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L6vy (Stable) Probability Densities and 
Mechanical Relaxation in Solid Polymers 

J o h n  T. Bendler  1 

Early investigations by Weber, R. and F. Kohlrausch, Maxwell, and Boltzmann 
of relaxation in viscoelastic solids are reviewed. A two-state model stress-tensor 
describing strain coupling to internal conformations of a polymer chain is used 
to derive a linear response version of the Boltzmann superposition principle for 
shear stress relaxation. The relaxation function of Kohlrausch ~t(t)= 
exp[-(t/r) ~] is identical to the Williams-Watts empirical dielectric relaxation 
function and in the model corresponds to the autocorrelation function of a 
segment's differential shape anisotropy tensor. By analogy with the dielectric 
problem, exp[-(t/r) ~] is interpreted as the survival probability of a frozen 
segment in a swarm of hopping defects with a stable waiting-time distribution 
At -~ for defect motion. The exponent a is the fractal dimension of a 
hierarchical scaling set of defect hopping times. Integral transforms of O(t) 
needed for data analysis are evaluated; the cosine and inverse-Laplace 
transforms are stable probability densities. The reciprocal kernel for short-time 
compliance is discussed. 

KEY WORDS: Glass; polymer; mechanical relaxation; fractal time; dielectric 
loss. 

1. EARLY STUDIES OF M E C H A N I C A L  RELAXATION <~-3)'2 

In  1831 when W i l h e l m  W e b e r  c a m e  to G6 t t ingen  to fill the  pos i t ion  left 

v a c a n t  by Tob ias  Maye r ,  it was  la rge ly  on the s t rength o f  his acous t i ca l  

s tudies which  Gauss  and yon  H u m b o l d t  had  l is tened to with favor  a few 

years  ear l ier  in Berlin.  (4) G a u s s  and W e b e r  then began  the e lect r ica l  and 

magne t i c  researches  which  resul ted  in, a m o n g  o ther  things,  the t e legraph  

(1833).  W e b e r  ma in t a ined  his i n t e r e s t  in m e c h a n i c a l  proper t ies  and dur ing  

this pe r iod  m a d e  the first sys t ema t i c  inves t iga t ion  o f  the elast ic  "a f t e r -e f fec t "  

~Polymer Physics and Engineering Branch, General Electric Corporate Research and 
Development, Schenectady, New York 12301. 

2 Reference 1 contains a thorough discussion of historical background. 
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in silk and glass threads: in the course of perfecting his portable 
magnetometer, he noted that a weight suspended from such fibers produces 
an instantaneous elongation followed by an additional time-dependent strain 
which recovers upon unloading. The mathematical form Weber used to 
describe the displacement x at time t was a power law: x ( t ) =  k(t+ c)", 
where k, c, and n are constants. Weber was dismissed from the university in 
1837 by the newly crowned king of Hannover Ernst August (along with the 
brothers Grimm) for signing a petition in favor of a liberal constitution; he 
was permitted to stay in G6ttingen to work with Gauss, but left in 1843 to 
take a position at Leipzig. (Weber returned in 1849, but by then Gauss had 
lost interest in experimental work.) At G6ttingen, meanwhile, R. Kohlrausch 
took up the problem of the after-effect--creep in today's 
terminology--stressed the analogy with time-dependent electric 
displacements q(t) in charged capacitors, and proposed a fractional 
exponential law for the latter; q(t)=q0 + c exp[-(t/v) ~] (1854) .3 Rudolfs 
son Friedrich repeated and extended the creep studies, and proposed the frac- 
tional exponential law for elastic strain (1863). (4) Friedrich made the first 
studies of creep in rubber, discovered the strong temperature dependence of 
elastic relaxation, and isolated the recoverable and nonrecoverable com- 
ponents. 

