++_O x 

and the cons tants  

M+(h,)+M (h,) 
Mo - (3 .%) 

2 

M - M +  (h,) - M _  (h,) (3.9b) 
2 

No te  that  M 0 = 0 and Z+ = Z for a system with + / -  symmetry.  

T h e o r e m  3.2. 
bo > 0 such tha t  the following s ta tements  are true for T > To. 

There  exist cons tants  To<O% Ko, K ~ < o %  and 

(i) IMpCr(h, L) - -Mper (h ) ]  ~<e b~176 (3.10) 

(ii) Mp~dh, L)=Mo+ z+ +)~2 (h-h~)+IM+Z+-)~- -  

xtanh{L [ ,h h,21t 
+R(h, L) (3.11a) 

with an er ror  R(h, L) b o u n d e d  by 

IR(h, L)I ~ e-b~ + K1 Ih - htl 2 (3.11b) 

Remark (iii). Both  bounds  (3.10) and (3.11) of Theorem 3.2 are true 
for all h. The b o u n d  (3.10), however,  is bet ter  if Ih-h,I is large, whereas  
(3.11) is bet ter  if Ih-ht] is small. The overlap,  where bo th  of them are  
nontr ivial ,  is the region L d < Ih-- ht[ ~ 1. 

Remark (iv). F o r  a system with + / -  symmetry ,  h, = 0, Mo = 0, and  
Z + = Z = Z; therefore Theorem 3.2 implies tha t  

Mp~r(h , L)  = zh + M tanh(MhL d) + O(h 2) + O(e bo~L) (3.12) 

7 For the models with two ground states considered in this section, N(h) is one for h vs h l and 
two for h = hr. 
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We finally discuss the shift of the coexistence point h, due to finite-size 
effects. Since the order parameters have no discontinuities in finite volumes, 
there are several possible definitions of the coexistence point for finite L. 
We consider the point hm(L ) where the finite-volume susceptibility 

Zp~r(h, L) dMpr L) (3.13) 
dh 

is maximal, the point ho(L) where Mpe,(h, L ) =  M 0, and the point ht(L) 
where the finite-volume approximation 

__~Zper (h ,L )2a] l / (2  ~1 1) 

N(h, L) - L Zpor(h, ~)-J (3.14) 

to the number N(h) of stable phases [-see Remark (ii) after Lemma 3.1] is 
maximal. Since the function Mpe,(h)-Mo may have additional zeros as 
h ~ + ~  in the abstract context considered here, one must restrict h to a 
certain neighborhood of h, to ensure that ho(L) is well defined. 

T h e o r e m  3.3. There are constants 6 > 0 and Lo < a3 such that the 
following statements are true for L > L0 and r > %. 

(i) There is exactly one point hm(L) such that 

Zpe,(hm(L ), L) > Zpe,(h, L) for all h 4= hm(L) 

and 

h m ( Z  ) = h t -4- 3 ( z  + - X - ) 4M3L2a + O(L -3a) (3.15) 

(ii) 
such that Mper(ho(L), L ) =  Mo; and 

[ho(L)-h,[ <. O(e -b~L) 

(iii) There is exactly one point ht(L) such that 

N(h,(L), L) > N(h, L) for all 

and, for this point, 

There is exactly one point ho(L ) in the internal [ h , - 6 ,  ht + f] 

(3.16) 

h ~ h,(L) 

Ih,(L) - h,I <~ O(e -b~L) (3.17) 

The fact that h,,,(L) contains no corrections of O(L d) Remark (v). 
is a peculiarity of the coexistence of two states. If ho is a point where more 
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than two phases coexist, hm(L ) may be shifted by an amount O(L d); see 
Section 5. 

Remark (vi). The theorem shows that ho(L) and ht(L) are much 
better approximations for ht than hm(L ). Since Mo is not known a priori, 
and since the definition of ho(L) is less obvious for systems with more than 
two ground states, we propose to use ht(L) for a numerical determination 
of the coexistence point. Note that it is not necessary to calculate the parti- 
tion function itself to determine h,(L), because the local maxima of N(h, L) 
correspond to the points h for which Mp~(h, L) = Mp~(h, 2L). 

Remark (vii). Some time ago, Binder and Landau developed a 
heuristic theory of finite-size scaling at first-order phase transitions, 
assuming that the probability distribution PL(') of the finite-vomule 
magnetization is well approximated by a sum of two Gaussians. The 
relative height of these Gaussians was chosen in such a way that the area 
under both peaks of PL is equal for h =hi .(14) Binder and Landau derived 
a formula for Mper(h, L) [formula (25) of ref. 4] which is exactly our 
formula (3.11a), except for the error term, which cannot be systematically 
estimated in their theory. Later, Binder et al. "corrected" this theory, 
assuming now that for h = h, both peaks of PL(" ) have equal height, and 
predicting a shift hm(L) -h t=O(L  d) if Z+ C-Z- .(~) As we know from 
ref. 6 (see also Theorem 4.1, Section 4), this assumption is unreasonable, 
because at h = h, both phases contribute to Zpe~(h, L) with equal weight 
e x p [ - f ( h ) L ~ ] ,  except for exponentially small errors. And~ this corresponds 
to equal "areas," not equal heights. This explains the discrepancy between 
their formulas and ours. 

4. PROOF OF L E M M A  3.1, THEOREM 3.2, A N D  T H E O R E M  3.3 

All results of Section 3 are based on the following theorem. Since the 
proof of the theorem does not depend on the fact that there are only two 
ground states, we formulate it for the general system with N ground states, 
Q = { 1,..., N}. We define i Mp~r(h, L) by 

M;er(h , L)=~h log Zper(Z ) (4.1) 

T h e or e m 4.1. There are constants % <  oc and b0>0  depending 
only on N and d, such that the following statements are true for r > r0: 

(i) Zpo~(T)- ~ exp ( - - f ;L  ~) ~ e x p ( - f L d - b o r L )  (4.2) 
q e Q  
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(ii) Let 

Then 

Pq = exp( - f "  L d) exp( - f 'qL d) (4.3a) 

M~,r(h,L)- Z - dhiJ Pq <~exp(-b~ (4.3b) 
q~Q 

for all multi-indices k: {1 ..... N -  1) ~ {0, 1, 2,..} of order fkt ~< 3. 

Remark (i). Theorem 4.1 is a generalization of Theorem 5.1 of ref. 6; 
see also ref. 12, Theorem 5.1 and Theorem 5.5. Note that the sum over q in 
(4.2) and (4.3) goes over a / / q ~  Q, whereas the theorems of refs. 6 and 12 
are stated for the corresponding sums over stable q's. 

