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We describe computer simulations of the growth of breath figures, the patterns 
formed when droplets condense on a cold surface. The focus is on the 
coalescence of droplets, which is an important growth mechanism, and the con- 
ditions for self-similar patterns, which are experimentally observed. It is 
assumed that individual droplets grow according to a power law; droplets that 
touch coalesce instantly and are replaced by a new droplet at the center of 
gravity of the coalescing pair. The average droplet radius, distribution of droplet 
sizes, surface coverage, and radial distribution function are determined as a 
function of the time for a variety of initial coverages and polydispersities. These 
quantities are compared to those determined by experiment, and our simple 
model is found to be in good accord with the observed behavior. It is observed 
that the process of coalescence induces spatial correlation between droplets. 
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1. I N T R O D U C T I O N  

B r e a t h  f igures  are  the  pa t t e rn s  f o r m e d  w h e n  d rop le t s  c o n d e n s e  o n t o  sur-  

faces, u sua l ly  glass. Ea r ly  i nves t i ga to r s  (1) of  the  p h e n o m e n o n  o b s e r v e d  tha t  

the  haze  f o r m e d  w h e n  w a t e r  v a p o r  c o n d e n s e d  o n t o  glass surfaces  was  n o t  

u n i f o r m  a n d  it was d e t e r m i n e d  tha t  the  pa t t e rn s  f o r m e d  were  c o n t r o l l e d  by 

the  m a n n e r  in wh ich  the  surface  was  p repa red .  L a t e r  s tudies  by M e r i g o u x  

a n d  c o - w o r k e r s  (2~) d e m o n s t r a t e d  tha t  the  f o r m a t i o n  o f  b r e a t h  f igures  
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depends very sensitively on surface cleanliness. Water condenses as a film 
onto a clean glass surface but as droplets onto a glass surface that is coated 
by even a monolayer of a fatty acid. 

More recent investigations of breath figures have focused on the 
kinetics of droplet growth. Using simultaneous microscopic and light-scat- 
tering measurements, Beysens and Knobler (5) studied the condensation of 
water droplets onto glass surfaces that had been silanized so that the con- 
tact angle was close to 90 ~ . The experiments were carried out by allowing 
gas saturated with water vapor at room temperature to flow across the 
glass, which was cooled below room temperature. The supersaturation and 
flow rate remained constant throughout the experiment. With the 
microscopic observations they were able to resolve individual droplets with 
diameters as small as 2 #m and to follow their growth to sizes up to 
300/~m. The light scattering studies provided complementary information 
about the growth of the ensemble of droplets. 

In a typical experiment, after an initial brief period during which 
individual droplets cannot be seen and there is little light scattering, there 
follows a regime during which the growth behavior remains remarkably 
uniform. In this regime, called the intermediate regime by Beysens and 
Knobler, there are two distinct growth modes, which can easily be seen by 
following individual droplets. The radius of an isolated droplet follows a 
power law, R oc t ' ,  with a=0.23.  When the droplet touches one or 
more other droplets, there is a rapid coalescence and the resulting larger 
droplet continues to grow with the same power law. The effects of these 
coalescences are seen in the more rapid growth of the average droplet 
radius ( R ) ,  which also follows a power law but with an exponent a ' =  0.75. 
The power-law exponents were found to be independent of the flux and 
the supersaturation. 

Throughout  the intermediate regime the fraction of the surface covered 
by droplets and the polydispersity remain constant at 0.55 and 0.20, respec- 
tively. The light scattering has the form of an annular ring with a maximum 
at a wave number k m that decreases with time. Plots of the reduced inten- 
sity I (k ) / I (km)  against the reduced wave number k / k  m are superimposable, 
demonstrating that the droplet pattern is self-similar. 

