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Abstract—The cuticular hydrocarbons of Locusta migratoria cinerascens—
larvae and adults, males and females, gregarious and solitaries—have been
investigated by combined gas chromatography-mass spectrometry. The hy-
drocarbons comprise 52-78% of the cuticular lipids and are divided into n-
alkanes (28.7-47.3%), 3-, 4-, and 5-methylalkanes (11.3-15.8 %), internally
branched monomethylalkanes (13.7-19.9%), and internally branched dime-
thylalkanes (19.8-35.9%) with seven or nine methylenes between the two
branch points. While the sexual dimorphism does not seem to be reflected in
the cuticular hydrocarbon composition, clear quantitative variations favoring
the longest chain alkanes have been observed between gregarious and solitary
locusts, thus revealing a new phase character in these insects.

Key Words—Locusts, Locusta migratoria, cuticular hydrocarbons, mass
spectrometry, phase polymorphism, Orthoptera, Acrididae.

INTRODUCTION

The cuticular lipids play a part in the regulation of water evaporation in insects
and also protect them from the penetration of insecticides and microorganisms
(Beament, 1964; Ebeling, 1964; David, 1967; Hadley, 1981). These cuticular
lipids contain a large proportion of hydrocarbons. Some of these hydrocarbons
act as pheromones (Carlson et al., 1978; Blomquist and Jackson, 1979; Howard
and Blomquist, 1982; Jallon, 1985) or can be factors of chemotaxonomic dif-
ferentiation (Blomquist et al., 1976; Lockey, 1976, 1984; Jackson, 1981).
These are the reasons for researchers’ sustained interest in the chemical
analysis of cuticular hydrocarbons from numerous species (Nelson, 1978;
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Blomquist and Jackson, 1979). Their reviews show that cuticular hydrocarbons
are generally homologous series of n-alkanes and branched alkanes, mono-, di-,
or trimethylated. Monomethylalkanes with terminal (2-, 3-, 4-, 5-methyl) and
internal (7- to 23-methyl) branches, have been identified in three species of
crickets (Hutchins and Martin, 1968), cockroaches (Tartivita and Jackson, 1970;
Jackson, 1972), ants (Lok et al., 1975; Nelson et al., 1980), and bark beetles
(Lockey, 1982). The 2-methylalkanes which do not occur in most of the insects
already studied but are present in large proportions in three species of crickets
(Blomquist et al., 1976) may permit taxonomic assignment. Di- and trimethyl-
alkanes with isoprenoid spacing have been described in various insects (Nelson,
1978). Other polymethylalkanes with 1, 5, 7, 9, or 11 carbon atoms between
branch points have also been identified (Nelson et al., 1980, 1981, 1984).

So far, the cuticular hydrocarbons of nine acridids have been studied:
Schistocerca vaga (Nelson and Sukkestad, 1975), Schistocerca gregaria
(Lockey, 1976), Schistocerca americana (Jackson, 1982), Melanoplus sangui-
nipes and packardii (Soliday et al., 1974) reanalyzed along with differentialis
(Nelson et al., 1984), Melanoplus bivittatus femurrubrum and dawsoni (Jack-
son, 1981), and Locusta migratoria (Lockey, 1976). In 1976, Lockey suggested
that the hydrocarbon compositions of different locusts are closer together if they
belong to the same subfamily. Thus, a very fine chemical analysis appears to
be the first condition for the use of the hydrocarbon profiles as additional char-
acters in the insects’ taxonomic grouping. Since Lockey (1976) has only studied
the major components, we undertake here a new study of cuticular alkanes of
a subspecies of the migratory locust: Locusta migratoria cinerascens.

The migratory locust is well known for its ability to change its kind of life,
crowded or gregarious (gregaria) and isolated or solitary (solitaria) *‘phases.”’
Thus it is interesting to know if the behavioral, morphological, and physiolog-
ical changes of both phases (Uvarov, 1921, 1966) could lead to changes in the
chemical composition of cuticular hydrocarbons.