Remark (ii). It follows from Theorem4.1(i) and the fact that 
f = minqf'q that 

Zpe,(T) >~ e-:C"(1 - e -bo~C ) 

SO that Zp,r(T)# 0 and i Mp~(h, L) is well defined for r > %. On the other 
hand, 

lim Mp~(h,L)= 1 ( ~f'q) 
q:f'q = f  

by Theorem 4.1(ii); N(h) is the number of stable states. For Q = { +,  - }, 
there is only one magnetic field h, and 

dr'+ ( h ) 
dh M +(h ) provided h <~ h, 

while 

af'  (h) 
dh M_(h) provided h<~h, 

Therefore Lemma 3.1 follows immediately from Theorem 4.1(i) and (ii). 

Proof of Theorem 4. 1. The first step in the proof is a decomposition 
of Zp~r(T), 

Zper(T) = zBig(T) + Z'~(T) (4.4) 
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where zres(T) is obtained from Zper(T ) by restricting the sum is (3.1) to a 
sum over sets { Y~} such that diam Y<. L/3 for all contours Ye { Y~}. We 
further decompose zr~(T) as 

Z'e~(T)= ~ Z~S(T) (4.5) 
qeQ 

where a set {Y~} contributes to Zqe~(T) if its external contours are q 
contours [if { Y~} contains no external contours, [Rml = (~qm Ld for some 
q e Q; the corresponding term e x p ( - e q L  a) then contributes to Zq~(T)]. 

Since each configuration contribution to zBig(T) contains at least one 
contour of size bigger than L/3, 

IZBig(T)l ~< e-YLee-bl'z (4.6a) 

for some b~ > 0 depending on N and d; see Section 5 of ref. 6 for the details 
of the proof. In a similar way, 

d~-~k zBig(T) ~< e lL~e--b~L (4.6b) 

for all multi-indices k of order Ikl ~ 4. 
We now turn to the properties of Zq~S(T). Recalling that the constant 

of Section 2 was chosen as a = ~/2 [see remark (vi) of Section 2], let us 
assume for the moment that 

aq(h)L <~ z/4 (4.7) 

Then all q-contours in T (which has diameter L) have small activities by 
Lemma 2.1(ii) and (2.12) [see also remark (vi) of Section 2]. Therefore 
zrqe~(T) can be analyzed by a convergent cluster expansion. Comparing the 
expansion for log ZqeS(T) with the expansion for f'q, one obtains the 
bounds 

]log ZqeS(T)+fqLa[ <~e -b2~L (4.8a) 

+ f'qL a] (4.8b) [log Z qeS( T) ~ e-b2"cL 

where bz > 0 depends on d and N, and k is again a multi-index of order 
Ikl ~< 4. 

On the other hand, for aq ~ 0, 

IZq~ exp(fL d) 

~< exp{exp(-b2"cL)} max{exp(--aqLd/2), exp( -zb3  Ld-  1)} (4.9a) 
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where b3 > 0 again depends only on d and L. The physical origin of the 
bound (4.9) is clear: If q is unstable, one either pays for the higher energy 
of the unstable phase or for the formation of a large contour which brings 
the system into a stable phase. The detailed proof is given in ref. 6, 
Section 5; see also Appendix A, Remark (i). In a similar way, 

d~kZq~S(T) exp(fL a) 

~< C(]kl )(2La) Ikl exp{exp(-b2"rL)} 

xmax{exp(-~qLa/2) ,  exp(-'rb3 La-1 } (4.9b) 

where C([k[) is the constant defined in (A.14) and Ikl ~<4. 
We therefore bound 

[ZqeS(T) exp(fLd)] ~< exp( -b2zL)}  e x p ( - r L  d-I  rain{l/S, b3) ) 
~< exp( - b4 zL a- 1 ) 

and 

d k 
- -  Z rest T~ dh k q , , exp(fLa)<<.exp(-b4"r,L a-l)  

provided r is large enough, Ik] ~< 4, and aq(h)L > z/4. On the other hand, 

]exp( -- f 'qL d)[ <~ exp( - f L  a) exp( - b a'r L a- 1) 

~hkk exp(--f 'qL a) <~ exp( exp( ~ f Z d ) ~ b 4 ~ Z d ~ 1) 

if aq(h)L > z/4. Therefore, 

tZqeS(T) - exp( - f 'q  Ld)[ ~< exp( - f L  a) exp( - bs"rL a- 1) (4.10a) 

ff--~hk [Zq~S(T)-exp(- f 'qLa)]  <~ e x p ( - f L  a) e x p ( - b s ~ L  a - l )  (4.10b) 

if aqL > v/4 and ]k[ ~ 4. Combining the bounds (4.6), (4.8), and (4.10), we 
obtain the theorem for some constant bo > 0 depending on d and N. | 

We now turn to the proof of Theorem 3.2. If N =  2, the bound (4.3b) 
can be rewritten as follows. We rewrite 

f +  = �89 (f'+ + f "  ) + �89 ( f +  - f +  ) 

f z  � 8 9  l , _ f ,  = - ~ ( f +  ) 

822/61/1-2-7 
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and use the definition of the hyperbolic tangent to get 

I ' ' h d k 1 d ( f + ( h ) + f _ ( ) )  
Mper(h, L) + ~ dh 

1 d ( f ' + ( h ) - f ' _ ( h ) )  tanh{ �89 If'+ ( h ) - f ' ( h ) ] L d } ]  
2 dh 

e -b~  (4.11) 

provided ]k[ ~< 3. 
On the other hand, 

1 d f ' _ ( h ) - d f + ( h ) > ~ b  
2 dh 

(4.12a) 

for some constant b>0;  see Remark (iv), Section 2. Since f _ ( h ) = f + ( h )  
for h = ho, it follows that 

1 ' h - f '  5If+( ) (h)l >~blh-hol (4.12b) 

Combined with (4.11), the fact that [ tanhx - s ignx]<~e  -kxj, and the 
bound 

~ <  C1 + ~< 2C1 O(e -~/4) 

where C1 is the constant from (2.5), we conclude t h a t  

IMper(h, L)-- lim Mper(h , L)] ~< 2e -b~ + 2Cle -bIb h~ 
L ---~ c~ 

This proves Theorem 3.2(i). 
Theorem 3.2(ii) follows from (4.11) by a Taylor expansion around h o. 