In 1867 James Clerk Maxwell introduced a model for viscoelasticity 
which postulated an internal frictional force opposing the structural 
rearrangements in series with an instantaneous elastic force.(V) The "Maxwell 
relaxation time" r = rl/G, is the ratio of the viscosity to the modulus and 
determines whether the material behaves as a solid or as a liquid. Stresses 
applied for times short compared to r do not allow the material time to flow 
and it behaves elastically. For times longer than r the response is that of a 
viscous liquid. (The Maxwell model cannot explain creep recovery and the 
Kelvin-Voigt model was developed for this.) In 1874 Boltzmann <8) proposed 
that the stress in a solid depends on the entire history of the strain, and 
presented his famous linear integral equation known as the superposition 
principle (SP). Boltzmann's theory was dramatically confirmed in 1876 
when Kohlrausch (9) showed that torsional recovery in a rubber band could 
reverse direction by suitable choices of strain magnitude and history. 

3 See Ref. 5 for one of the earliest appearances of the fractional exponential. The reference is 
given in Ref. 1 by Leaderman (Ref. 4 of his book) though with an incorrect volume number. 
The same difficulty is found for Leaderman's Ref. 5, the 1863 paper of F. Kohlrausch. 

4 See Ref. 6. Mechanical relaxation is one of the oldest examples of fractals, though the 
molecular motions witnessed, the local chain flips in polymers, e.g., are not themselves 
fractal, but subordinated to the hyperbolic defects moving to them. Mandelbrot comments 
on the interesting fact that this large body of experimental data was ignored for over 100 
years: Benoit B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1982), 
p. 417. 



L~vy (Stable) Probability Densities and Mechanical Relaxation in Solid Polymers 627 

Evidence of Maxwell's confidence in superposition was his suggestion to 
Hopkinson to apply an analogous integral equation to the problem of elec- 
trical recovery (1876). (1~ The Hopkinson superposition principle plays an 
important role in the theory of electrical relaxation, just as Boltzmann's prin- 
ciple is basic to linear viscoelasticity. (11) 

2. CELL M O D E L  OF M E C H A N I C A L  RELAXATION 

The phenomenology of linear viscoelasticity is familiar (1'11) as is its 
basis in linear response (LR) theory. (12'13) Applications of the LR formalism 
to solid glassy polymers are difficult both because of the tensor character of 
the forces and displacements, and because an ad hoc method for dealing with 
random, nonequilibrium systems is needed. A crude cell theory was 
previously used to discuss static elastic constants (14) and is convenient here 
to present a simple model of time-dependent shear stress-strain behavior in 
glassy polymers arising from local backbone conformer transitions. The 
calculation has much in common with that of Eu et  al. ~5~ though they 
considered side-chain motion and adopted a one-dimensional Hamiltonian. 
The volume changes which accompany yielding and the effect of hydrostatic 
pressure on the glass transition temperature Tg and on Poisson's ratio 
indicate that a three-dimensional model is required. Polymer main-chain 
conformational freedom is mimicked by a two-state potential for each 
segment. Each segment resides in a cell, and configurational degrees of 
freedom within a single cell are grouped into two classes: those which are 
conformationally sensitive and those which are not. The time-delayed 
stress-strain behavior is attributed solely to the conformer dynamics, so that 
the conformationally sensitive degrees of freedom correspond to the "strain- 
sensitive modes" of Eu et aI. ~15) If there is no interaction between cells, the 
Hamiltonian h, for a single segment (cell) n in the absense of applied strain 
is written 

where ~n is equal to + 1 in the nth segment is in the high-energy state and - I  
if it is in the low-energy state, f is the potential energy gap between the two 
states and (hn) is the nonconformational part of the energy. (Kinetic 
contributions to the stress tensor play a minor role in a solid, and are 
neglected. ~16~) 

A central quantity in the polymer theory is the stress tensor contrbution 
from strain coupling to local conformations. The primary consequence of 
bulk deformation is local molecular rearrangement and steric interference. 
This is also a consequence of conformational changes. Segment flips cause 
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atoms attached to moving bonds to be displaced relative to the stationary 
atoms in the structure. The cluster of atoms involved in the motion (e.g., the 
three protons of a methyl group) comprises a mass distribution which has a 
moment of inertia tensor a associated with it. Conformer motion takes the 
segment to a new energy state with a different molecular strain tensor a ' .  (If 
by coincidence the conformer states have identical energies and strain 
tensors a and a ' ,  the internal conversion is not mechanically active.) We 
assume (14) that an applied macroscopic strain e results in an average 
distortion around each segment in the glass causing the energy g a p f t o  be a 
function of strain: 

f (a ,  a', ~) ~ fo + 2be. Aa (2) 

where f0 is the gap in the absense of strain, b is the coupling strength 
between the molecular distortion and the surroundings, Aa = a ' - a  is the 
differential mass distribution tensor between the two conformer states, and �9 
represents the inner tensor (scalar) product. If attention is restricted to shear, 
the tensor product ~ �9 Aa may be replaced by the second-degree irreducible 
form(~7): 

