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On the basis of a simplified system of equations we study the process 
of development and stability of wave flows in a thin layer of a viscous 
liquid. Any unstabIe disturbance of the Iaminar flow grows and leads 
to the establishment of the wave regime. The time to establish the 
flow changes little for large flow rates, but increases sharply with re- 
duction of the flow rate. Given the same amplitudes of the initial dis- 
turbances, the optimum regimes which provide the greatest flow rate 
in a layer of given average thickness develop more rapidly than the 
other regimes. All the wave regimes are unstable to disturbances in 
the form of traveling waves. With moderate flow rates, the optimum 
regimes will be most stable to near-by disturbances. 

Strictly periodic wave flows in a thin layer of a viscous liquid under 
the influence of the gravity force were calculated in [1]. Various flow 
wave regimes which differ in wavelength can theoretically be estab- 
lished for a given liquid flow rate. In particular, there is a wave- 

length for which the flowing layer exhibits minimum average thick- 
ness (and maximum flow rate for a given average thickness). These 
optimum regimes correspond closely to the experimental data [2]; 
however, with regard to calculation technique these regimes are no 
different from the others. In the following we make a comparison of 
the wave regimes on the basis of the nature of their development and 
stability. 

1. Let us cons ide r  the following sys t em of equa-  
t ions:  

Oh 0 
(~T ~ - - ~ ( q - - z h ) - - ~ O ,  

h~ a q -  (~h - ~1~ q)h O Aq - -  
~T 0~ 

- -  ~/~q2 ~ - -  Gh s O~ z09-h - -  H h  ~ + Eq  = O. (1.1) 

It is der ived  f rom c e r t a i n  s impl i f i ca t ions  of the 
comple te  sy s t em of equat ions and boundary  condi t ions  
which de sc r ibe  the flow in the l iquid l aye r ;  the func-  
t ions h(T, ~), q(T, ~) coinc ide  approx imate ly  with the 
th ickness  of the flowing l aye r  and the l iquid flow r a t e .  
In this  sense  we can a s s u m e  that  s y s t e m  (1.1) de-  
s c r ibes  the flow of a v iscous  l iquid in a thin l ayer ,  
and we can t r e a t  its so lut ions  as the l iquid flow r e -  
g imes .  The solut ion of (1.1) is de t e rmined  by four 
p a r a m e t e r s  

Ro--~ gao~v -2, R :  3Voa~v - i ,  n, z ,  

in t e r m s  of which the equat ion coeff ic ients  a re  ex-  
p r e s sed  as follows: 

G - -  
9?~R~ H -  9R0 E 9 

B 2 ' B~n ' - -  R n  

a nVot (x - -  zVot) n 

Y ~  pv%g'l~' " e - -  , ~== a o ao  

Here  z is a d i m e n s i o n l e s s  var iab le ,  t is t ime,  ~ is 
the longi tudinal  coord ina te  in a sy s t em t r a v e l i n g  with 
the phase wave veloci ty;  a0 and V0 a re  the average  
iaye~ ~ th ickness  arid ei~a~ac~e~iscic veloc~cy; g~ v, m~d 

denote acce l e ra t i on  of gravi ty ,  k inemat ic  v iscos i ty ,  
and sur face  tens ion.  Two of the four p a r a m e t e r s  can 
be cons ide red  independent  and specif ied a r b i t r a r i l y  to 
a c e r t a i n  degree ,  while the other  two are  found from 
the solut ion.  

S teady-s ta te  solut ions  of (1.1) of two types a re  
known: 

h -~ i, q ~- 1, (R : Ro), (1.2) 

h ---~ l + p sin ~ -[- h2o sin 2~ + h2i cos 2~ + . . . .  

q = t +  z ( h - -  i ) .  (1.3) 

The f i r s t  so lu t ion  co r r e sponds  to l a m i n a r  flow in 
the l ayer ,  the second c o r r e sponds  to per iodic  wave 
flow. It is shown in [1] that the re  is a t w o - p a r a m e t e r  
region  in which wave solut ions  (1.3) exist .  If we take 
R0 and n as the independent  p a r a m e t e r s  for the case  of 
water  flow at 15 ~ C, this region  in the R0,n plane will  
l ie  between t h e n  = 0 axis and l ine  l i n F i g .  1. The 
equat ion of this  l ine is eas i ly  der ived  by me a ns  of the l i m -  
i t ing form of the r e l a t ions  [1] for sma l l  ampl i tudes  

n z = B~'~(yA) -~, A~ = 27yB ~ 'V~ (1.4) 

The opt imum r e g i m e s  a re  r ea l i zed  for values  of n .  
ly ing  on l ine  2 in Fig.  1. 