Using the fact that f +  (ho)= f '_ (ho) and 

df  'q ( h ) 
dh h=ho = Mq(h~ M~ + qM 

d2f'q(h) h Z+ +Z-- Z + - Z -  
dh2 = ho = )~q T + q 

where q----- + 1, we expand 

1 
2 [ f % ( h ) - f Z ( h ) ]  = ( h - h ~  ( h . h o )  2 )~+ - Z -  

4 

-~- O [ ( h  - -  h o )  3 ] ( 4 . 1 3 a )  
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_ 1_ d ( f +  (h)  - f ' _  ( h ) )  _ M + (h - ho) Z + - Z -  
2 dh 2 

- - + O [ ( h - h o )  2] (4.13b) 

1 d(f'+(h) +f'_(h)) _ Mo + (h - ho) Z+ + Z-  
2 dh 2 

- - + O [ ( h - h o )  2] (4.13c) 

Theorem 3.2(ii) follows from (4.13) and the bound 

§ h~ h~ 
~< K2 [h - ho[ 2 (4.14) 

where/s < ~ is a constant that does not depend on L. Thus, Theorem 3.2 
is proven once the bound (4.14) is established. 

We use (4.13a) together with the mean value theorem of differential 
calculus to bound the left-hand side of (4.14) by 

CLd[h - h0[ 3 

x ( c ~  y L d [ M ( h - h ~  ( h - h ~  

+ ( 7 -  1)-~- [ f + ( h ) - f ' _ ( h ) ]  

where C < m does not depend on h on L, and 7 is a number between 0 and 
1 (which does depend on h and L). )e now use (4.12) and (4.13a) to bound 
the absolute value of the argument of the hyperbolic cosine from below by 

Ld(b Ih - hol - K[h - ho] 3) 

where K < ~  does not depend on h or L. For Klh-hol2<b/2 ,  the 
inequality (4.14) then follows from the observation that 

CLa(h - ho) 2C 
cosh (1L b Ih- holi T 

For KIh--hol2> b/2, the bound (4.14) is trivial (choose K 2 =4K/b). | 
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We are left with the proof of Theorem 3.3. In a first step we assume 
that I h -  htl ~> BL a, where B is a constant to be fixed later, and show that 

and 

N(h, L) < N(ht, L) 

Zp~r(h, L) < Zper(ht, L) 

[Mper(h, L) - Mot > 0 

(4.15) 

(4.16) 

(4.17) 

provided ]h-h,I >~ BL a and L >>. Lo(B). In the second step we show that 
Mper(., L ) -  Mo and the derivatives of N and Zper have one and only one 
zero in the interval [ h , - B L  -d, ht + BL a], and that these zeros obey the 
bounds (3.15)-(3.17). 

We start from Theorem 4.2(i), which will be used in the form 

IZper(T) exp[f(h)L a] - 1 - e x p [ - L d l f  +(h) -  f'_(h)[]l <~ exp(-bozL) 

As a consequence, 
I ! l  + e-F)"-]l/~'~-i) 

N(h, L) 1 + -~=--~J <<. O(e -bo% I 

where we used F to denote the quantity L a [ f ~ ( h ) - f '  (h)l and n to 
denote the number 2 a. Since (1 + e-~)n/(1 + e -nx) is a monotonic function 
of x and 

F= Ldlf'+(h) - f '_(h)l  t> 2Bb 

provided [h - h , ] />  BL -a [we used (4.12) in the last inequality], we have 

N(h,, L ) -  N(h, L) 

>>. 2 - O(e-r176 _ N(h, L) 

>~ 2 -  O(e-~e~ - (,( ~ + e- 2Sb)"'] 1/~n-1) 

that N(ht, L)>N(h ,L)  provided ]h-htl>tBL d and We conclude 
L>~LI(B). 

On the other hand, 

Zper(h, L ) - ~  \ dh 

• 2{L---~[f+(h)-f'_(h)]} 

~< 4C2 + e-a~ ~< 1 + 4C2 
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by the bound (4.11) and the fact that 

dkf q( h ) 
dh k <~ C k -k- O(e -~/4) ~ 2Ck (4.18) 

[Ck is the constant from (2.5)]. Now, we distinguish two cases: Either 
[h-ht] >~BL a for some large constant ~;  then 

zpor(h,, L ) -  zpor(h, L) 

> M2L d -  4C2L d cosh-2{bB} - 8C2 - 2 

M2L a 
/> - -8C2- -2  

2 

where we used the bound (4.18) to estimate df'q(h)/dh. Or BL-a<~ 
]h - ht] ~< BL-d;  then 

1 df +(h) 
df'-d~hh ) = IMI + O(h ) > I M I - O ( L  -a) 

which implies that 

•per(ht, L ) -  Zper(h, L) 

>>. M2La E 1 - cosh-  2(bB) ] - 4C2 - 1 - O(1 ) 

In both cases gpCr(h,, L) - Zpor(h, L) > 0 provided L is chosen large enough. 
Finally, by the bounds (4.11) and (4.12), and by the fact that 

'~--+df'q(h) Mq <~ Klh - h,I 

for some constant K <  ~ ,  

IMpor(& L) - Mo[ 

>>- M tanh {L-L-~ l f '+(h)-  f'_(h)l } - e - b ~  KIh-h, I  

>~ M tanh(bB) - e -b~ - Klh - h,I 

provided I h - h t [  ~> BL -u. We conclude that there is a constant 6 > 0 such 
that Mp~r(h, L) - Mo r 0 for all h in the range 

BL-a<~ I h - h , l  ~<6 
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provided L is chosen large enough. This concludes the proof of 
(4.15)-(4.17). 

At this point the proof of Theorem 3.3 is an easy exercise. We start 
with the proof of (i). We will show that Zp,r(', L) has only one local 
maximum in the interval [h t - B L  -d, ht + BL a], and that this maximum 
obeys the bound (3.15). 

We start from (4.11). Calculating the derivatives with respect to h (for 
k = 2), and using the fact that 

dZ(f+(h)---f'-(h)) =)~+ - Z -  

dh 2 h = ht 

we obtain that 

dZper(h'dh L) h-h~-- 3LdMZ+ --2~-2 

1 d3( f+(h)+f f_(h))  h=h, -r176 
<<, -~ d h 3 + e (4.19) 

[we used (4.18) in the last step]. On the other hand, by the bound (4.11) 
and the fact that 

1 d(f'+ (h) _ f z  (h)) 
- - M +  

2 dh 

provided Jh - hi[ ~ BL -d, we have )4 d2)~p~r(h, L) - 2  (1 d ( f ' + ( h ! z f ' ( h )  ! L 3  d 1 - -3  tanh2F 
dh 2 \2  dh cosh 2 F 

1 - 3 tanh 2 F 
= -2MOL 3d F O(L 2a) 

cosh 2 F 

+ O(L 2a) 

(4.20) 