Chemical stimulations can come into play at different ages of the locust’s
life (Gillett, 1975; Loher, 1960; Norris, 1970). However, the origin of these
chemical pheromones is still under discussion and their nature remains to be
specified.

In this study we decided to compare cuticular hydrocarbons at larval and
adult ages of both sexes, from gregarious and solitary locusts of the Locusta
migratoria cinerascens species.

METHODS AND MATERIALS

Insects Used. Last larval instar and mature adult, male and female, gre-
garious and solitary insects were used. They were raised at the Insect Biology
Laboratory. The strain was Locusta migratoria cinerascens from Sardinia. Gre-
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garious locusts were bred in groups of 200 individuals in cages 40 X 40 X 60
cm. Solitary locusts were maintained from birth in individual 1-liter containers
in a separate breeding room. Each room was submitted to a regular change of
air 12 times an hour. The photo- and thermoperiods were 12/12 hr with tem-
peratures of 25 + 1°C (night) and 35 + 1°C (day). Separate evaluation of
characters such as behavior (Nicolas, 1972; Gillett et al., 1972), morphometrics
(Nicolas, 1973; Minato et al., 1973), pigmentation, and fecundity (Nicolas,
1972) had shown that, under our laboratory conditions, the locusts isolated from
birth are conspicuously different from the crowded ones bred simultaneously.

All locusts were fed on fresh corn shoots and bran every day of the week
with no interruption.

The same numbers of the animals of both sexes used were: 23 gregarious,
last-instar larvae, two to three days old; 5 gregarious, mature adults, 34 days
old; 10 solitary, last-instar larvae, two to three days old; and 21 solitary, mature
adults, 21 days old.

All the solitary locusts used were light beige as this color was close to that
of the white paper surrounding them to keep them separated. Each insect was
killed by freezing at —20°C, then extracted by stirring during 10 min in hexane
(5 ml/adult and 3 ml/larva). After evaporation of the solvent, hydrocarbons
were separated from the weighed extracted cuticular lipids by thin-layer chro-
matography (Merck 10 X 20 plates of silica gel 60 F254 with concentration
zones) and elution with nanograd hexane. From this weighed fraction of hydro-
carbons, branched ones were separated with 5 A Linde molecular sieves (as
described by O’Connor et al., 1962).

Combined gas chromatography-mass spectrometry (GC-MS) was used to
identify the components of the different extracts. Mass spectra were obtained
on a Nermag R10-10 spectrometer associated with a PDP8 calculator (Digital
Equipment Instrument) and coupled to a Girdel 31 chromatograph with a Ros
injector. Fractions were temperature programmed from 200 to 300°C at 3°/min
with isotherm at 300° on a capillary column either 10 or 25 m long, 0.32 mm
wide, coated with CpSil 5 CB Chrompack. The carrier gas was helium and inlet
pressure 0.25 bar. Fractions were analyzed by GC-MS either by electronic im-
pact or by positive chemical ionization. In electronic impact, ionization voltage
was 70 eV and the temperature of ion source was 110°C for hydrocarbons up
to C4o. In these conditions, the molecular peak is always present. The temper-
ature of the ion source was 290°C for more condensed hydrocarbons (Cy to
Cs3), but then only the ion M-15 is present. Mass scanning was carried out from
atomic mass unit (amu) 100 to 600 or 750. In these conditions and without
amplification (the sensitivity for the masses examined being better) spectra of
branched hydrocarbons often have a base peak which corresponds to a charac-
teristic fragmentation at a methyl branch. Positive chemical ionization was per-
formed using methane generating an internal source pressure of 0.2 torr; ioni-
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zation voltage was 90 eV, temperature of ion source 150°C, and mass scanning
started at 100 amu.

The mass spectra of alkanes were interpreted according to the criteria pro-
posed by McCarthy et al. (1968), Nelson et al. (1972), Nelson (1978), and
Pomonis et al. (1978, 1980). Integration of chromatographic peaks was carried
out with a Hewlett Packard integrator coupled to a Varian 3700 chromatograph
with the 25-m column mentioned above (see GC-MS), programmed from 40 to
300°C at 4°/min and isothermal at 300° with a flow rate of helium being 18
cm/sec; an ‘‘on column’’ injector was used.