T r a n s i t i o n  f rom one s teady solut ion to another  may 
occur  as a r e s u l t  of loss  of s tabi l i ty .  Let us study the 
quest ion of the s tab i l i ty  of these  s teady solut ions ,  and 
also the p rocess  of t r a n s i t i o n  f rom one solut ion to the 
other .  We use  the method of [1] for the study. Let us 
c ons t r uc t  the solut ion of (1.1) in the form 

h = h0 + hi0 sin ~ + hii cos ~ + . . . .  

q - -  q0 + ql0 sin ~ -]- qil cos ~ + . . . .  (1.5) 

where  h0, q0, h/k, and q/k may  depend on T and ~. The 
f i r s t  equation is l i nea r ;  the re fore  by equating the co-  
eff ic ients  of i ts  h a r m o n i c s  to zero we eas i ly  obtain the 

equat ions 

Oho 
- -  - -  ( q o "  - -  z h o ' )  ~ O ,  

O]~zo 
- -  - -  [qJ - -  lqz~ - -  z(hzo' - -  l~i)] = 0, 

~T 

Ohzi 
- -  [q~l' + lqzo - -  z(h~i" + lh~0)] = 0 ,  

0~ 
( t =  t , 2 , . . . ) .  (1.6) 

The diff icul t ies  a re  assoc ia ted  with the solut ion of 
the second non l inea r  equation.  After  subs t i tu t ing  (1.5) 
into this equation,  we group t e r m s  of the s ame  o rde r  
in s in~ ,  cos ~ and reduce  the r e s u l t  of the subs t i tu t ion  
to the form of a F o u r i e r  s e r i e s .  :By equat ing t h e s e r i e s  

coeff ic ients  to zero we obta in  the equat ions for h/k, 
q/k" In f i r s t  approximat ion ,  when the f i r s t  th ree  h a r -  
~'~o:Acs a re  ; educed  to tc~e ,~orrna:l fo;~rr,, we have 



FLUID DYNAMICS 13 

I-} 

Szo + Sz~ 
= So-[ 

2 

(2hlo -+- h~hzo - -  h~oh~) Oq~ + 
" O'f 

( 3hmZ+h'~Z h2t) OS~ + 
+ t +  4 

.~_ hmh~i -~- 2h2o Oq~ Oq2~ . 
2 a~ h~o O---(-T- 

O!t~t 

Ox 

Oq20 330 
+ h~ - -  ~- S~o, 

0"~ 4 

(2h~ -b h~oh~o + hilh2t) ~ q  ~ + 
h~oh~i -4- 2h~o Oq~o 

2 a~ 
+ 

Oqzo Sz~ 

(h,oh,, + 2 h e 0 ) ~  + h~t 0 3 - ~  -~- 

Oq~ Oqzo S= 
+ h~o ~ - -  

Oz O~ 2 ' 

.hit - -  h~0 ~ ~ Oqo _ .  

Oqlt Oq2~ $2~ - -  Szo 
-}- h~ ~ -- (1.7)  

O~ 0-~ 2 

Here 

If we take  h/k = cons t ,  q~k = cons t ,  then (1.5) wi l l  
c o r r e s p o n d  to the s t e a d y  wave  solut ion ,  and s y s t e m  
(1 .6) ,  (1.7) def ines  th is  so lu t ion  in f i r s t  a p p r o x i m a -  

F ig .  1 

t ion.  C o m p a r i s o n  with  the  second  a p p r o x i m a t i o n  and 
exac t  n u m e r i c a l  c a l c u l a t i o n s  show that  for  each  R0 
t h e r e  is  an i n t e r v a l  n, inc luding  n . ,  in which  t h e f i r s t  
a p p r o x i m a t i o n  is su f f i c i en t ly  a c c u r a t e .  We sha l l  con-  
s i d e r  only such n, and in c a s e s  in which  h/k, q/k m a y  
depend on ~, ~ we a s s u m e  tha t  they do not  exceed  
s ign i f i c an t l y  the c o r r e s p o n d i n g  quant i t i es  fo r  the s t e a d y  
so lu t ions .  