' h  ' h  L a where we use F t o  denote the quantity 5 [ f + (  ) - f _ (  )] . We recall that 
IFI <<, C1 [h -  h,[ <~ BCI provided I h -  htl ~< BL -a. Choosing B small enough 
and L large, we obtain that 

d2zp~r(h, L) 
dh 2 

<~ --M4L 3a 

in the interval [ h , - B L  d, h, + BLa]. Together with the bound (4.19), this 
proves that d;gp~r(h,L)/dh has only one zero ha(L) in the interval 
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[ h , - B L  -e, h,+BLa], and that h,,,(L)-h~=O(L-2d). 
O(L-2a), however, the bound (4.20) implies that 

d2~per(h , L) 
d2h 2 

-- _2M4L3a + O(L 2a) 

For Ih-h,l~< 

Combining this bound with the bound (4.19), we obtain the bound (3.15). 
The proof of (ii) proceeds in a similar way. We note that 

IMo~r(h,, L ) - M o l  ~<e b0~/~ (4.21) 
and that 

dMp~r(h,dh L) LaM 2 cosh-2 F ~const (4.22) 

provided Ih-h,I  <.~BL -a [the proof of (4.21) and (4.22) is completely 
analogous to the proof of (4.19) and (4.20)]. Since IFI <<.BC1, we obtain 
that 

dMp~r(h , L) LaM a 
dh >~ - ~ - -  cosh 2(BC1) > 0 

provided L is large and Ih -  h,I ~ BL -a. We conclude that Mper(h, .L ) -  M 0 
has a unique zero ho(L) in the interval [ h , - B L  -d, h, + BL a], and that 
ho(L ) obeys the bound (3.16). 

To prove the last statement of Theorem 3.3, we note that the local 
maxima of N(h, L) are the points for which 

Mper(h , 2L) - Mper(h , L) = 0 

On the other hand, 

IMp~r(h,, 2 L ) -  Mp~r(h,, L)I ~ 2e bo~L (4.23) 

and 

d [Mper(h, 2 L ) - M p r  2F] ~< const ~ L d m  2 ~ 2 d cosh 

(4.24) 

provided Ih-htl  <~ BL -a. Choosing B small enough (which implies that F 
is small) and L large, we obtain that 

d 
--~ [_Mper(h, 2Z)-Mper(h,  Z)] >f ZaZ2Z a-i cosh 2(2aBC1)>0 

in the interval [ h , - B L  a, h t+BL-a].  Together with the bound (4.23), 
this implies statement (iJi). 
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5. GENERAL CASE OF MULTIPLE PHASE COEXISTENCE 

Let us recall that choosing a value of the field parameters h = 
{ h i } ~  N-l, the stable phases q are characterized by vanishing of the 
parameter aq=f'q-f  We use Q(h) to denote the set of labels of stable 
phases, Q(h)={qeQ; aq(h)=O}, and N(h) to denote their number, 
N(h) = IQ(h)l. Recall also that in (4.1) we defined 

and let us denote 

Mp~r(h, L) = ~ - -g~  log Zp~r(T ) 

M'q(h)- af'q 

for every s q ~ Q. 
In the Remark (ii) after Theorem 4.1 we actually proved a generaliza- 

tion of Lemma 3.1: 

L e m m a  5.1. There exist a constant z0 depending only on d such 
that, whenever z ~> %, the magnetization Mper(h , L) is well defined for all 
L E ~ and 

1 
i lim i Mper(h)=L~ooMper(h,L)-N(h) ~ Miq(h) (5.1) 

q~Q(h) 

To evaluate the speed of convergence in (5.1), we have to bound from 
below the parameter  aq(h) for all unstable phases q. To this end, we 
introduce the distance dq(h) from h to the region where q is stable, 

dq(h) = dist(h, {hlaq(h) = 0}) (5.2) 

L e m m a  5.2. There exists constants % < 0o and M > 0 such that, for 
r > to and any q unstable for a given value of h, one has 

aq(h) >1 Mdq(h) (5.3) 

Proof. Let us consider, for every h in the ball B(h) of the radius dq(h) 
around the point h, the vector 

v(h) = F- lu 

s If q is stable, Mq(h) is just  the "magnetization" of the phase q; however, it is defined for 
unstable q as well and it is, in fact, a C3-continuation of the magnetization into the unstable 
regions. 
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where F = F ( h )  is the matrix (2.21) and u is the vector with components 
u m = 6mq. Recalling that the norm [JF-I[[ satisfies a bound of the form (2.7) 
[cf. Remark (iv) after Lemma 2.3] and taking 0 < M <  1/IIF 111, we get 

d 
(f'q - f's)[/~ + 2v(h)] = (Fv(h))q - (Fv(h))s = 1 >1 M .  IIv(~)ll 

2 ~ 0  
(5.4) 

for every s # q. Hence, the exists a smooth path C of length at least dq(h), 
starting at h and ending at a point ~ ~ B(h), such that everywhere along the 
path the derivative of f ' q - f ' s  satisfies the bound (5.4). Choosing now s 
stable at h and observing that ~ ' - aq(h) = f q(h) - f'~(~) >>. O, we have 

aq(h) .~..fq(h) - f ' s ( h )  

fcO(f 'q-  f 's) ds ' ~ ' ~ - -  + f q ( h )  - f s ( h )  
Oh 

>~ M fcds +aq(fi) 

>1 dq(h). M ! 

Denoting now by d(h) the minimum of distances dq(h) over unstable 
phases q, 

d ( h ) =  min dq(h) 
q E Q\Q(h )  

we prove the following result. 

Theorem 5.3. There exist constants *o, Ko< ~ and bo>0  such 
that for z > ro one has 

i i [Mper(h , L) - Mper(h)[ ~< e -b~ + Koe Md(h)Ld/2 ( 5 . 5 )  

Proof. Taking into account the bound (4.3b) and the equality (5.1), 
we estimate 

i ]Mp,r(h, L)--  " Mper(h)l 

<~ 2 PqM~q(h) N(h)  ~ Mq(h)  + e x p ( - b o r L )  
q e Q  q E Q ( h )  

<~ ~ [M~q(h)l N-(h) N ( h ) + Y ~ m ~ e \ e ( h ) e x p [ - ( f ; - f ) L  a] 
q e Q(h) 

exp[ - (f'q - f ) L  a] + exp(-bo rL) 
+ Y', IMq(h)[ N(h)+~j.~m~Q\O(h)exp[_(fm__ f ) L d  ] 

q ,~ Q \ Q ( h )  
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The needed bound follows upon taking into account that N(h)>j 1 and 
e x p [ - ( f ' q - f ) L a - [  <<. e x p [ - M d ( h ) L  a] due to Lemma 5.2. | 

The bound (5.5) is, in analogy with Theorem 3.2(i), useful whenever 
the parameter h takes on values with large d(h): this means far away from 
the curves (or surfaces) where some of the phases that are unstable at h 
become stable, in particular, far from the value h (~ where all N phases 
coexist [aq(h (~ = 0 for all q ~ Q]. 

