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On the basis of a simplified system of equations we study the process
of development and stability of wave flows in a thin layer of a viscous
liquid. Any unstable disturbance of the laminar flow grows and leads
to the establishment of the wave regime. The time to establish the
flow changes little for large flow rates, but increases sharply with re-
duction of the flow rate. Given the same amplitudes of the initial dis-
turbances, the optimum regimes which provide the greatest flow rate
in a layer of given average thickness develop more rapidly than the
other regimes, All the wave regimes are unstable to disturbances in
the form of traveling waves. With moderate flow rates, the optimum
regimes will be most stable to near-by disturbances.

Strictly periodic wave flows in a thin layer of a viscous liquid under
the influence of the gravity force were calculated in [1]. Various flow
wave regimes which differ in wavelength can theoretically be estab-
lished for a given liquid flow rate. In particular, there is a wave-
length for which the flowing layer exhibits minimum average thick-
ness (and maximum flow rate for a given average thickness). These
optimum regimes correspond closely to the experimental data [2];
however, with regard to calculation technique these regimes are no
different from the others, In the following we make a comparison of
the wave regimes on the basis of the nature of their development and
stability.

1. Let us consider the following system of equa-
tions:
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It is derived from certain simplifications of the
complete system of equations and boundary conditions
which describe the flow in the liquid layer; the func-
tions h(r, &), q(r, &) coincide approximately with the
thickness of the flowing layer and the liquid flow rate.
In this sense we can assume that system (1.1) de-
scribes the flow of a viscous liquid in a thin layer,
and we can treat its solutions as the liquid flow re-
gimes. The solution of (1.1) is determined by four
parameters

Ry = ga™v2, R = 3Voawv?, n, z,

in terms of which the equation coefficients are ex-
pressed as follows:
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Here T is a dimensionless variable, t is time, £ is
the longitudinal coordinate in a system traveling with
the phase wave velocity; a; and V; are the average
layer tnickness ané characievisiic veiocity; g v, &l

o denote acceleration of gravity, kinematic viscosity,
and surface tension. Two of the four parameters can
be considered independent and specified arbitrarily to
a certain degree, while the other two are found from
the solution.

Steady-state solutions of (1.1) of two types are
known:

h=1, gq=1, (R =Ry, (1.2)
h=1-4 psin& - haosin 28 + hy cos 28 ...,
g=1+z(h—1). 1.3)

The first solution corresponds to laminar flow in
the layer, the second corresponds to periodic wave
flow. It is shown in [1] that there is a two-parameter
region in which wave solutions (1. 3) exist. If we take
Ry and n as the independent parameters for the case of
water flow at 15° C, this region in the Ry,n plane will
lie between the n = 0 axis and line 1 in Fig. 1. The
equation of thisline is easily derived by means of the lim-
iting form of the relations {1] for small amplitudes

nt = R (yA)™, A= 27yR0‘ e, (1.4)
The optimum regimes are realized for values of nx
lying on line 2 in Fig. 1.

Transition from one steady solution to another may
occur as a result of loss of stability. Let us study the
question of the stability of these steady solutions, and
also the process of transition from one solution to the
other. We use the method of [1] for the study. Let us
construct the solution of (1.1) in the form

h=ho+h10sin§+h“cos§+...,
g ==qo+ qusing -+ qucos§+..., (1.5)

where hg, qq, hy, and gy may depend on 7 and £. The
first equation is linear; therefore by equating the co-
efficients of its harmonics to zero we easily obtain the
equations
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The difficulties are associated with the solution of
the second nonlinear equation. After substituting (1. 5)
into this equation, we group terms of the same order
in siné, cosé and reduce the result of the substitution
to the form of a Fourier series. By equating theseries
coefficients to zero we obtain the equations for hlk’
Ak In first approximation, when the first three har-
monics are reduced o the noymal form, we have
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I we take hlk = const, gy = const, then (1.5} will
correspond to the steady wave solution, and system
(1.6), (1.7) defines this solution in first approxima-
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tion. Comparison with the second approximation and
exact numerical calculations show that for each R,
there is an interval n, including nx, in which thefirst
approximation is sufficiently accurate. We shall con-
sider only such n, and in cases in which hyy. qj may
depend on 7, £ we assume that they do not exceed
significantly the corresponding quantities for the steady
solutions.

2. Assume that at the instant 7 = 0 there arises a
disturbance of the steady solution (1.2} which is peri-
odic with respect to £; then it may be considered pe-
riodic during the entire subsequent development time
and it may be described with the aid of system (1.6),
(1.7), in which hg, Ay depend only on time.

