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The liquid weight has a significant effect on the detached cavita-
tion flow which is artificially created by gas injection behind an ob-

stacle (probe) in a liquid stream [1]. This paper considers two-dimen-

sional cavitation flow created behind a projection on the lower sur-
face of an infinite horizontal wall.

1. The problem of the cavitational flow about a plate which
forms a small angle o with a wall is solved. The liquid is assumed to
have weight and to be ideal and incompressible, and its motion is ir-
rotational, The length L of the cavity is considerably greater than the
length of the projection. The Ryabushinskii scheme is used.

Notation

a — is the ratio of plate length to cavity half-length,

7(x) = is the ordinate of the cavity contour,

f — is a quantity inverse to the square of the Froude number
expressed in terms of the cavity half-length L/2,

g — is the gravitational acceleration,

Uy = is the flow velocity at infinity,

a — is the cavitation number,

po  — is the pressure at infinity at the level of the horizontal
wall,

Py  — is the pressure in the cavity,

p — is the liquid density.

The problem consists of finding the complex induced flow veloc-
ity w(z) = u(z) — iv(z), whereu and v are the horizontal and verti-
cal components of the induced velocity, z = x + iy, We use dimen-
sionless values of the induced velocities and dimensionless coordin-
ates, The induced velocities are referred to the magnitude of the un-
disturbe¢ stream velocity at infinity, and the coordinates are referred
to the cawvity half-length.

The analytic function w(z) must satisfy the condition of no fluid
flow through the solid boundaries and the cavity contour and the con-
dition of constant pressure on the cavity contour, In view of the thin-
ness of the projection and consequently of the cavity as well, these
boundary conditions are linearized. The boundary conditions have the

form
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The cavity contour must be rangential to the projection contours,
and therefore these conditions must be supplemented by the require-
ment

M"(—f)=—n{)=a, 1.5

The function w(z) may be represented by the integral relation
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resulting from equalities (1. 1), (1.2) and the Schwantz equation for
the semiplane. Relations (1.2), (1.3), (1.6) lead to an integro-dif-
ferential equation in terms of the function 7 (x}
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At the points x = %1 the function 7 (X) must satisfy condition (1. 5)
and the condition

N(+1)=aa a.8)

resulting from equalities (1.4). The integro-differential Eq. (1. 7)
with conditions (1. 5), (1.8) is equivalent to the boundary-value prob-
lem (1. 1)~(1. 5) for the analytic function w(z). The parameter ¢ in
(1.7), asin (1.3), is unknown,

The integro-differential equation (1. 7) was solved approximately.
To do this the function n(x) at the intervals §; < # < §444, where the
points &y, are chosen so that
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was approximated by polynomials of second degree. The polyncmials
satisfied the conditions 0 (8*) =1 (&), ' (§¥) =n"(}"), conditions
(1.5), (1.8), and the condition n (z) = 7 (— z) which results from
the Ryabushinskii scheme.

This approximation for the function led to equalities of the form

N@=nt)+ Y a@=a

t=t (1.9
1‘ , de L 3
\EEE =S d@a 0<e<th =t =
-1 ol

Here q; are the values of the function n’ (x) at the points x =§y,
Es, ..., Ep; the functions ¢ (x), dj(x) depend on the selection of the
points £, Equation (1.7) was satisfied at the points x = 1/2(k; + Ei+9).
i=0,1,2,...,n =1, Thus, in accordance with equalities (1.9), a
system of n linear algebraic equations with n unknowns was composed:

o/a, g /e, .. gyl

The system of linear equations was solved on the M-20 electronic
computer. [n order to verify the convergence of the approximate sol-
utions of the integro-differential equation, we considered the cases
n =10 and n = 20, and also the exact solution of Eq. (1.7) for =0
(2], The calculations were made for four values of the parameter a:
0.2, 0.1, 0.05, 0,025, and values of the parameter fvarying in the
range 0 = f =3.2,

The results of the calculations were identical for all values of the
parameter a. The variation of the quantity o/c as a function of the
parameter ffor the case a = 0.1, as plotted from the computational
results, is shown in Fig, 1b. The circles in the figure denote the
points corresponding to the system of 20 equations; the crosses are for
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the system of ten equations. The variation of the quantity gj/o as a
function of the parameter fis similar in nature: with increases of the
parameter f the quantities qj /o vary continuously at first, and then
undergo a sudden change.