Next, we describe the behavior of Mp~(h, L) in a close neighborhood 
of h (~ To tl'iis end, we start from the formulas (4.3) that express mper (h ,  L) 
in terms of M~q(h) and fiq(h) and expand them in ( h -  h(~ To simplify the 
notation, we introduce universal functions Pq(rl) that replace the hyper- 
bolic tangent from Theorem 3.2(ii). For tl E RN, we define 

exp(-~q) 
Pq(r/)  = N 

Zm = 1 exp( -- rim ) 

Using also )~ to denote the susceptibilities, )~(h)=-~?2fq/c?hiShj, we 
evaluate i Mper(h, L) m (essentially) the first and second orders in the 
distance IIh-h/~ of h from the point h (~ of full coexistence. The crux of 
the statement lies in the bounds on the errors. 

Theorem 5.4. There exist constants to, K1, K 2 <  oo and b o > 0  
such that 

(i) Miper(h, L) : 2 Miq (h(O)) Pq(•) "Jff RI(h, L) 
q 

where r~ is the vector with components 

Om = --Ld ~ MJm(h(~ - h~ ~ 
J 

and 

J 

where t/is the vector with components 

The errors R~, R2 satisfy, for r > to, the bounds 

[R~(h, L)[ ~ e boTL + K~ IIh - h(~ min ~llh - h(~ 1 + ilh - h~~ Ld t 
2~(h) ' 

(5.6i) 
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and 

]R2(h, L)I ~ e -b~162 + K2 IIh - h(~ min { IIh-h(~ 1 + I[h-h(~ ' 
J 

(5.6ii) 

where 

~(h) = dist(h, {fie ~N[ N(h)>>- 2}) 

We note that d (h)=  d(h) if N(h)= 1, whereas it vanishes on the curves (and 
surfaces) of phase coexistence. The bounds (5.6) are weaker than the 
corresponding bounds in Theorem 3.2; in the region IIh-h(~ >> L -a they 
become useless if h approaches the phase coexistence regions. However, 
changing the definition of Pq in these regions, one can evaluate the finite- 
volume behavior of Mper(h, L) on the surfaces and lines of coexistence as 
well. 

P r o p o s i t i o n  5.5. Theorem 5.4 remains valid if the functions Pq(r]), 
and similarly Pq(q), are replaced by the functions PQq(h)(~l) which are 
obtained from Pq(r]) by substituting 

1 
r/o = N(h) ~ ~]m 

m E O ( h )  

for ~q whenever q is stable. After these replacements, the bounds (5.6i) and 
(5.6ii) can be strengthened to 

l lh-  h(~ } 
[Rl(h, L)I <~ e-b~162 + K~ Ilh-h(~ rain d(h ) ,1 + [Ih-h~ L d 

and 

;lib ) 
]R2(h, t ) l  ~< e -b~ + g l  [Ih - h(~ 2 min 1 + IIh - h(~ td~  

I d(h) ' ) 

Before proceeding to the proof of the above statements, we illustrate 
them by applying them to a model that is simple, yet captures main 
features of a general case. Namely, we consider the Blume-Capel model (13) 
with the Hamiltonian 

H=~ ~, ( S a - - S a ) 2 - h , ~ S 2 - h 2 E S ~  
( a , b )  a a 
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where the spin takes on three values, Sa = _+1, 0. There are three transla- 
tion-invariant ground states with specific energies 

e0=0, e+ = - h i - h 2 ,  e_ = -h i+h2  

With the help of Pirogov-Sinai theory, it can be shown (14' 15/that the phase 
diagram at low temperatures (Fig. lb) is a small perturbation of the phase 
diagram at zero temperature (Fig. la). Notice that the + ,  - symmetry is 
conserved at nonvanishing temperatures. In Fig. 2 we indicate several 
straight lines, along which we shall analyze, say, the formula (i) of 
Theorem 5.4 with the error bound (5.6i). 

Considering first the dependence on a parameter h along the line ll, 
we get 

i 
M p e r ( h  , L) 

= E M'q(h(~ exp[-22=1MJq(h(~176 
2 j (o) (o) d 

q=O,+l ~m=O,+lexp[-Zj=lM;,,(h )(hs-h9 )L ] 

+ o ( l l h  - h{~ 

The error is of the order [[h-h(~ since for h on ll one has 
~(h) >~ ~ [[h - h(m]] with a fixed ~ > 0. 

Along the straight line l 2 (the tangent at h (~ with respect to the curve 
of 0, - phase coexistence) the bound (5.6i) fails. The reason is that ~(h) 
vanishes quicker than [th- h(~ = as h--+ h (~ 

Also along the line 13 the bound (5.6i) fails, since at(h) goes to zero 
when crossing the coexistence curve, while I[h-h~~ stays bounded from 
below. But here we actually have the coexistence of only two phases, + 

/ 
~) 

h~ 
0 ) ~ o ,  

/ 
u) 

+ 

h~ 

Fig. 1. The phase diagram of the Blume-Capel model at low (b) and zero (a) temperature. 
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Fig. 2 

and 0, and one should rather apply Theorem 3.2 replacing h (~ by the inter- 
section of 13 with the coexistence curve of + and 0 phases. 

An interesting case is that of the line t 4 (the axis h 2 = 0). Here, one 
phase (the phase 0) is stable for hi < h~ ~ two phases (+  and - )  are stable 
for hi > h~ ~ and all three of them coexist at h~ = h~ ~ Observing that then 
d(h) = [[h- h(~ [ha-  h~~ and setting 

3~r~= 1{ 1[M + (h(0)) + M i_ (h(O))] + M~(h(O)) } 

and A i=  -Mio(h  (~ + 3I  i, we get 

M~por(h, L )  = M~ + A i tanh [ A a . (ha - h~~ a + log V/2] + O( Ihl - h~~ ) 

(5.7) 

Notice that this formula has the same structure as (3.11a), except for the 
additional term log x/2 in the argument of the hyperbolic tangent. A direct 
extension to a situation with n phases coexisting along a line (say 14) yields 
the formula 

mper(h , i  L)  = ~ i  + A i tanh[A ~ �9 (hi - h~ ~ �9 La + log w/-n] + O([h~ - h]~ 

(5.8) 

The term log ~ can be traced to the fact that n + 1 phases coexist at h (~ 
n of them being stable for h~ > h~ ~ and the remaining one for ha < h~~ One 
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with ( ' d -=- {fm(h)L }mr 
have 

would thus expect a similar behavior also for the n-state Potts model that 
is reminscent of this extension. Indeed, an analog of (5.8) can be proven for 
Eper(fl, L), the mean energy of the Potts model under periodic boundary 
conditions. ~7) 