Retention indices (Ettre, 1964) were calculated with the 25-m column,
using the n-alkanes from C,, to Cj; identified without ambiguity by GC-MS
and present in all total hydrocarbonated fractions.

All the bar charts (Figure 14-18) were constructed from the n-alkane per-
centage and the branched alkane percentage columns shown in Table 2 (%/N.
and %/B.).

RESULTS

The hydrocarbons comprise 52-78% of all the cuticular lipids (Table 1).
The smallest percentages were obtained for the solitary locusts. Our results,
qualitatively in agreement with those of Lockey (1976) for the described com-
pounds, exhibit quantitative differences; however, it must be mentioned that
Lockey’s analyses concern wings rather than total insect extracts. The chro-
matographic profile of a partial but complex hydrocarbon fraction (up to non-
atriacontane) is presented in Figure 1 (25-m column).

Total (A) and corresponding branched (B) fractions (up to tripentacontane)
are presented in Figure 2 (10-m column). Table 2 summarizes all the identified
alkanes with their percentage for the eight groups of insects studied.

To perform analysis, correlations were carried out with results of electronic
impact and chemical ionization in mass spectrometry on the one hand, and dif-
ference of retention index (df) in gas chromatography between branched al-
kanes and r-alkanes with the same carbon number, on the other hand. It is
known that dIs are related to the position of the methyl branch for a monome-
thylalkane (Mold et al., 1966) and to the number of methyl branches in a
polymethylalkane (Nelson and Sukkestad, 1970). These correlations show, in
agreement with Lockey (1976), that the fractions studied appear to consist of
four classes of alkanes: class A, n-alkanes; class B, terminally branched mono-
methylalkanes; class C, internally branched monomethylalkanes; and class D,
dimethylalkanes.

Class A: n-Alkanes. Their mass spectra are characteristic and their pres-
ence is in agreement with the comparison between the chromatographic profiles
obtained before or after the separation on molecular sieves (Figure 2).
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FiG. 1. Partial gas chromatogram of a hydrocarbon fraction of male solitary fifth-instar
larvae of Locusta migratoria cinerascens. CpSil 5 CB Chrompack capillary column of
25 m x 0.32 mm, temperature programmed from 40 to 300° at 4°/min and held at
300°; ‘‘on-column’’ type injector.

In electronic impact conditions (70 eV, starting mass scanning: 100 amu),
the molecular peak M - is base peak. Sixteen linear alkanes, from C,, to C;5,
have been identified; n-nonacosane in gregarious and n-hentriacontane in soli-
tary locusts are the most important. The percentage of these total n-alkanes
decreases from larval to adult ages (Table 1) and more strongly in gregarious
locusts.

] bt] 6p 6 7 min.
180 200 20 240 26b 280 300 ¢

F1G. 2. Gas chromatographic analysis of the total (A) and branched (B) hydrocarbon
fractions of male gregarious mature adults, Locusta migratoria cinerascens. Same con-
ditions as Figure 1 with a column of 10 m X 0.32 mm.
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CUTICULAR HYDROCARBONS OF LOCUSTS
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Class B: Terminally Branched Monomethylalkanes. 5-, 4- and 3-methyl-
alkanes have been identified. The dIs between these alkanes and the n-alkanes
with the same carbon number are, respectively, 50, 42, and 28. The first two
series account for less than 1% of the different analyzed fractions. According
to the biosynthesis of these compounds (Blomquist and Jackson, 1979), 5-meth-
ylalkanes are even hydrocarbons (5-methylnonacosane and 5-methylhentriacon-
tane) and 4-methylalkanes are odd hydrocarbons (4-methyloctacosane and 4-
methyltriacontane). 3-Methylalkanes are by far the most abundant products of
this class: they account for 12% of the total hydrocarbon fraction with a little
more for the male solitary adult locusts (15.8%). They range from 26 to 36
carbon numbers; among them, those with an even number of carbons are the
most abundant. 3-Methylnonacosane is the major one of the series for gregar-
ious locusts and 3-methylhentriacontane for solitary ones.