2. A s s u m e  that  at  the  ins t an t  ~- = 0 t h e r e  a r i s e s  a 
d i s t u r b a n c e  of the  s t e a d y  so lu t ion  (1.2)  which is  p e r i -  
odic  with r e s p e c t  to ( ; then  i t  m a y  be c o n s i d e r e d  p e -  
r i od i c  du r ing  the  e n t i r e  subse que n t  d e v e l o p m e n t  t i m e  
and i t  m a y  be d e s c r i b e d  with the aid of s y s t e m  (1 .6) ,  
(1 .7 ) ,  in which  h/k, q/k depend only on t i m e .  

The d i s t u r b a n c e  p a r a m e t e r s  can  be found on the 
b a s i s  of l i n e a r  t he o ry .  We t ake  for  conven ience  that  
q0 = 1 and s e t  

So ~ - -Eqo  --}- Lhoqo' -+- 6/sqoZho' -}- Mho 3 

S i k  = ( 2 F h ~  - -  ~2/shoq~) qo' -t- Lho ( q ~ '  - -  e q ~ )  - -  Eq~k + 3Mho2h~k -}- 
%- Gho3(hl~. '' ' - -  3eh~ , J '  - -  3htk '  + chum) + 6/5qo [q0 (hl~ '  - -  chum) + 2qiah0 ' ] ,  

Sz~ = (Pthh~k - -  2eFhzi  -{- ie /sshoqzi)  qo' - -  eLho (qei'  -'~ 2qz0) -4- 
-~ (2Fh~k - -  l~/~hoql~) ( q ~  - -  eq im)  "~ 3Mho(h tk  e - -  ehoh2i) -~ 
A- ~/5 [--eq02 (hz~' -{- 2h20) + 2qoqtk (hi~'  - -  eht ,~) A- (qih ~ - -  2sqoq~)  h~ ~] -4:- 

- -  eGho a ( h ~ ' "  + 6hzo" - -  i 2 h ~ '  - - 8 h z o ) ,  

Sz~ = (P~tq~ + P~h~o .~- 4/"h~o --z"/~hoq2o)qo'  + 2(Fh~o ~ SAhoq~o ) (q~ ' -k-  q~)  ~- 

.~_ ~z/~ [qo~(hzo, 2hz~) + qoqto(h~ -4- h~o) ~- q o q ~ ( h t o ' - -  ht~) + 
-~- ( q ~ o ~  + 2qoq~.o)ho'] + 6 M h o ( h ~ h ~  + hoh~o) + 
+ 3Gho~h~o(ht~ ' '  -}- 3h~o" - -  3h~(  - -  h~o) "+- 
-~- 3Gho~ht~ (h~o"  - -  3 h ~ "  - -  3h~o' .+ h ~ )  -}- 2Gho ~ (h2o"  - -  6h2~_" - -  
- -  |2h2o' + 8hz~) ~ 

+ 4(Fht~ - -  ~/~q~ho) (qzu" - -  2eq~,~) --~ 4 s ( - - F h : o  + ~/~hoq~o) ( q ~ , / +  2eq~t,) + 

+ ( h ~ '  - -  e h ~ )  (q~ z "k- 3 q ~  ~ - -  4sq0q~)]  -+" 
H - M ( 3 h ~  ~ + 3 h ~ h ~  z - -  i2eh~h~oh~.~ -~ t2hoh~h2h)  -4- 
+ 3Gho [2(h~ohit ~- hoh~o) (hi,~ ~'' H- 3chin '~ - -  3 h i ~ '  - -  chin)  -~ 
-4- jh~. ,  ~ + 3h~,~ ~ - -  2ehoh2Q ( h ~ "  - -  3 s h ~ "  - -  3 h ~  ~ + sh~.~) - -  

zehoh~,  ( h ~  H _~_ 6hzo" - -  t 2 h ~ '  - -  8hzo) -~- 2hoh~m ( h2o'" - -  6hz~" - -  