2 

F.* A . ~  Z (--)m82,-mAa2,m ( 3 )  
m =  --2 

For a cylindrically symmetrical mass redistribution (i.e., Aa) Eq. (3) reduces 
to a single term in the molecular frame, e20 Aazo. The linear perturbation due 
to the time-varying strain ~(t) is then (in the laboratory frame) 

N 

6H = bAaEoeEo(t) V, ~,eE(cos 0,) (4) 
t l = l  

where 0, is the angle between the principal axis of strain and the principal 
axis of the mass tensor of the nth segment. Using Eq. (4), the LR r result 
for the time-dependent stress o(t) is 

 20(t) = 6 |  e20(t) - Jl - r)  20(r) dr (5) 

with the stress-relaxation function q~(t) given by (6) 

q~(t) = --B d (fie(0) fi~(t)) (6) 

where B = Nb2Aa~o/5kT and the static fluctuations are ~14) 

([6,(0)]2) = 1 -- tanh2 (k--~) (7) 
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Combining Eqs. (6) and (7) one may write ~ ( t ) = A g ( t ) ,  where 
g(t) = - ( d i d  0 (b(t) and r (~(0)~(t)) is the normalized autocorrelation 
function for a segment conformer state and A = 
(Nb2Aa~o/5kT)[ l - - tanh2( f / kT)]  is the shear strength of the conformer 
motion. ~4) Since only shear is considered below, the subscripts in Eq. (5) 
may be dropped: 

t 

or(t) = G~e( t )  - A So g(t - r) e(r) dr (8) 

Equation (8) (generalized to include all components of stress and strain) has 
the form of the SP which is the phenomenological basis of linear 
viscoelasticity. (~1) Even for glassy polymers which do not strictly obey the 
SP, it is a useful framework for describing and interpreting data, and is the 
starting point for more accurate treatments. Breakdown of the SP occurs in 
rubbers at large extensions and in PVC partly due to stress-induced 
crystallization. Equation (8) includes only the strain history, though it is 
known that thermal history is also important. Finally, strain-induced shifts in 
the relaxation spectrum or in the relaxation strength may lead to 
complications. (This last effect may be applied to describe strain-softening 
and yielding.) In the remainder of this paper, these refinements are ignored, 
and attention is given to the consequences of a Williams-Watts (~9) form for 
the relaxation function 0(t). 

3. THE K O H L R A U S C H - W I L L I A M S - W A T T S  FUNCTION exp[--(t/T) a] 
The empirical success found for the fitting of dielectric, C19) 

mechanical, t2'3) NMR, (2~ and dynamic light-scattering t21) data using the 
fractional exponential function exp[--(t/r) ~] is impressive, and has resulted 
in theoretical efforts to establish a microscopic interpretation (e.g., Shore- 
Zwanzig, ~22) Bordewick, ~23> Ngai, (24'25) and Skinner et al.(26'27)). Here its 
connection with the theory of stochastic processes and continuous-time 
random walks (CTRW) is emphasized, t28'29) The random walk approach 
commences with a distribution function to describe the length of the 
individual steps which generate the walk (i.e., the structure function), and a 
distribution of pausing times between steps. This method supposes that a 
chain equation (or master equation) exists for the transition probabilities 
P(Y l ,  Y2) of the slow "relevant" coordinates y from Yl to Y2 in time t: 