Their mass spectra (from 100 amu) give the following characteristic frag-
ments: 5-methylalkanes: M-57 (base peak) and M-85; 4-methylalkanes: M-43
(base peak) and M-71; 3-methylalkanes: M-29 (base peak) and M-57.

Class C: Internally Branched Monomethylalkanes. They account for 13-
20% of total hydrocarbon extracts and range from C,z to Csq (described here
but probably up to Cs,). The dI with same number linear hydrocarbons is 67.
The predominant branch points are 11, 12, and 13 for odd methylalkanes (the
minor ones) and 11 and 13 for even methylalkanes (the major ones).

In fact, each chromatographic peak corresponds to a mixture of odd or
even monomethylalkanes, isomers for the position of the branch point. The
mass spectrometry of these derivatives has been described by McCarthy et al.
(1968) and Nelson et al. (1972). This has enabled us to establish the structures
proposed in Table 2.

The mass spectrum of peak 41 of Figure 2 suggests a mixture of 12-, 13-,
14-, and 15-methyltetratriacontanes (Figure 3). In the same way, peak 45 of

!
100 120 140 (Y24 1860 200 L0 l80 20 N LA v 340 Jen
182 196 210 228 29 308 3‘;: 35“ A3%  aa9

182 196 210 224
b Cntglczz 51212 Cas C::IEI’Czo Cia 81 e L
b

336 322 308 294

SRS ARAS VRS LAl RS RERE P SO LS LA L B VLS T NG B RS WAEE & LA A a S

a8 477 492

Fic. 3. Mass spectrum of GC peak 41 (Figure 2): 12-, 13-, 14-, and 15-methyltetra-
triacontanes.
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F1G. 4. Mass spectrum of GC peak 45: 13-, 15-, and 17-methylpentatriacontanes.

Figure 1 is interpreted as a mixture of 13-, 15-, and 17-methylpentatriacontanes
(Figure 4). In all cases, the base peak of these spectra recorded from 100 amu
is the secondary even ion of the weaker molecular mass of the major isomer
(m/z 196 for 13-methyl isomer in Figures 3 and 4).

Some qualitative differences appear between insect categories. For exam-
ple, to the isomers identified in peak 41 of Figure 2 (Figure 3), are added 16-
and 17-methyltetratriacontanes in peak 41 of Figure 1 (Figure 5). Probably,
these qualitative differences come from quantitative variations between mono-
methylalkanes inside the same chromatographic peak of the various insect cat-
egories analyzed.

Class D: Dimethylalkanes. The percentages of these products are close to
those of monomethylalkanes (8-19% of total hydrocarbon extracts), and range
from Cs; to Cs3. After Cyg, only four odd dimethylalkanes, C4; to Cs3, have
been proposed, the others being minor ones. The dI of 140 and the molecular
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Fic. 5. Mass spectrum of GC peak 41 (Figure 1): 12-, 13-, 14-, 15-, 16-, and 17-
methyltetratriacontanes.
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CxH:xo; CH —+ Cszx -+ CH r Cszy.;

gi d2

bl cl c2 b2
SCHEME 1.

masses, determined by chemical ionization, agree with internally branched di-
methylalkanes.

The mass spectrometry, more complex than for monomethylalkanes, was
used to suggest structures. According to the Nelson school (Nelson et al., 1972;
Pomonis et al., 1978, 1980), internally dimethylalkanes undergo two more frag-
mentations than monomethylalkanes (Scheme 1).

The spectra of 15,19-dimethylpentatriacontane (Sonnet, 1976) (Figure 6)
and 13,23-dimethylheptatriacontane (Carlson et al., 1984) (Figure 11B) are pre-
sented as examples. Note the relative importance in Figure 6 of m/z 266/267
(even ion major one) which correspond to a pair of ions 4 — 1/d. The other
doublet d — 1/d is superimposed with m/z 294/295. Pomonis et al. (1980)
mention this rupture with a greater intensity and a major odd ion, d >> d —
1, for 9,14-dimethylheptacosane.