The observed single-drop exponent a can be compared with values 
predicted by models of droplet growth. If a droplet grows by direct conden- 
sation of vapor onto its surface, then the change in volume with time must 
be proportional to R 2, hence a = 1. If the droplet is sufficiently large, a tem- 
perature gradient will exist in the droplet perpendicular to the substrate 
surface. The accommodation constant will then vary inversely with some 
characteristic length, (6) which may be taken as R, leading to a =  1/2. A 
growth mechanism in which critical nuclei condense on the substrate and 
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then diffuse to the periphery of droplets and coalesce (5) gives a = 1/3. Viovy 
e ta l .  ~7) considered the requirements for self-similar behavior in systems 
that grow by condensation and coalescence. They found that a necessary 
condition for self-similarity is a =  1/3 and they demonstrated that for 
self-similar growth, a ' =  3a. 

It remains unclear why the observed rate of growth is so slow, i.e., why 
the experimental value of a is so small. Further study of the growth of 
individual droplets needs to be undertaken. If one accepts, however, that 
droplets grow with a power law, one can ask how the properties of an 
ensemble of such droplets evolve when coalescences between growing 
droplets can take place. This is a formidable theoretical problem but one 
that is very easy to study by simulation. Such simulations are the subject of 
this paper. 

2. THE M O D E L  

The basic procedure is to establish an initial configuration of disks on 
a planar surface. The time is then incremented and the radii of the disks 
increase according to a power law. When two disks touch, they coalesce 
and are replaced by a new disk whose radius is computed on the 
assumption that the disks represent sections of hemispheres. In the 
experiments, the new droplet is found to be centered at the center of mass 
of the coalescing pair. This is the location chosen in most of our 
simulations, but studies have also been carried out with a computationaIly 
simpler procedure in which the new droplet is centered on the site of the 
larger coalescing droplet. After the coalescence takes place a check is made 
for contacts with other droplets that occur as the result of the coalescence. 
When these have been dealt with, the time is again incremented and single- 
droplet growth continues until the next contact and coalescence. Periodic 
boundary conditions are utilized to eliminate edge effects. 

Similar computations are described in the engineering literature/6'8 Jo~ 
The process of dropwise condensation is of engineering interest because the 
heat transfer coefficients when fluids condense as droplets are much higher 
than when they condense as films. In general, engineers have studied 
steady-state condensation, where droplets that reach a specified size (the 
"departure size") fall from the substrate (are removed from the simulation) 
and expose a clean surface on which small droplets can nucleate. 

Gose eta/., (6) for example, considered a model in which there were 200 
randomly positioned nucleation sites upon which droplets grew with a t 1/2 

power law. They varied the droplet density by the choice of the departure 
size. Later, Tanasawa and Tachibana ~8) used the same model but increased 
the number of sites to 3200. Both of these simulations led to heat transfer 

822/52/5-6-21 
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coefficients more than an order of magnitude smaller than those observed 
experimentally. 

An essential difficulty in the simulation of the steady state is the enor- 
mous range of sizes that must be accounted for; the ratio between the 
smallest and largest droplets is over three orders of magnitude. The overall 
condensation rate is strongly dependent on the evolution of the smallest 
droplets, yet the area to be analyzed must be large enough to yield a 
statistically valid sampling of the largest droplets. 

Glicksman and Hunt (9) overcame this difficulty by simulating the 
condensation and coalescence process in a series of time and size stages, 
ranging from nucleation of equally sized, randomly located droplets to the 
formation of a droplet of the departure size. The growth of the large drops 
from an earlier stage is carried over into the next stage, which has an area 
ten times larger. The behavior of smaller droplets is accounted for by the 
average properties of the earlier stage. Thus only the growth and 
coalescence of the larger drops in any stage are treated in detail. With this 
procedure they were able to simulate site densities as large as 108 cm -2 
while working with only 1000 sites. 

Since the goal of the engineering simulations was to understand the 
heat transfer process, little if any attention was paid to the approach to the 
steady state. The steady-state process is not self-similar because of the 
nucleation of new generations of droplets between existing drops. Thus, 
there is little information that can be derived from these earlier studies that 
applies to the case in which we are interested. 