Proof of Theorem 5.4 and Proposition 5.5. We start with the proof 
of Theorem 5.4. According to (4.3b), it is sufficient to evaluate the expres- 
sion 

M'q(h) Pq(() (5.9) 
q~Q 

Expanding i Mm(h ) and f ' ( h )  around h ~~ we 

and 

M ~ ( h ) -  M~m(h(~ ~ z~(h(~ ~ ~ M 1Hh-h~~ 2 (5.10) 
J 

f ' ( h )  - f ' ( h  ~~ + ~ M~m(h~~ hl ~ ) 
i 

+ ~ "i'j'h(~ t )t i-- hi~ ~ 
i,j 

~< M2 ]lh - h(~ 3 (5.11) 

where the constants M1, M2 do not depend on h, according to (2.5) and 
(2.20). Taking into account (5.10) and once more (2.5) and (2.20), we see 
that to prove (5.6i) and (5.6ii), it is enough to show that 

and 

IPq(~)-Pq(V1)l<~O(llh-h~~ -~ } (5.12i) 

[Pq(~)-eq(tl) [ ~ O([[h--h(~ ) min(L d, d(h) - t  } (5.12ii) 

(Recall that F/ arises from t/ by omitting the quadratic terms in h-h(~  
Rewriting Pq(~) as 

= e x p [ - ( ~ q - # q 0 ) ] / ~  exp[-(#m--#q0)] Pq(~) 

where qo is chosen in such a way that qo is stable at h, we see that it is 
enough to estimate 

exp[ - (#q - #q0)] - exp[ - (qu  - t/q0) ] 
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for all q :r in order to prove (5.12ii). Bounding 

]exp(~q - (qo) - exp(t/q - r/qo) ] 

<~ (]~q - r/qi + I~qo - qqol) max{exp(~q-  (qo), e x p [ -  ( q q -  qqo)] } 

~< 2M2 Hh - h(~ 3Ld max{exp[ - -  (~q -- ~qo)], exp[ - -  (qq -- qqo)] } 

we conclude that  

I Pq(C) -  Pq(rt)l 

~< O( ilk - h(~ 3)La max max{exp[  - (~q - ~q0)], exp[ - (~/q - ~/q0) ] } 
rn ~ qo 

(5.13) 
We now distinguish two cases. Either 

i l h -  h(~ >~ C3(h) 

for some constant  C to be chosen in a moment;  then we use (5.13) and the 
trivial bound [Pq[ ~ 1 to estimate 

I P S )  - P q ( ~ ) l  

~< rain { 2, LdO( IIh -- h(~ 3)} 

2 [[h - h(~ 3, LdO( Hh - h(~ 3) } 
~< min C~t(h) 

Or ]]h-h(~ < Cd(h) and we bound 

~q - (qo = dq >1 M 3 ( h )  

~q - -  ~qo ~ ~q - -  ~qo - -  M 2  [[h - h(~ 3 L d  

~> (M2 - C) d(h)L a (5.14) 

chosing 0 < C < M 2 ,  and using the fact that  e-X~<min{1, i/x}, we then 
may use the bound (5.13) to obtain (5.12ii). The bound (5.12i) is obtained 
in a similar way. In order to prove Proposit ion 5.5, we observe that  

~q = ~o - min ~m 
m 

if q is stable. It is therefore enough to prove the bounds (5.I2i) and (5.12ii) 
(with Pq replaced by pqQ(h)) for all q~ {0} w Q\Q(h). Rewriting 

exp[ - -  (~q - -  ~ 0 ) ]  

pQ(h)(~) = IQ(h)] + ~,,~Q\Q(h) exp[ -- (~m -- G0)] 
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and replacing the lower bound (5.14) by the bound 

~q -- ~0 ~ Md(h) 

we then may proceed exactly as in the proof of Theorem 5.4. 

Borgs and Koteck 9 

APPENDIX. PROOF OF LElylMAS2.1, 2.2, AND 2.3 

In this Appendix we prove Lemmas 2.1-2.3. Since our results do not 
depend on the fact that eq and p(Y) are real, we allow for complex ground- 
state energies and activities in this Appendix. We require the bounds (2.1), 
(2.5), and (2.6) with (2.2) and (2.4) replaced by 

e o = min Re eq (2.2') 
q 

E =  ~ Re(eq- e N ) j q ,  i = 1,...,N-- 
, (2.)  

and generalize the definitions (2.16) and (2.17) to the complex situation by 
putting 

f =  min Refm (2.16') 
m 

aq=Re f q -  f (2.17') 

! The definitions of Zq, K'(Y), and Zq a r e  the same as before. 
We start with the proof of (2.12), assuming that it has already been 

proven for all contours of diameter less than n. We introduce an auxiliary 
contour model with activities 

K(n)( yq)= {o'( Yq) if diam Yq < n 
otherwise 

Denoting the corresponding free energy by f(n) we define J q  

f(o ~) =min  R e f ~  ~ (A.1) 
m 

("' = Re f~n)  _ f~o~) (A.2) aq 

Since f ( " )  and log Z'q(V) can be controlled by convergent cluster expan- J q  

sions due to the inductive assumption, 

]log Z'q(V)+ f q (") IVll~ O(~)lOVI (A.3a) 
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for all volumes V with diana V~< n, and 

f ( ' ) -  eq[ <. 0(~) q 

Here g is the constant 
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(A.3b) 

e = e  (~-~ 2~-2) (A.4) 

We now assume inductively that 

IK ' (Y) I  ~<e IYI (A.5) 

for all contours Y with diam Y< n, and 

]Zq( V)[ ~ e levi - ~")1 vl (A.6) 

for all q and all volumes V with diam V~< n. 
Using the inductive assumption (A.6) and the bound (A.3), we bound, 

for diam Yq = n, 

IK'( Yq)l 

<~ Z ' (Yq)  exp[(Re eq - e o - z)] Yql ] exp(a(q ") lint Yq[) 

x 1-[ exp{ [1 + O(g)] [~lnt m yq]} 
m 

~< z'(Yq) exp(a~ ") lint Yqql) exp{ [Re eq - eo + 2d+ O(e) - r]  I Yql } 

where we used the bound 

IO Intm Yq[ <~ I(3YI ~<2dl YI (A.7) 
m 

S i n c e  z ' (Y  q) = 0 u n l e s s  

Re[log Z'q( V( Yq)  ) - -  log  Z~m( V( Yq) ) ] • - ~ 1  Yql - 1 

which, by the bounds (A.3) and the fact that I v ( Y q ) l = l I n t  Y q l + l Y q [ ,  
implies that 