P(Y l ,  Y2 ; t) = f P(Y2,  Y; tl) P(y ,  Yl ; t -- tl) dy (9) 
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A microscopic theory, on the other hand, would start with a Hamiltonian, 
partition phase space into "fast" and "slow" variables, find a generalized 
Langevin or roster equation (GME) for the "slow" variables, and solve the 
latter by a decoupling approximation for the memory kernel. [Zwanzig ~3~ 
has shown that if a microscopic theory results in a GME, then a formal 
equivalence to a continuous-time random walk (CTRW) exists.] The random 
walk approach interprets a chain equation such as Eq. (9) as a spatially and 
temporally coarse-grained version of (or short-cut from) the microscopic 
dynamics. Different choices of structure factors and waiting-time 
distributions are examined with regard to the resulting physical picture and 
ability to describe experiment. The task and rewards of computing the 
waiting-time distribution from first principles are set aside. 

A promising result of the CTRW approach is that a single waiting-time 
distribution q t ( t )~A t  -~ is applicable to several problems in complex 
amorphous materials; intermittent currents in xerographic films, ~31) electron 
hole recombination reactions, ~32) 1If  noise, ~33) and dielectric relaxation 
described by the Kohlrausch-Williams-Watts function. (2s'29) In each case 
efforts to understand the precise role of the waiting time in terms of the 
dynamic processes have resulted in specific models. Scher and Montroll ~3~) 
proposed a stable waiting distribution for the jumping of charges out of deep 
traps as a model of dispersive transport in selenium. Shlesinger t32) posed the 
electron hole recombination process as a "chemical reaction" between 
hopping charges and a stationary trap; the reaction rate is interpreted in 
terms of the first-passage time for an algebraic hopper to reach a trap. 
Adumbrating a complete CTRW generalization of Glarum's model, (34) 
Montroll and Bendler (28) found that (biased) defect hopping in one 
dimension with a hopping time distribution ~(t) ~ At  -~ gave a stable density 
of first.passage rates to a frozen dipole. Shlesinger and Montroll (29~ recently 
discovered that one needs to consider the flux of many defects and a survival 
probability of the form exp [ - ( t / r )  ~ ] results at long times in three dimensions 
for a swarm of nonbiased defects hopping to a single dipole as ~,(t)~ A t - %  
with different results in two and one dimensions. Debye relaxation occurs in 
three dimensions for a "memoryless" Poisson waiting density ~ ( t ) =  e -at. 

The internal relaxation o f  polymer segments can lead to mechanical as 
well as electrical loss and dispersion due to aeeompanying fluetuations in the 
size and shape of  the local mass distribution. Thus we interpret the 
Kohlrauseh stress relaxation function as the survival probability of  a frozen 
conformer state waiting for  the arrival of  a defect. 

The function exp[--(t/r) ~] is the characteristic function of the 
symmetric stable (L6vy) densities. (2s'35) The latter have power law tails, 
infinite moments, and interesting scaling properties. (36) The practical 
application of stable densities to problems such as mechanical and electrical 
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relaxation requires the evaluation of certain transforms and inverse 
transforms for which numerical methods and algorithms are either 
unavailable or hard to use. 

4. S O M E  RESULTS FOR INTEGRAL T R A N S F O R M S  

Steady state mechanical measurements on glassy polymers are useful in 
revealing solid state transition phenomena which are invisible to dielectric or 
NMR, to complement other methods with additional information regarding 
frequency and temperature dependence, and to find selection rules for deter- 
mining which molecular rearrangements couple to applied stress and how 
effectively each motion dissipates elastic energy. (37) To analyze dynamic 
mechanical data one considers the Fourier transform (FT) of Eq. (8). 
Defining the FT of O(t), for example by 

O(co) = o e-i 'O(t) dt  

The FT of Eq. (8) is 

O~'(co) = G(co) ~(co) (10) 

where G(co) is the complex shear modulus = G~ + A~(co) with A = G~ - G o 
the difference between the high- and low-frequency modulus (i.e., the relax- 
ation strength). Separating real and imaginary parts of Eq. (10): 

G"(co)- f: G ~  - G O - g( t)  sin cot dt  (11) 

and 

G'(co) - G~ f :  
G ~  -- G o -- g( t )  cos cot dt  (12) 