As in the case of the monomethylalkanes, each chromatographic peak of
the dimethylalkanes corresponds to a mixture of isomers. We present here our
suggestions for identifications and the corresponding spectra of some of them
(Figures 7-11).

T
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F1G. 6. Mass spectrum of 15,19-dimethylpentatriacontane.
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Fi6. 7. Mass spectrum of GC peak 37: 11,21- and 13,21-dimethyltritriacontanes.
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FiG. 8. Mass spectrum of GC peak 42: 12,20-, 12,22-, and 13,21-dimethyltetratriacon-

tancs.
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F1G. 9. Mass spectrum of GC peak 46: 13,21- and 13,23-dimethylpentatriacontanes.
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Fic. 10. Mass spectrum of GC peak 51: 12,22~ and 13,23-dimethylhexatriacontanes.
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FiG. 11. (A) Mass spectrum of GC peak 54: 13,21- and 13,23-dimethylheptatriacon-
tanes. (B) Mass spectrum of 13,23-dimethylheptatriacontane.
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The spectrum of Figure 7 (chromatographic peak 37), corresponds to a
mixture of dimethyltritriacontanes, (M = 492). According to the pairs of ions
168/169, 196/197, 322/323, and 350/351 (major ions in heavy type), we pro-
pose 11,21-dimethyltritriacontane. Moreover, the increased intensities of ions
at m/z 196/197 and 322/323 suggest the presence of the symmetric 13,21-di-
methyltritriacontane. Finally, the ions at m/z 224/225 and 294/295 suggest a
third isomer with a branch point at carbon 19, but it is difficult to say if it is
11,19- or 13,19-dimethyltritriacontane. The results mentioned further on might
be in favor of 11,19 (seven carbons between branch points). We must note that
the ion at m/z 294 also corresponds to the ion d — 1 of the two precedent
isomers.

The mass spectrum of Figure 8 (chromatographic peak 42) was interpreted
as a mixture of 12,20-, 13,21-, and 12,22-dimethyltetratriacontanes. The two
first isomers are sufficient for the attribution of the eight major fragments ob-
served, but the fact that the ratios 351/309 and 337/323 are positive implies the
presence of the third isomer.

In the same way, the mass spectrum of Figure 9 (chromatographic peak
46) agrees with the one of 13,21-dimethylpentatriacontane (first proposed by
Lockey, 1976) but the ion at m/z 351 (>323) suggests the presence of sym-
metric 13,23-dimethylpentatriacontane (minor one).

For the mass spectrum of Figure 10 (chromatographic peak 51), if we put
together the two major even ions at m/z 182 and 224 and the two odd ones at
m/z 337 and 379, we suggest 12,22-dimethylhexatriacontane. The 13,23-di-
methylhexatriacontane agrees with other even fragments at m/z 196 and 210
and odd fragments at m/z 351 and 365. It should be noted that the intensity of
the ion at m/z 350, greater in this particular case than the ion at m/z 351, is
partially due to an ion d — 1 of the isomer 12,22.

The mass spectrum of peak 54, Figure 11A, in comparison with the spec-
trum of 13,23-dimethylheptatriacontane (Figure 11B), proves the presence of
this hydrocarbon in product 54. But the positive intensity ratio 379/351, on the
one hand, and the presence of ions at m/z 323 and 252, on the other, can be
interpreted as the fragmentation pattern of isomer 13,21.

It should be emphasized that all the dimethylalkane structures suggested
here have seven or nine carbons between branch points. Such series are re-
ported, among others, in the hemolymph of the Japanese beetle Popilla japon-
ica Newman (Nelson et al., 1975), with seven methylene groups, and in the
cuticular hydrocarbons of the house fly Musca domestica (Nelson et al., 1981)
and of the grasshoppers Melanoplus differentialis, sanguinipes, and packardii
(Nelson et al., 1984), with nine methylene groups.