(Re e q --  eo) [ Yq[ q- a(q ") lint Yq[ ~< [~ 4- 1 4- O(g)] [ Yql 

we finally obtained the desired bound 

K , ( y q ) < ~ e  [ . . . .  2d-1 o(~)]lYql<~elYql 

822/61/1-2-8 
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<') diam Yq L e m m a  A.1. Assume that diam Yq<~n and that a e 
- 2. Then 

z ' ( Y  o) = 1 

ProoL Using (A.3) and the definition of a~ ~), we bound 

log IZ'q( V( rq) )l - l o g  [Z'~( v( Yq) )I + o: l Yq[ 

>t [-~t -- O(s)] [Yq[ - a~")lv(Yq)l 

Combined with the bound 

a(q")lV( Yq)l ~ a(q ") diam Yq I Yqi ~ (c~ - 2) [ Yql 

and the property (2.14b) of Z, we obtain the lemma. | 

(") diam Yq ~< ~ - 2. k e m m a  A.2. Assume that diam V<<.n and that aq 
Then 

Zq(V)  -.=- Z ; ( V )  (A.8)  

ProoL For diam V~<2, the statement is obvious. Assume that (A.8) 
has been proven for all V with diam V<<.m - 1, m <<.n. Taking into account 
LemmaA.1, we infer that K ' ( Y q ) = K ( Y  ~) for all q-contours Yq with 
diam Yq <<. m. Using (2.9) and the definition of K(Yq), we conclude that for 
all volumes with diam V~< m, 

Zq(V) = ~ Zq(Int)e-~qlV\I~tl l- [ K(Yq:) 

= ~ Z'q(Int)e -~qtv\I"'l [ IK ' (Y~)  
{ Yq }ext 

= Ztq(V) 

where Int denotes the set 0 : I n t  Yq. Thus, the lemma is proven by 
induction. | 

k e m m a  A.3. Assume that diam V~< n + 1. Then 

]Zq(V) l~exp( - f (o ' ) lvL+lOvI)  for all q ~ Q  

<n> diam Yq ~ ~ - -  2 and Proof. We define a contour Yq to be small if aq 
use the relation (2.9) to rewrite Zq(V) in the following way: write a set 

Z q { Y~} of external q-contours in V as {X q} w { ~}, where {Z~} denotes the 
small contours in { Yq} and {X q} the large contours in { Yq}. Note that for 
fixed X q, the sum over {Z q} goes over all sets of mutually external small 
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contours in Ext = v\U~ (X~ w Int X~). Thus, resumming the small contours 
and using the relation (2.9) for a second time, we obtain 

Zq(V)= ~ Zqrna'l(Ext) l-IIp(Yq)~izm(Int~.Yq)l (A,9) 
{X~}ext c* m 

where the sum goes over sets of mutually external large contours in V and 
Zqm~n(Ext) is obtained from Zq(Ext) by dropping all large external 
q-contours. 

By Lemmas A.1 and A.2, K(Y q) = K'(Y q) if Yq is small. Therefore the 
partition function Zqm~n(Ext) is equal to the corresponding truncated 
partition function, which can be controlled by convergent cluster expan- 
sions. It follows that 

[gqman(Ext)l ~< exp[" - Re fqm"n IExt [ + O(e)[6 Extl ] 

where fqman is the free energy of the contour model with activities 

K~man(yq)=;K'(Yq ) if diamYq<~n and Yqissmall 
lo otherwise 

(A.10) 

On the other hand, 

Iz,~(Int,.x~)l<.exp(-f(o')lInt,. xql + 13 Intm x-q[)  (A.11) 

due to the inductive assumption (A.6). Combining (A.10) and (A.11) with 
the a priori bound on p and the bound [f(o " ) -  eo] ~< O(r we find that 

tZq(V)[ > exp( -Re  f s 2 a l l  IExtl-fCo') I V\Extl) 
{~}~xt 

x exp[]~? Intl + O(e)] "l-] exp[ - ( r  - O(e)) IXql] 

Using (A.7) to bound 

/ \ 
o(e) [o Ext[ + [0 Intl.< O(e)([?V[ + ~ [~3xq[)+ [? Intl 

\ r / 

by O(e)Ic~VI + 4 d ~  [xq!, we get 

IZg(V)[ ~< expr-f(o ')I  vI + O(e)I~VI] 

X Z exp[ -Re(rsrnall--~q --Jof('h, [Ext[] 1[-I e x p [ - ( z - 4 d -  1)[xq[] 
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At this point we extract a factor 

max exp{ t {G}oxt - 2 2 o  IX~I 

~<maxexp{ a--~lv\WI ~ } w ~ v  - 2 -~l~W1 
and bound the remaining sum as in ref. 6, Section 2 (see also ref. 10, 
Section 2). We get the estimate 

IZq(V)l <~ exp(-f(o')lvI + ]~VI) maXw=v exp { -  ~ 2  I v \  wl --4-d tewt 

(A.12) 

Bounding the last factor by one, we obtain the lemma. | 

This completes the inductive proof of (2.12). On the other hand, 
f =  lim, ~ ~ f~o ") and aq = lim, ~ ~aq(n) .  Therefore Lemma 2.1 follows from 
Lemmas A.1-A.3 by taking the limit n ~ ~ .  

We now turn to the proof of Lemma 2.2, which we will prove in the 
form 

( i ~ l ~ l  [Zq (g) eeqlg[] 

<~ const- e ~C(k)(4e2d I V[ )k e(eq-f)[ vI + IOVk (A.13) 

where k = l  ..... 4, p: {1,..., k} ~ {1,..., N - 1 } ,  and 

k 

C(k)= max [ I  Ck, (A.14) 
kt'""kk>~O i = l  "~ ki = k 

Cki are the constants from (2.5) and (2.6), C o = 1, and the constant const 
in (A.13) does not depend on k and V. 