In t hese  e x p r e s s i o n s  the p r i m e  denotes  p a r t i a l  d i f -  
f e r e n t i a t i o n  with r e s p e c t  to [ ,  e = ( -1 )  k, the  sub -  
s c r i p t  k m a y  t ake  va lues  of z e ro  and one, and the sub -  
s c r i p t  m,  c o r r e s p o n d i n g l y ,  m a y  take  va lues  of one and 
ze ro .  

Equa t ions  (1.6) and (1.7) f o r m  a c l o s e d  s y s t e m  
for the ten unknown coefficients of expansions (I. 5). 

h ~- t -~ poe ~ sin ~, 

q = I + poe ~ (z s in  ~ + ~ cos ~). ( 2 . 1 )  

We subs t i t u t e  (2.1)  into the l i n e a r i z e d  equat ions  
(1.1)  and a f t e r  equat ing  the e x p r e s s i o n s  with s in~ ,  
cos  ~ to z e r o  we obta in  

~02 + H ~  - -  (z2 _ 12/5z + 6/5 _ G) = O, 
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H ( 3  - -  z) - - 2 ( z  - % ) o ~  = O. ( 2 . 2 )  

F r o m  t h i s  w e  f ind  t h e  d i s t u r b a n c e  a m p l i t u d e  g r o w t h  

i n d e x  co and  t h e  r a t i o  z o f  t h e  p h a s e  v e l o c i t y  to t h e  

c h a r a c t e r i s t i c  v e l o c i t y .  T h e  r e g i o n s  o f  g r o w i n g  and  

024 

- -  

I I / " 4 "  o z i  

f28 28 

F i g .  2 

d e c a y i n g  d i s t u r b a n c e s  a r e  s e p a r a t e d  b y  t h e  l i n e  ~o = 0, 

o n  w h i c h ,  in  a c c o r d a n c e  w i t h  ( 2 . 2 ) ,  z = 3 and  G = 3. 

T h i s  i m p l i e s  t h a t  t h e  c o n s i d e r e d  s t e a d y  s o l u t i o n  i s  a l -  

w a y s  u n s t a b l e  [ 3 , 4 ]  a n d  t h a t  d i s t u r b a n c e  ( 2 . 1 )  w i l l  b e  

i n c r e a s i n g  f o r  n < n + ,  w h e r e  

n+ ~ = R~ ~s~ 13~. ( 2 . 3 )  

I t  i s  e a s y  to  s e e  t h a t  ( 2 . 3 )  c o i n c i d e s  w i t h  Eq .  ( 1 . 4 )  

f o r  t h e  b o u n d a r y  c u r v e  s e p a r a t i n g  t h e  r e g i o n  of  t h e  e x -  

i s t e n c e  o f  w a v e  s o l u t i o n s  in  F i g .  1. C o n s e q u e n t l y ,  t h e  

w a v e  r e g i m e s  e x i s t  w h e n  t h e r e  i s  i n s t a b i l i t y  o f  t h e  

l a m i n a r  f l o w .  

According to linear theory, the most rapidly growing disturbances 
are those represented by the points of line 3 in Fig. 1. The correspond- 
lag values of n differ markedly from n. for the optimum regimes. 
Therefore, from the point of view of linear theory, the optimum re- 
gimes are not different from the other regimes with regard to rate of 
development. 

Now let us turn to the nonlinear development of disturbance (2.1) 
with a small initial amplitude P0. We take the expressions (2.1) as 
the initial conditions for h and q and calculate the development 

of this disturbance in the course of time with the aid of (1.6) and 
(1.7).  These calculations were made for various P0, R0, and n and 
showed the following. 