DISCUSSION

The differential bar charts presented in Figures 12 to 16 concern the insect
population described in the experimental part. However, similar analyses have
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Class A: MSL-MGL; FSL~FGL. > Class A: MSA-MCA; FSA-FGA.
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FiGg. 12. (A) %MSL — %MGL (black bar chart); %FSL — %FGL (white bar chart).
B) %#MSA — %MGA (black bar chart); %FSA — %FGA (white bar chart). MSL:
male solitary larvae; MGL: male gregarious larvae; FSL: female solitary larvae; FGL:
female gregarious larvae; MSA: male solitary adult; MGA: male gregarious adult; FSA:
female solitary adult; FGA; female gregarious adult.

been carried out on at least one other insect population. In all cases, similar
typical schemas are observed, even if slight variations in absolute identified
hydrocarbon percentages occur from one population to another.

The differential bar charts in Figures 12 to 14 reveal that there is a general
tendency for the cuticular hydrocarbons of solitary locusts to be more condensed
than those of the gregarious ones. This emerges from the comparison of their
hydrocarbon profiles and is valid for both ages and sexes. For the products
belonging to classes A, B, and C, we can find a compound representing the
variation mean: n-triacontane (No. 20) for class A (Figure 12A and B), 3-meth-
yltriacontane (No. 24) for the 3-methylalkanes of class B (Figure 13A and B),
and the methyltetratriacontanes (No. 41) for class C (Figure 14A and B). On
the other hand, the relative percentages of dimethylalkanes are not modified
much by phase changes.

Concerning the evolution of cuticular hydrocarbon composition during the
locusts’ transformation from larvae to adults, not many changes are observed

Class B: MSA-MCGA; FSA-FGA,
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Fi. 13. (A) %MSL — %MGL (black bar chart); %FSL — %FGL (white bar chart).
(B) %MSA — %MGA (black bar chart); %FSA — %FGA (white bar chart).
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F1G. 14. (A) %MSL — %MGL (black bar chart); %FSL — %FGL (white bar chart).
(B) %#MSA — %MGA (black bar chart); %FSA — %FGA (white bar chart).

in the n-alkanes and the 3-methylalkanes. A decrease in the relative percentages
of monomethylalkanes can be observed (Figure 15A and B) in both gregarious
(—=11.6% for the females and —11.1% for the males) and solitary insects
(—8.5% for the females and —6.9% for the males). The variations of dimeth-
ylalkanes are presented in Figures 16A and B. They show a clear increase in
these compounds in gregarious (+9.4%) and solitary (+8.5%) females. In the
males, the tendency seems weaker (+3.0% for gregarious) or reversed (—2.3%
for solitary ones). The presence of long-chain branched alkanes, in greater
quantities in adults than in larvae, has already been described in Schistocerca
americana (Jackson, 1982).

The differences between the sexes are slight but seem to be greater in the
case of the solitary locusts, especially for dimethylalkanes. This very weak sex-
ual dimorphism leads to the hypothesis of a probable absence of any sexual
contact cuticular pheromone of a hydrocarbon nature in these insects.

The differences observed between gregarious and solitary insects show the
importance of the role of the cuticle in phase dimorphism; this can be added to
the underlying pigmentary tegumental phase dimorphism, which was the only
one known until now (Uvarov, 1966; Albrecht, 1967). This new phase char-
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FiG. 15. (A) %FGA — %FGL (black bar chart); %MGA —~ %MGL (white bar chart).
(B) %FSA — %FSL (black bar chart); %MSA — %MSL (white bar chart).
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Fig. 16. (A) %FGA — %FGL (black bar chart); %MGA — %MGL (white bar chart).
(B) %FSA — %FSL (black bar chart); %MSA — %MSL (white bar chart).

acter is now to be taken into account in biosynthesis problems, on the one hand,
and in all taxonomic research with the aim of identifying species according to
their hydrocarbon profiles, on the other hand: the kind of life—gregarious or
solitary-—quantitatively changes the chemical composition of the cuticle. Fur-
ther research into the possible biological role of these phase change modifica-
tions remains to be done.
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