By the definition (2.3) of Zq(V)  

[Zq( v)eeq[VI]'~- ~ ~l p(Ya.)eeq[Yal H eeq--e(x) ( A . 1 5 )  

{Y~} ce xcV\Ur a 

where e(x)  = e m if x c R m.  A derivative d/dhp(i) now either acts on a factor 
e eq-e(x) or on a factor p(Y~)e  eqlr~t. We fix all contours Ywhich are differen- 
tiated or which contain a point x in their interior such that e ~q-e(x) is 
differentiated, as well as all contours Y' such that there is a contour 
Y c  Int Y' which is differentiated, and resum all other contours. We then 
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use Lemma2.1(i)  to bound the resulting partition functions, and the 
bounds (2.5) and (2.6) to bound the derivatives of p and eq. As a result, 
we obtain the estimate 

( ~=I Z )  [Zq(V) 

~< C(k)2 k exp(eq [V[) ~ Y~' 
xl,...,xkeV {Y~} 

xexp  - f l g \ u Y ~ \ { x ~ , . . . , x ~ } l + l s g [ +  ~ 2d+  I~Y~] 
i = 1  

k 

x I~ exp[ -e (x~)]  1-[ exp[ - ( v  + e0)t Y~I ] (A.16) 
i = 1  

where the sum ~2' goes over all sets { Y~ } for which each Y, either contains 
or surrounds a point xi. Note that a term for which xi e Y, comes from a 
term where p(Y~)exp(eq[Y~[) was differentiated with respect to hp(g), while 
the terms for which xi lies in v \ U  Y~ come from those terms where 
exp[eq -e (x~) ]  was differentiated with respect to hp(i). We now extract a 
factor 

C( k )( 2e2d)~ e(eq- f)l vl + iovl 

from the right-hand side of the above inequality and bound the remaining 
sum as follows: 

k 

2' 1-I ef--e(x')H e (~ +eo-f)lr~l+lOY, I 
{Y~} i = 1  cc 

~< ~ '  ee~ 1~ e -  E~- o(~)- 2d] I Y=l 
{Y=} 

k 

i = 1  {Y:} a 

ek~ + O(e-~)]  k ~< 2 k 

where the sum Z (i) goes over sets {Y~} of contours Y such that 
x i e  Y u I n t  Y for all Ye { Y~}. Finally, we note that the expansion of the 
left-hand side of (A.13) contains at least one contour because the term 
without any contour in (A.15) becomes zero when differentiated. Thus, a 
factor cons t . e  -~ can be extracted from the sum over contours without 
destroing the remaining estimates. This concludes the proof of (A.13). | 
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We are left with the proof of Lemma 2.3. Proceeding by induction, we 
assume that the lemma has already been proven for diam Yq~ n - 1  and 
diam V~< n. For diam Yq = n, we rewrite 

K'( Yq) = p( Yq) exp(eq I Yql ) 

x l-I zm(Int m Yq){exp[- logZ'q(In t  m Yq)]} Zm(Y q) (A.17) 
m 

with 

Zm( Yq) = Z( Re log Zq( V( Yq) ) -- Re log Z'~( V (Yq) )  -~- ~ t Yql ) (A.18) 

By the inductive assumption, Lemrna 2.2, and the fact that X is a C 4 

function, K ' ( Y  q) is a C 4 function for diam Yq = n. 
One may now use the inductive assumptions and the fact that 

log Z ; , ( V ) -  em [VI can be analyzed by a convergent cluster expansion to 
bound [see Remark (iii) below] 

d~ log Zm( ' V) ~ [Ck+  O(~)3 I vI ~<2Ck V[ (A.19) 

provided diam V~< n. Using the properties of the function 
the bound 

X, one obtains 

f f - • h k  Zm( Yq) <- const. [ v( Yq)I Ikl (A.20) 

with a constant that depends on N and on k. On the other hand, 

d~-~k [p(Yq) exp(eq I Yql )] 

~< const �9 (1 + I Yql )lkl exp[(Re eq - eo - v)lYql ] (A.21) 

and 

d • - •  e x p [ - l o g  Zq(Int Yq)] 

~< const, lint Yql k exp[Re fq lint Yql + O(e)fYq[ ] (A.22) 

We then use (A.17) to rewrite the derivatives of K'(Yq), and (A.20)-(A.22) 
together with Lemmas 2.1 and 2.2 to bound the resulting terms. We obtain 
the bound 
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f f - • h x  K'( Yq) ~<const. [1 + I Yql + lint yql]lkl 

xexp{aq lint Yql + [ R e e q - e 0 + 2 d + O ( e ) - ~ ] l Y q l }  

~< const �9 [1 + I Yql + 2 d l Y q l 2 ]  4 

x exp{aq [Int Yq[ + [ R e e q - e o + 2 d + O ( e ) - ,  ] IYqj} 

~< exp[aq lint Yql + (Re eq - eo + const - ~) I Yql ] 

~< (Ke) Irqt (A.23) 

where we used the fact that Z'(Y q) = ~ )~m(Yq) and all its derivatives are 
zero if 

aq lint Yql + (Re eq -- eo) I Yql > [~ + l + O(e)] [ Yqf 

We finally have to show that log Z'q(V) is a C 4 function of h for 
diam V= n + 1. Since log Z'q(V) can be analyzed by a convergent cluster 
expansion involving only contours Yq of diameter less than or equal to n, 
this property of log Z'q(V) follows immediately from the fact that K'(Yq) 
is C 4 for diam Yq<<,n and the fact that the cluster expansion for 
d k log Za(V)/dh k converges uniformly in h by the bound (A.23). 9 II 

Remark( i ) .  For aqT~O, the bound (i) of Lemma2.1 can be 
sharpened as follows: Taking the limit n--* 0o of (A.12), and bounding 
10W[ from below with the help of the isoperimetric inequality, we estimate 

]Zq(V)[<~exp(-- f[Vl+l~?V[)maxexp{ aq } w c v  _ _ f l r \ w [ _ v g [ w l ( a  l~/a 

where K > 0  is a constant which depends only on the dimension d. The 
maximum is obtained for either W =  V or W= ~ ;  therefore, 

max _ aq vl(a- l~/a)} ,Zq(V) l< .exp( - f lV l+l •V[)  {exp(  ~ ,  V,). e x p ( - ~ K ,  

(A.24) 

This is the announced improvement of Lemma 2.1(i). 

Remark (ii). In a similar way, one may improve the bounds on the 
derivatives opf Zq(V), using Eq. (A.9) and the fact that the derivatives of 

9 The argument is the same as that leading to (A.9); see Remark (iii) below. 
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Zq mall can be controlled by a convergent  cluster expansion. One obtains the 
bound  

d~z~(v) 
dh k <~ C(]kl)(ZlVl)lkl  e x p ( - f [ V l  + lOV]) 

x max  {exp ( -  ~-aq i V l ) , e x p ( _ r K [ V , a / ( a _ l ) ) }  (A.25) 

R e m a r k  (iii). In s tandard  po lymer  expansions (see, e.g., ref. 15), the 
par t i t ion function log Z ' m ( V ) -  e m IV] is expressed as a sum over  term of 
the form 

r Y'~) (] K'(Y'~) 
i = 1  

with coefficients r (not depending on h) satisfying suitable bounds.  These 
bounds  are sufficient to ensure not  only (A.19) for k = 0, but, differentiating 
explicitly this sum and taking into account  the inductive bounds  on 
derivatives for K ' ,  also for k > 0. 
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