For any P0 (sufficiently small so that in the development process 
h lk and q lk do not markedly exceed the steady values) disturbance (2.1) 
grows and leads to transition of the first steady solution into the second 
(wave) solution. The nature of the development is shown in Fig. 2, in 
which as a function of dimensionless time r there is shown the flow 

rate  increment q - 1 for R 0 : 32.56 i P0 = 10 "z, and three values of n, 

t~2r ~ ' ~  . . . . . .  r - V -- 
i i / i $ i 
[ I 

I 

5o~-- \ \  zo-, l 

I 
I !1 i 
I o Y8 80 

Fig. 3 

of which the middle value equals n . ,  and the other two differ from it 

by An = �9 0.01, The curves of the disturbance growth with t ime have 

two segments. J p  to some value of ~" ~he disturbance is sma~ and fEtCh 

increases sharply and approaches the wave regime. With change in 
the initial amplitude P0 there is a change only of the slow growth seg- 
ment, but the general nature of the growth is retained. 

The behavior of the curves in Fig. 2 is such that we can find with 
sufficient definiteness the regime establishment time T r ,  The vazia- 
lion of the time to establish the optimum regimes with R 0 is shown in 
Fig. 3. It changes little for large values of R 0 and increases markedly 
for values less than R 0 ~ 15. 

As a result, for small flow rates noticeable changes associated with 
the development of the incipient disturbance will not be observed for 
long periods of time. Linear theory [5] also leads to a similar conclu- 
sion concerning the development of small disturbances. A marked 
slowing of the wave regime establishment process for small flow rates 
has also been observed in experiments. The distance from the liquid 
inlet to the formation of wave flow was measured in [6]. The curve 
of this distance versus flow rate has the same form as the curve in 
Fig. 2. 

In [2] the wave regimes were not observed at all for small flow rates. 
Figure 4 shows the development curves for the same disturbances as 

in Fig. 2, but as a function of the physical time t. In the segment 
with slow changes the conclusions of linear theory are retained and the 
disturbance with n < n. grows more rapidly and that with n > n,, grows 

more slowly than that with n = n . .  
However, in the exit segment, where the disturbance amplitudes 

increase sharply, the disturbance corresponding to the optimum regime 
begins to develop more rapidly than the others. Therefore, for a given 
average layer thickness and the same initial disturbance amplitudes 

8 z ,  [ r  . . . . . . . . . .  :, - -  - 

n:Bll 

B S Z ~  ~ 

80 150 Z, f8 
Fig. 4 

the optimum regime will be established more rapidly than the others. 
This property is a result of the nonlinear nature of the development and 
is retained for all I~. 

3. The study of wave flow stability involves tedious calculations. 
We consider only the solution sequence and the final results without 
presenting the intermediate arguments. It is convenient to character- 
ize a given wave flow by the numbers R and n. The development of a 
small disturbance of the wave regime may be described in the form 

(1.5), where h/k, and qlk are the functions r and g, defined by (1.6) 
and (1.7). We write this solut.ton in the form 

hl~ = h01k q- huk, q~ ~ q0~ q- quk, (3.1) 

where h0/k and q0/k is the wave solution and huk and ql/k are small 
disturbances. 

We substitute (3. 1) into (1.6) and (1. 7) and drop terms of second 
order reiative to htl k and qllk; as a result we obtain a homogeneous 
system of ten equations with constant coefficients for hi/k and ql~k. 
We consider the particular solutions of this system in the form of trav- 

eling waves 

l i a  = at lhe  ~(~-i'~,~) . (3.2) 

Here Silk denotes any of the unknown quantitites hl l  k,  qllk ; here 
a l l  k is the corresponding initiaI amplitude. The quantity b is con- 
sidered as given ; it characterizes the ratio of the wavelengths : for 

b < 1 the disturbance wavelength is greater and for b > 1 it is less than 
the wavelength of the basic flow. To determine a t lk  from the linear- 
ized system we obtain a system of algebraic equations of tenth order; 
in the case of a nontrivial solution its determinant must vanish. This 

leads ~o a characteristic equation for % whic?, has ten possioie solu- 
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V a l u e s  o f  c h a r a c t e r i s t i c  e q u a t i o n  r o o t s  c o r r e s p o n d i n g  to  

g r o w i n g  d i s t u r b a n c e s  of  w a v e  f l o w  f o r  R = 30 (n = n ,  