As shown by the calculations, the range of values of the parameter
f in which the characteristics of the cavitational flow vary jump-wise
does not depend on the value of the parameter a and is given by the
inequality 2. 60 < f < 2.88, Outside of this range the convergence of
the approximate solutions is satisfactory, Thus, outside of the interval
2,60 < f < 2, 88 the values of o/a found from the systems of equa-
tions with ten and twenty unknowns differ from one another by less
than 3-8%, tor f = 0 the exact values of o/« differ from the approx-
imate values by less than 3%.

The discontinuous variation of the quantities q; /o according to
the computational data leads to the situation where the cavity con-
tour n(x) pierces the wall, Consequently, the cavity cannot exist in
some range of large values of the parameter f. The range of small
values of the parameter f in which the cavity can exist is bounded
above by the limiting value f, (2.60 <[, < 2.88) . The value fs
of the parameter corresponds to the limiting value of the Froude num-
ber in terms of the cavity length F, =1/ V2. (0.416 < F, <
< 0.438), and for Up = const it is the limiting cavity length L. In
the case of continuous increase of the cavity length for a fixed stream
velocity Uy, there cannot be a cavity with a length exceeding the
limiting value.

The discontinuous variation of the parameters of the cavitation
flow indicates the passage through zero of the determinant of the
system of algebraic equations which replace the integro-differential
equation. fFrom this it may be shown that the limiting Froude number
corresponds to the condition which admits the existence on a smooth
wall of thin cavities whose contour approaches the wall asymptotical-
ly at the forward and rear points. Actually, such cavities are des-
cribed by relations (1. 7), (1.6), (1. 8) for o = 0. In the case o = 0
the corresponding system of linear algebraic equations in terms of the
unknowns g, qj, according to equalities (1, 9), is homogeneous. The
system has a nontrivial solution only for a zero value of its determin-
ant, i.e., under the condition f = fan, where fon = feasn => =,
n being the number of equations in the system.

2. The conclusions drawn above are valid for thin cavities. The
assumption of thinness of the cavity may be realized theoretically for
values of the parameter ¥(F > Fa), infinitely close to the limiting
value, since the quantity a may be selected sufficiently small, How-
ever, if we fix the angle «, unlimited increase of the relative thick-
ness of the cavity (ratio of the cavity thickness to its length) with the
reduction of the Froude number which is predicted by the linear the-
ory leads to the situation where the linear theory becomes invalid be-
fore the value F = F, is reached. Since the limitation I > F, is of
primary interest, we present below an approximate analysis of the
cavitational flow which is free from any assumption as to cavity thin-
ness. The analysis {s based on the assumption that the linear theory
qualitatively reflects correctly the nature of the relationship between
the cavitational flow parameters for F > F,.

Let us assume that for some fixed value of F(F > Fs) a thin cavity
is obtained behind the projection probe, [f we gradually increase the
pressure in the cavity, without varying the stream velocity Uy, ac-
cording to the assumption made above the cavity length will increase.
After some value of the parameter o is reached, the relative thick-
ness of the cavity will also increase. When the relative cavity thick-
ness becomes sufficiently large, the projection practically ceases to
play any part in the formation of the cavity. The contour of the cav-
ity which exists without the projection may either be tangential to
the wall or may form some angle with it. The first case was con-
sidered qualitatively in the preceding section of this paper. Let us
turn to the second case. In this, the point of the cavity contour which
lies vn the wall will be a stagnation point and therefore, according to
the Bernoulli equation, the following conditions must be satisfied:
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Here W is the velocity on the cavity contour and n(x) is the di-
mensional ordinate of the cavity contour, The question on the exist-
ence of a cavity whose shape satisfies (2. 1) is equivalent to that on
the existence of a body which is symmetrical with respect to the hor-
izontal axis, with the velocity distribution law along its sutface

W, (@)
(U_o} *kﬂ.;_ . (2.2)

Here k is a dimensionless constant and ¢ is a characteristic linear
dimension of the body.
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If a body of such a shape exists, then the linear dimensions of the
cavity are defined by the equality
Y
%

c=k (2.3}
Considering bodies of differing shape, ir was found that a lune
with a 90° angle at the vertex comes very close to satisfying condition
(2.2), For example, in Fig. 1c the solid lines 1 and 2 show the depen-
dence of (W/Wmax)? on g/c (¢ =Tmax) for lunes with vertex angles of
28 = 90° and 28 = 100", The broken curve corresponds to the desired

relation, transformed to the form

W W=/ (=T, - @4

The cavity parameters which satisfy conditions (2. 1) may be de-
fined approximately on the basis of the approximation of its contour
by a circular arc which approaches the wall at the angle 8 = 45°, In
this case it is convenient to use the relation

ko= [__max

w 2
=)

(2. 5)
resulting from equality (2. 2). The relative thickness of the cavity and
the Froude number thus obtained, respectively, have the values

6= Npax /L = 0.207, F=Uy VgL =10423. (2.6

This Froude number is in agreement with the limiting Froude number
obtained from the linear theory.