G" and G' are the mechanical loss and dispersion functions, respectively. As 
is true for dielectric relaxation, it is often easier to measure mechanical loss 
that dispersion owing to the distinctive maximum in the absorption curve as 
well as its greater relative magnitude. Writing Eq. (11) in terms of the 
correlation function O(t) from g ( t ) = - ( d / d t )  ~(t): 

G " ( m ) - G ~  - - - ~ r  s i n c o t d t  (13) 
G ~  - G O 
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Table I. Cosine, Sine, a 

a = 2  a = l  

Cosine transform 

Q,~(e) = l f~176 exp(-u~ cos zu du 
o 

1 1 1 
2=1/2 exp(-zZ/4) rc 1-t- z ~ 

Sine transform 
1 : 

V,,(z) = zc"--|o exp(--u~) sin zu au 
(,z) 

-(1~2)(in) 1/2 exp(-z2/4) ERF T 
1 z 

rc l + z  2 

Laplace transform 

W,~(s) = (oo exp(-u~) exp(--su)du 
d 0 

(1/2)zr 1/2 exp(s2/4) 1 -- ERF 1 + s 

Introducing r  e x p [ - ( t / r )  ~ ] followed by integration by parts gives 

G o o - G o  - z  e - u " c o s z u d u  (14) 

where z = oor and the integral is equal to z~ times the symmetric stable L+vy 
function Q~(z): ~2s) 

Q ~ ( z ) =  - ~ - f ~  e x p ( - - i z u - - u " ) d u  (15) 
- - 0 0  

thus the mechanical loss function G" is proportional to the I_~vy function: 

a"(co) - a~ 
- (16) 

G~ - Go 

Q,~(z) exists in closed form for ~ = 2, 1, and �89 and these are given in Table I. 
Applications to viscous liquids and glassy solids requires numerical work, 
and since the relevant range of a is 0 < a ~ 1, we restrict our remarks to this 
case. A series expansion of Q,~(z) for small z is found by expanding the 
integrand in Eq. (15): 

Q~,(z)= 1__ ~ __(--)nzEn ( (2n+l ) . )_  (17) 
~a ~=0 2n! F a 
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a = � 8 9  O < a ~ l  

2=Z3)1/2 -- C cos Eqs. (17)-(19) 

~Z 
1 f 1 1 1 

sin(l) I)] 
Eqs. (20) and (21) 

Eqs. (23)-(25) 

(a result known to Cauchy.) This series diverges but may be considered 
asymptotic for small z. It is useful for high-temperature solids where a is still 
small but the relaxation rate is large. A convergent large z series for Q~(z) 
was found by Wintner: ~ 

Q ~  .=o (n!z 1)+1) r (a[n+ 1])sin zca( 1) (18) 

Practical use of Eqs. (17) or (18) may be difficult especially since 
convergence is slow (or nonexistent) if one trys to use, for example, the 
large-z expansion in the small-z range. In recent years Williams and 
Wates, (19) Moynihan et al., ~39) Holt and C r o w ,  (4~ Lindsay and Patterson (41) 
and others have discussed the numerical evaluation of Q~(z). Moynihan et 
al. ~39) and Lindsay-Patternson (41) give estimates of the maxima of zQ~(z) 
which fix the dielectric loss-peak maxima. (Moynihan and coworkers have 
made novel applications of exp[-( t /v)  ~] to enthalpy and volume relaxation, 
as well as for dielectrics: (42)) Holt and Crow (4~ supply useful table of Q~(z). 
Montroll and Bendler (28) found interpolation algorithms, and Dishon and 
Weiss m) have recently simplied and extended these results, clarifying the 
nature of the z, a boundary which determines the applicability of Eqs. (17) 
or (18). Here we give an interpolation algorithm for small a and intermediate 
z :  
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,o  -[ ( 1 )  ( ,  ,) 
Q,~(z) 2 z 1+~ e-z ~ l - a B  2 1 -  +a2B3  1 - - - - +  z ~ 7a-  

-o,.4(1 7 6 
- 7 - g +  z2. - - - -  

15 25 10 1 \ 
z" ~- z 2" z 3'~ +- ) 

aSB6(1 31 90 65 15 1 ) ] 
-- ____.~_ Z2 a Z 3a + Z4a Z a Z-Sa + . . .  