3. M E T H O D S  OF S I M U L A T I O N  

3.1. T ime Steps 

Because of the underlying power law, it is convenient to work with a 
reduced time r = ( t / to) a, where to is the initial time; the results of the 
simulation are then independent of the choice of the exponent a. The 
power-law nature of the basic growth process also leads naturally to the 
choice of a multiplicative time step. A guide for the magnitude of the time 
step can be derived from scaling arguments. (7) In the self-similar regime, the 
number of droplets is proportional to ( R )  2 and, when coalescences are 
important, it can be anticipated that ( R )  grows as t 3a. Thus, we can define 
a time-step parameter 

b = N ( t l ) / U ( t 2 )  = [ ( R ( t 2 ) ) / ( R ( t l )  ) ] 2 = (t2/t~)6a 

that sets an upper limit on the number of coalescences that can be expected 
within a time step. 
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The effect of the choice of time step was studied by varying b and by 
comparing simulations in which a constant value of b was utilized with 
those in which b was changed to maintain the fraction of coalescences per 
step essentially constant. Values of b from 1.02 to 2.2 were investigated. 
When an algorithm was used in which the search for coalescences always 
was carried out in the same order, there was a noticeable dependence on b 
during the late stages of the simulation. When the order of the search was 
randomized by "shuffling" the table of droplets between each step, 
however, values of b between 1.02 and 1.75 gave essentially identical 
results. 

3.2. Initial conf igurat ion 

A number of different methods have been employed to create the 
initial configuration. In the simplest case, which corresponds to an initial 
coverage of zero, 10,000 sites were placed randomly on a unit square. The 
sites were taken as the centers of equal-size disks whose radius was chosen 
empirically so that there would be some overlaps (i.e., coalescences) in the 
first time step. 

Initial configurations at relatively high coverages could be generated 
by placing disks sequentially at random positions and rejecting coordinates 
that would result in overlaps. This procedure is quite time-consuming for 
coverages in excess of 45 % and an alternative scheme was also 
investigated in which droplets were initially placed on either a 100 • 100 
square or hexagonal lattice. The system was then distorted by moving each 
disk a random distance and direction within a circle whose size was defined 
by the closest packing radius. 

3.3. Polydispersity 

In some of the simulations, polydispersity was introduced into the 
initial droplet distribution by choosing droplet radii with a Gaussian 
probability about the average radius. When the initial configuration was 
that of a distorted lattice, an upper bound to the radius was set by the 
requirement that disks fit within the circle defined by the closest packing 
radius; the lower bound was then chosen to make the distribution 
symmetric. 

3.4. Procedure 

The search for coalescences is carried out by calculating the distance 
between the centers of two disks and comparing it to the sum of the radii. 
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If the latter is larger, the two overlapping disks are replaced by one whose 
size and location are calculated as if the disks were median sections of 
hemispheres with conservation of volume and center of mass. To reduce 
computation time, the search for overlaps is confined to a square whose 
side length is four times the radius of the largest disk in the ensemble and 
which is centered on the disk being checked. 

The computation time can also be markedly reduced by taking the 
center of the new disk to be center of the larger of the two overlapping 
disks. This procedure leads to coverages that are lower than those obtained 
when the new center corresponds to the center of mass. If one considers the 
conditions under which overlap with a third disk will result from 
coalescence of two disks, it becomes apparent (Fig. 1) that the probability 
of multiple coalescences (which reduce coverage) is lower if the center-of- 
mass location is used. 

The fluctuations in the calculated properties of the ensemble of disks 
necessarily increase as coalescences cause the number of disks to decrease. 
One can reduce the fluctuations by increasing the initial number of disks, 
but it is more efficient to make several runs with the same initial conditions 
and to average them at each time step. In general each of our simulations is 
the average of 20 runs. The simulations were carried out on VAX 8600 and 
780 computers. 

(a) (b) 

Fig. 1. Condition for coalescence with a third drop. Two droplets coalesce to form the 
droplet indicated by the horizontally hatched region. If the center of another droplet of the 
same size lies within the area indicated by the vertical hatch, an additional coalescence will 
then take place. (a) New droplet is centered on one of the coalescing pair. (b) New droplet 
appears at the center of gravity of the coalescing pair. It is evident that the chance of multiple 
coalescences is greater in (a). 
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4. RESULTS 

It is convenient to define the reduced radius p =  <R>/<R>o , where 
<R> is the mass-averaged radius defined by Z r~/Zr~ and <R>o is its 
value at the initial time. Figure 2 shows the behavior of log p as a function 
of log z for two systems that were initially monodisperse, one prepared at 
zero initial coverage and the other by random addition at an initial 
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Fig. 2. Log-log plot of p against ~. (a) Random initial condition with zero initial coverage. 
(b) Random initial condition with coverage of 0.45. In both cases the systems were initially 
monodisperse. 