This analysis permits the following conclusion to be drawn, In-
crease of the pressure (Ug = const) in a thin long cavity leads to the
formation of a cavity independent of the projection — a free cavity,
The free cavity has maximal length and may have one of two types
of contour: either tangential to the wall or approaching it at some
angle. The second type of cavity, since it corresponds to the minimal
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possible cavitation number o = ~1, is the limiting case of the first
type. The free cavity is not formed by the probe and therefore may
separate from it, being located in any region of the horizontal wall. As
the limiting parameters of the cavity formed behind a projection we
can take the parameters of the free cavity: F, = 0.423, §, = 0,207,
and g, = ~1,
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3. An experiment was conducted in a water tunnel to verify the
theoretical results obtained. The test specimen was a flat plate with
side plates, with air being supplied to the bottom surface. The plate
length was 945 mm, width 200 mm, thickness 20 mm, the distance
from the leading edge of the plate to the probe was 315 mm, and the
distance between the bottom of the plate and the lower edge of the
side plate was 295 mm. The plate was immersed to 120 mm. The
experiments were conducted with a wedge-shaped projection having
a length of 12 mm and height of 2 mm. The test was run with stream
velocities up to 0.7 m/sec, The air was supplied to the cavity through
an opening in the plate, shielded by an anti-entrainment device; the
opening had a diameter of 10 mm and was located at a distance of 70
mm behind the projection, The cavity was first formed by pumping
air through a slot directly behind the projection. Stream velocity,
air flow rate, cavity pressure, and cavity parameters were measured
in the course of the tests,

The experimental data showed that with an increase of the air
flow rate the cavitation number diminished and the cavity dimen-
sions increased, In the final analysis increase of the cavity dimen-
sions led to a separation of the cavity from the projection. On leav-
ing the projection, the cavity in all cases moved upstream, after
which it occupied a position such that the opening of the tube which
supplied the air was located at the end of the cavity. The leading
section of the cavity surface which had left the wedge had a regular
form and always approached the plate at a considerable angle; the
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trailing section was strongly distorted by the turbulent air stream
leaving the cavity. .

The results from the measurements of the cavity length are shown
in Fig. 2. Here the values of the Froude number F - (/4/ VgL are
plotted along the vertical axis, and the ratios of the cavitation num-
ber to the wedge aperture angle o/ (o = 1/6) are plotted along the
horizontal axis, The experimental points denoted by circles cover
the range of variation of the parameter fy = af from 0, 21 to 0, 31,
The broken curve is experimental, while the solid curves 1 and 2
correspond to calculation using the linear theory, for fy = 0, 21 (curve
1) and for f; = 0.31 (curve 2), The horizontal line 3 corresponds to
the limiting Froude number Fo = 0, 423, The points lying in the right
side of the figure are for the thin cavities; the points farthest to the
left (o < —0. 5) correspond to the cavities observed just prior to sepa-
ration from the wedge, i.e., limiting cavities, According to these
experiments, the limiting parameters F, and &, for the cavities are
F, ~ 0.48, § =~ 0.14-0.17; the limiting cavitation number o, ~
 ~(0, 5~0, 6),

Comparison of the limiting cavity parameters obtained theoretic-
ally and experimentally indicates that in reality the flow critical re-
gion, i.e., the separation of the cavity from the wedge, is observed
earlier than theory predicts — for larger values of the cavitation num-
ber. This may be explained by the effect of liquid viscosity. Actually,
the cavities having the greatest thickness must create a considerable
pressure gradient along the plate, which may lead to separation of
the boundary layer and, thus, to a reduction of the pressure at the
presumed critical point. This pressure reduction is equivalent to an
increase of the limiting cavitation number.

In summary the date from these experiments indicate satisfactory
qualitative agreement between theory and experiment,
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