(19) 

Expressions for the first few B i a r e  given in Ref. 28 and numerical values 
a r e  B E = 0.5772156649, B 3 = 0.577822479, B 4 = 0.670108648, B 5 = 
0.625729013, B6=0.6380936598. Equation (19) may be used for 
0.1 ~<z~< oo for 0 < a < ~0.25. This is an important region for glassy 
polymers. Very small z must be handled using Eq. (18 ) .  (43) 

For the analysis of mechanical (e.g., sound) dispersion, the sine 
transform (ST) of exp[-(t/r) ~] is necessary. Defining the ST of the reduced 
function exp(-u~), V~(z): 

V~(z) - 1 e-U~ sin zu du 
- -  7g 

then S T ( e x p [ - - ( t / r ) " ] ) = r V ~ ( z )  where again z = m r .  Series expansions 
analogous to Eqs. (17) and (18) are 

, . = o  ( 2 n + l ) !  F a 

1 I [ ~ * +  1)] I (-)" r(a[n + 1]) cos V.(z)= 1 - - a . = 0  ~ (n! z"("+ a)) 2 

(20) 

(21) 

Interpolation algorithms and application to shear wave impedance of 
glycerine will be reported separately. 

Finally, treatment of transient response (see below) requires the Laplace 
transform LT(exp [--(t/r)" ]). Introducing the normalized transform, 

W~(s)  = e - ~  e - 'u  du (22) 

Then LT(exp[--(t/r)"])= rW,(s). By analogy with Eqs. (17) and (20), for 
small s, 

n=0 n! F (23) 
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and for large s, 

W~(s)= 1-- 1 - a  r ( a [ n +  11) (24) 
S n=0 (n! 

The inversion of transient mechanical data (in the linear limit) entails solving 
the Boltzmann integral equation for the reciprocal kernel. In the large-s 
(short-time) region, this is approximately accomplished by the following 
"small-a" expansion [cf. Eq. (19)]: 

W~(s)=e s 411 _A~aTl(s-~)+A2ct2T2(s-~)_A3ct3T3(s-,)+ ...] (25) 

where the leading coefficients A i are 

A 1 = - y  = -0.5772156649, A2 = ~(~2 + ~[2]) = 0.9890559953 

and 

A3 = _@_ (~3 + 37ff[2] + 2~[3])= --0.90747907604 

where ff is Riemann's zeta function and the first few polynomials Ti(x ) are 

TI(X ) = - -x ,  T2(X ) = --x(1 --x),  and T3(X ) = - - x ( x  2 - -  3x + 1) 

Table I summarizes results for the cosine, sine, and Laplace transforms 
Q,~, V~, and W~. 

5. SHORT-T IME COMPLIANCE 

Dynamic elastic properties of glassy polymers show significant 
compositional variation and temperature-frequency structure for a single 
material. This makes them attractive subjects of laboratory study and some 
theoretical attention. Engineering applications, on the other hand, frequently 
impose constant loads on the plastic due to gravity, etc., and the relaxation 
modulus G(t) and shear compliance function J(t) provide the appropriate 
descriptions; J(t) is defined by the companion to Eq. (8): 

e(t)= f~ J ( t -  r) [ d ~r(r) l dr (26) 

Taking Laplace transforms of Eqs. (26) and (8) and solving for LT(J(t)): 

J(s) = 1 
~ + ~ [~g(s) - 1] (27) 
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Expanding the right-hand side of Eq. (27), using the first term of Eq. (26) to 
invert the transform, gives for the leading "small-a, small-t" behavior 

1 
J(t) (28) 

Go~ + A{exp[--( t /r)  "~ ] -- 1} 

[A direct numerical inversion of Eq. (26) has been reported by Ngai (44) et 

al., along with applications to creep in glassy polymers.] At small times, 
Eq. (28) resembles the Andrade creep formula, (45) and also of course, the 
expressions used by Kohlrausch c6) and Struik. ~3) 
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