20 50 

O 
O 

O 
O 

O 
Q 

O 



1454 Fritter et  ai. 

coverage of 0.45. It is evident from Fig. 2a that there is an initial period 
during which the slope is unity, corresponding to single-particle power-law 
growth (i.e., ( R ) o c  t a) followed by a transition to a slope of 3, which 
corresponds to ( R )  oc t 3a. The t a region of Fig. 2b is less clearly defined, 
but there is an obvious transition from one exponent to the other. This 
characteristic crossover from single-particle to coalescence-dominated 
growth is observed in all the simulations. It is unaffected by the choice of 
initial conditions, polydispersity, or procedure for drop replacement at 
coalescence. 
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Fig. 3. Coverage e2 against log �9 for the systems shown in Fig. 2. ( a ) R a n d o m  initial 

condition with zero initial coverage. (b) Random initial condition with coverage of 0.45. 
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Plots of the coverage e 2 against log r for the systems shown in Fig. 2 
are given in Fig. 3. After an initial rise, e 2 levels off at a value of 0.57 and 
the time at which the transition to the plateau occurs corresponds to the 
change from single-droplet to coalescence-dominated growth. The mass- 
averaged polydispersity g, 
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Fig. 4. Polydispersity g against log z for the systems shown in Fig. 2. (a) Random initial 
condition with zero initial coverage. (b) Random initial condition with coverage of 0.45. Note 
that the maximum in (a) occurs at the time corresponding to the change in slope in Fig. 2a. 
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also shows this transition. As can be seen in Fig. 4, it rises through a small 
max imum to a plateau at a value of 0.16, where the transit ion in growth 
law takes place. 

Al though the qualitative behavior  of e2 and g for other initial con- 
ditions and initial polydispersities is similar, there are quanti tat ive differen- 
ces. As the initial polydispersity is increased above 5 %, the max imum at 
early times becomes increasingly p ronounced  and the plateau region at 
later times becomes less well defined. The reason for this behavior  becomes 
evident when one investigates size distributions. As shown in Fig. 5, which 
has been obtained from a simulation in which the initial value of the 
coverage was 45 % and the initial polydispersity was 30 %, the size dis- 
t r ibution becomes birnodal because some of the disks do not  undergo any 
coalescences. Disks that  do  not  coalesce grow relatively slowly and account  
for an increasingly larger fraction of  the total as coalescences reduce the 
number  of  the other  disks. 

A similar persistence of uncoalesced disks is found even for 
monodisperse  systems if the initial coverage is low. In this case the effect of 
the uncoalesced disks is to decrease the length of  the plateau region. Note  
that  even a single uncoalesced disk eventually becomes impor tan t  as the 
total number  of  disks decreases, but  little physical significance can be 
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Fig. 5. Distribution of droplet sizes for a system with an initial polydispersity of 30 % and a 
coverage of 45 % at three times during the simulation. The areas under each of the curves 
have been normalized to unity. To facilitate the comparison, the ordinates have been nor- 
malized by the bin size AR, which is different for each curve, and the abscissa has been divided 
by z to account for growth without coalescence. (--) ~ = 1.14; (O), ~ = 1.80; (-k), ~ = 2.55. 
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attached to the average properties of systems that consist of just a few 
disks. 