The disturbance parameters can be found on the
basis of linear theory. We take for convenience that
dy = 1 and set
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In these expressions the prime denotes partial dif-
ferentiation with respect to £, & = (-1)K, the sub-
script k may take values of zero and one, and the sub-
script m, correspondingly, may take values of one and
ZEro.

Equations (1.6) and (1.7) form a closed system
for the ten unknown coefficients of expansions (1.5).

h=1 - poe®T gin E,
g =1+ pee®*(zsin £+ o cos ). (2.1}
We substitute (2. 1) into the linearized equations

(1.1) and after equating the expressions with siné,
cos £ to zero we obtain

0 - Ho — (22 — 2z 49/, — G) = 0,
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H(3 —z) —2(z —/5)0 = 0. (2.2)
From this we find the disturbance amplitude growth

index w and the ratio z of the phase velocity to the
characteristic velocity. The regions of growing and
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decaying disturbances are separated by the line w = 0,
on which, in accordance with (2.2), z = 3 and G = 3.

This implies that the considered steady solution is al-
ways unstable [3,4] and that disturbance (2. 1) will be

increasing for n < n,, where

ny? = Ro [ 3y. (2.3)

It is easy to see that (2. 3) coincides with Eq. (1.4)
for the boundary curve separating the region of the ex-
istence of wave solutions in Fig. 1. Consequently, the
wave regimes exist when there is instability of the
laminar flow.

According to linear theory, the most rapidly growing disturbances
are those represented by the points of line 3 in Fig, 1, The correspond-
ing values of n differ markedly from n, for the optimum regimes,
Therefore, from the point of view of linear theory, the optimum re-
gimes are not different from the other regimes with regard to rate of
development,

Now let us turn to the nonlinear development of disturbance (2. 1)
with a small initial amplitude p,, We take the expressions (2.1) as
the initial conditions for h and q and calculate the development
of this disturbance in the course of time with the aid of (1.8) and
(1.7). These calculations were made for various pgy Rys and n and
showed the following.

For any p, (sufficiently small so that in the development process
hyy and qg donot markedly exceed thesteady values)disturbance (2.1}
grows and leads to transition of the first steady solution into the second
(wave) solution, The nature of the development is shown in Fig, 2, in
which as a function of dimensionless time  there is shown the flow
rate increment q -~ 1 for R, = 32, 56; P = 10'2, and three values of n,
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of which the middle value equals n,, and the other two differ from it
by An = 20,01, The curves of the distutbance growth with time have
two segments, Up 1o some value oi v the disturpance is smali and then
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increases sharply and approaches the wave regime. With change in
the initial amplitude p, there is a change only of the slow growth seg-
ment, but the general nature of the growth is retained,

The behavior of the curves in Fig, 2 is such that we can find with
sufficient definiteness the regime establishment time Ty, The varia-
tion of the time to establish the optimum regimes with R, is shown in
Fig, 3. It changes little for large values of R, and increases markedly
for values less than R, ~ 15,

As a result, for small flow rates noticeable changes associated with
the development of the incipient disturbance will not be observed for
long periods of time, Linear theory [5] also leads to a similar conclu-
sion concerning the development of small disturbances, A marked
slowing of the wave regime establishment process for small flow rates
has alsc been observed in experiments, The distance from the liquid
inlet to the formation of wave flow was measured in [6]. The curve
of this distance versus flow rate has the same form as the curve in
Fig. 2.

In [2] the wave regimes were not observed at all for small flow rates.

Figure 4 shows the development curves for the same disturbances as
in Fig, 2, but as a function of the physical time t, In the segment
with slow changes the conclusions of linear theory are retained and the
disturbance with n < n. grows more rapidly and that with n > n: grows
more slowly than that with n = n..

However, in the exit segment, where the disturbance amplitudes
increase sharply, the disturbance corresponding to the optimum regime
begins to develop more rapidly than the others, Therefore, for a given
average layer thickness and the same initial disturbance amplitudes
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the optimum regime will be established more rapidly than the others.
This property is a result of the nonlinear nature of the development and
is retained for all Ry,

3. The study of wave flow stability involves tedious calculations,
We consider only the solution sequence and the final results without
presenting the intermediate arguments, It is convenient to character-
ize a given wave flow by the numbers R and n. The development of a
small disturbance of the wave regime may be described in the form

(1.5), where hy,, and qgi are the functions T and &, defined by (1.6)
and (1. 7). We write this solution'in the form

hur = hon + b, qix = goia + qur, (3.1)

where hgzk and qglk is the wave solution and hyjk and g, are small
disturbances.