= 0 . 1 0 9 3 )  

b = 0.6 b = 0.75 b = 1.0005 b = 1.25 b = 1.40 b = t.55 

0.5601 
--0.3856.10-i 

0.5049 
0.1974 

0.3518.10 -~ 
--0.7825 

4.197 
- -2 .255 

0.4784 
--0.1663 

0.5250 
--0.4034" 

0.2930 
--0.9277 

4.955 
--2.512 

0.6287-10 -~ 
---0.5868.10-3 

0.3690 
I0 -1 ---0.4412 

0.2920 
0.6529.10-~ 

1.114 
--1.135 

6.335 
- -2 .922 

0.3466 
0.1590 

0.3389 
--0.6874 

2.133 
--1.524 

7.843 
--3.313 

0.4196 
0.1572 

0.4052 
-0.8570 

2.793 
--1.751 

8.813 
--3.542 

O. 4709 
O. 1079 

O. 5473 
--I  .030 

3.498 
--I  .965 

9.830 
--3.767 

tions. The imaginary part ~i of each root determines the disturbance 
frequency and the real part ~r determines the amplitude growth rate; 
the disturbance will grow if ~r > 0 and will decay if ~r < 0. Using 
the definition of r and g, we uansform (3.2) to the form 

[ I lk  ~ a~lh exp Voo.~t X 

}, (3.3) 

This implies that the disturbance time growth rate is (nV0/a0)COr, 
and the ratio of the disturbance frequency to the basic flow frequency 

is b - a~i/z. 
The characteristic equation was solved for various flow rates, and 

for each flow rate we examined the optimum regime (n = n , )  and two 
nearby regimes (n = n ,  • 0.01). For any b in each of the considered 
versions, among the roots of the characteristic equation, there are 

roots with a positive real part ~r" This means that the wave flow, 
just as laminar flow, is unstable with regard to disturbances in the 

form of traveling waves, and a disturbance--periodic with respect to 
x-imposed on the wave flow will always grow. At the same time it 

is carried downstream with the velocity (z - wi b-l) V 0 . The number 

of growing disturbances with the same b in the calculations reached 

five in accordance with the number of discretely located roots ~I of 

the characteristic equation. The parameters of these disturbances 

(propagation velocity and wavelength) differ from the parameters of 

the basic wave flow by finite values, For a given wavelength the most 

rapidly growing disturbance is that which differs most from the wave 

disturbance. For example, the table shows the roots of the character- 

istic equation with w r > 0 for R = 30 (cot is the upper number, ~i is 

the lower). A similar root distribution holds for other values of R; it 

is also retained for large b ; however, we have in mind primarily the 

interval 1/2 < b < 2, in which the assumptions made are best jnsti- 
Ned. 

As b ~ 1, among the roots of the characteristic equation there ap- 
pears a decreasing root for which ] ~l I "~ 0. It describes a disturbance 
which is close to the basic wave flow in its parameters. Such a dis- 
turbance is of particular interest from the point of view of realizing 
wave flow experimentally. Calculations show that the close distur- 

bance decays if b < 1 and grows if b > 1. Figure 5 shows the growth 
indices for the close distmbances for R = 3. The disturbances of the 
optimum regime, which is most stable with respect to the close dis- 
mrbanees, grow most slowly. This property is clearly evidenced for 
moderate flow rates and becomes weaker for large and small flow rates. 
For R _> 50 the optimum regimes do not exhibit the maximum stabil- 

ity property. We note that in the experiments of [2] clearly evidenced 
wave flows of the considered type were observed only up to R ~ 55. 

Thus the optimum liquid wave how regimes are identified among 

the other possible regimes by the fact that they develop more rapidly 

from small disturbances of the laminar flow and, in a definite interval 

of flow rates, are more stable to nearby disturbances. These properties 

Jg 

ZQ 

/0 
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must obviously have some effect in the experimental realization of 
these flows. 
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