The conditions of constant coverage, constant polydispersity, and 
power-law growth of the average radius with an exponent 3a are charac- 
teristics of the self-similar regime observed in experiments {u) and discussed 
by Viovy et al. {7) A necessary condition for self-similarity is the scaling 
behavior of the structure factor, which is indicative of an underlying scaling 
of the pair distribution function. The average distance between disks is 
proportional to N 1/2, which provides us with a characteristic length; we 
define a reduced distance r * =  rN 1/2, where r is the radial distance from 
the center of a drop. The pair distribution function g(r*) is shown as a 
function of r* in Fig. 6 for different times during the simulation that was 
the basis for Fig. 2a. At the start of the simulation, there is no correlation 
between the droplets and g(r*) is unity. As coalescences occur, the short 
center-to-center distances are preferentially eliminated and a short-range 
cutoff appears in the distribution function. At the same time, local order 
develops, as evidenced by the peak that arises in g(r*). As the system enters 
the regime in which the 3a growth law applies, the maximum in the peak 
increases and there is evidence of a second peak, indicating that the 
correlation is increasing. At longer times, the distribution function 
approaches the g(r*) for systems in which the coalescence mechanism is 
well developed. 
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Fig. 6. Pair distribution function g(r*) against r* at three times during the simulation 
shown in Fig. 2a. ( - - )  r = l . 8 ,  ( - - )  z=3.4 ,  ( - - )  ~=6.2, ( - . )  z=9.9 ,  ( - - - - )  r = 1 7 .  The 
heavy curve with the large maximum is for r = 1.73 in a simulation in which the initial 
coverage was 0.45. 
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The behavior in other simulations is comparable; once the 3a growth 
is well established, g(r*) does not change and the structure is therefore 
self-similar. The self-similarity breaks down in the late stages of the 
simulations when the number of droplets becomes small and the fraction of 
uncoalesced drops become significant. It is interesting to note that the 
peaks in g(r*) also appear when the coalescence is not accompanied by the 
moving of a droplet center. Thus, the local order is induced only by the 
process of coalescence and not by droplet movement. 

5. C O M P A R I S O N  W I T H  E X P E R I M E N T S  

The simple model of growth and coalescence that we have employed 
in the simulations reproduces in detail the collective behavior observed in 
the experiments. Although the transition from the exponent a to 3a in the 
power-law growth of the average radius was not observed in the original 
experiments on clean, silanized glass slides, (5) it was inferred from 
experiments (11) in which there were isolated impurities on the surface of the 
slides and it has been confirmed in studies of the growth of droplets on the 
surface of a liquid. (12) The simulations make clear that correlation develops 
in an ensemble of coalescing droplets; it is not necessary that the initial 
state be highly compact. The appearance of a self-similar growth regime is 
also a natural result of the power-law growth and the coalescence process. 

The numerical results of the simulations also agree remarkably well 
with those found in the experiments. It is notable that the plateau value of 
the coverage, 57 %, is close to the "jamming limit," the maximum coverage 
obtainable when monodisperse disks are placed randomly and sequentially 
on a two-dimensional surface with the requirement that there be no 
overlap. This process of random sequential adsorption has been much 
studied. The jamming limit in two dimensions has not been computed 
analytically, but Hinrichsen etal. ~3) determined the value 0.547_+0.003 
from computer simulations. We do not reach the same limit if the droplet 
formed by a coalescence is centered at the site of one of the coalescing pair. 
The essential difference between the two schemes for coalescence may be 
that the one in which the new droplet is located at the center of mass loses 
memory of the initial configuration while the other scheme does not. It 
should be noted that Rose and Glicksman (l~ also suggested that the 
limiting coverage in droplet condensation is the jamming limit. 

It is notable that the plateau value of the polydispersity also is closely 
similar to that found in the experiments. If the initial ensemble is 
monodisperse, the plateau value of the polydispersity represents the spread 
in sizes produced by the presence of several "generations" of disks at any 
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t ime once coalescence has begun. The  agreement  between the exper imenta l  

values and  those  found in the s imula t ion  of monod i spe r se  systems suggests 
tha t  the ini t ial  d i s t r ibu t ion  of d rop le t s  in the exper iments  has only  a small  
spread  in sizes, as it wou ld  if the surface was relat ively uniform. The close 
agreement  between the l imit ing coverage  and  the j a m m i n g  l imit  for 
monod i spe r se  disks also suppor t s  this view. 
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