We substitute (3, 1) into (1. 6) and (1, 7) and drop terms of second
order relative to hyzk and q;zk; as a result we obtain a homogeneous
system of ten equations with constant coefficients for hyzk and qj k.
We consider the particular sclutions of this system in the form of trav-
eling waves

fun = aypei@t=ion, (3.2)

Here fyjk denotes any of the unknown quantitites hyjy, ay 1k 3 here
@yy is the corresponding initial amplitude, The quantity b is con-
sidered as given; it characterizes the ratio of the wavelengths: for
b < 1 the disturbance wavelength is greater and for b > 1 it is lessthan
the wavelength of the basic flow, To determine a, jk from the linear-
ized system we obtain a system of algebraic equations of tenth order;
in the case of a nontrivial solution its determinant must vanish. This
ieaGs to a characteristic equation f0r Wy WiiCh LAS Ten POSSiDie SOiL-
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Values of characteristic equation roots corresponding to
growing disturbances of wave flow for R=380 (n =n, =

= 0.1093)
b =00 b =075 b = 1.0005 b =125 b= 1.40 b =155
0.5601 0.4784 0.6287-107° 0.3466 0.4196 0.4709
—0.3856-10"1 | —0.1663 —0.5868-1073 0.1590 0.1572 0.1079
0.5049 0.5250 0.3690 0.3389 0.4052 0.5473
0.1974 —0.4034- 1071 | —0.4412 —0.6874 —0.8570 ~1.030
0.3518-10™1 0.2930 0.2920 2.133 2.793 3.498
—0.7825 —0.9277 0.6529-1071 —1.524 —1.751 —1.965
4.197 4.955 1.114 7.843 8.813 9.830
—2.255 —2.512 —1.135 —3.313 —3.542 —3.767
6.335
—2.922

tions. The imaginary part wj of each root determines the disturbance
frequency and the real part w, determines the amplitude growth rate;
the disturbance will grow if w; > 0 and will decay if w; < 0. Using
the definition of 7 and &, we transform (3.2) to the form

n
fuxr = aun exp (— Vnwrt) X

g

X exp{i[bx—(b—gqi\/, Vozt] g-} (3.3)

This implies that the disturbance time growth rate is (nVy/ay)wy,
and the ratio of the disturbance frequency to the basic flow frequency
ish -~ wi/z.

The characteristic equation was solved for various flowrates, and
for each flow rate we examined the optimum regime (n = n.) and two
nearby regimes (n = n, £ 0.01). For any b in each of the considered
versions, among the roots of the characteristic equation, there are
roots with a positive real part wy. This means that the wave flow,
just as laminar flow, is unstable with regard to disturbances in the
form of traveling waves, and a disturbance=—periodic with respect to
x~imposed on the wave flow will always grow, At the same time it
is carried downstream with the velocity (z - u)ib'l) V4. The number
of growing disturbances with the same b in the calculations reached
five in accordance with the number of discretely located roots wy of
the characteristic equation. The parameters of these disturbances
(propagation velocity and wavelength) differ from the parameters of
the basic wave flow by finite values, For a given wavelength the most
rapidly growing disturbance is that which differs most from the wave
disturbance, For example, the table shows the roots of the character-
istic equation with wy > 0 for R = 30 (wr is the upper number, wj is
the lower). A similar root distribution holds for other values of R; it
is also retained for large b ; however, we have in mind primarily the
interval 1/2 < b < 2, in which the assumptions made are best justi-
fied,

As b~ 1, among the roots of the characteristic equation there ap-
pears a decreasing root for which |w, |~ 0. It describesa disturbance
which is close to the basic wave flow in its parameters, Such a dis-~
turbance is of particular interest from the point of view of realizing
wave flow experimentally. Calculations show that the close distur-
bance decays if b < 1 and grows if b > 1. Figure 5 shows the growth
indices for the close distrubances for R = 3, The disturbances of the
optimum regime, which is most stable with respect to the close dis-
turbances, grow most slowly, This property is clearly evidenced for
moderate flow rates and becomes weaker for large and small flow rates.
For R = 50 the optimum regimes do not exhibit the maximum stabil-
ity property, We note that in the experiments of [2] clearly evidenced
wave flows of the considered type were observed only up to R =~ 55,

Thus the optimum liquid wave flow regimes are identified among
the other possible regimes by the fact that they develop more rapidly

from small disturbances of the laminar flow and, in a definite interval

of flow rates, are more stable to nearby disturbances. These properties
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raust obviously have some effect in the experimental realization of
these flows.
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