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A new noise effect on chaos in one-dimensional mappings is reported. The 
transition from chaotic behavior to ordered behavior induced by external noise 
is observed in a certain class of one-dimensional mappings. This transition is 
clearly shown in terms of the Lyapunov number, entropy, power spectrum, and 
the nature of orbits. 

KEY WORDS: One-dimensional mapping; chaos; noise; power spectrum; 
entropy. 

1. I N T R O D U C T I O N  

H o w  is the charac te r  of chaos  inf luenced by  external  noise? There  are  
several  cont r ibu t ions  to this p rob l em in the case of the logistic model .  (1'2) In  
the logistic model ,  external  noise induces  the t rans i t ion  f rom the per iod ic  
behav ior  to the chaot ic  behavior .  There  appears  a b roa de n ing  of the 
invar ian t  densi ty  and  of the power  spec t rum and  an  increase in the 
L y a p u n o v  number .  

W e  s tudy here  other  types of one-d imens iona l  maps  which exhibi t  a 
very different  response  f rom the one ob ta ined  in the logistic model .  In  our  
maps,  one of which is direct ly  connec ted  to the real  chemical  react ion,  the 
B e l o u s o v - Z h a b o t i n s k y  react ion,  external  noise destabi l izes  the chaos  and  
p roduces  some k ind  of order .  The  t rans i t ion  to the order  is ind ica ted  by  
sha rpen ing  of power  spect rum,  ab rup t  decrease  of ent ropy,  a p p e a r a n c e  of 
negat ive L y a p u n o v  number ,  and  local iza t ion of orbit .  

l In our opinion, the new phenomenon which is reported in this paper may be called 
"periodicity." However, we here call this simply "order," following the comment of one of 
the referees, because the theory that is expected to justify our opinion is not yet completed. 
The theory based on the global analysis of maps will be completed in the near future. 
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The new transition reported here suggests two important points: (1) 
Some chaotic orbit is unstable for noise and (2) randomness of the 
deterministic chaos is definitely different from that of noise. The former 
aspect indicates that periodic solutions observed in real experiments might 
in fact be chaos if the external noise did not exist. The latter aspect means 
that the "randomness" of the noise in the logistic model may induce the 
"randomness" of the orbit, leading to chaos; on the other hand, the 
"randomness" of the noise in some class of maps destroys the "ran- 
domness" of chaos, lowering its "randomness." 

In Section 2, we describe the models investigated here and the calcula- 
tion techniques used. Numerical results are found in Section 3 for the 
model of the B-Z  reaction and in Section 4 for the logistic model. In 
Section 5, the mechanism of the transition from the chaotic behavior to the 
ordered behavior is explained and two other models are constructed to 
illustrate the mechanism. Section 6 contains the summary and discussion. 

2, M E T H O D S  

We investigate four models with additive noise equally distributed in 
the interval [ - a ,  o], where a is the maximum value of the noise level. 

One of the models O) was proposed in relation to the B-Z  reaction and 
successfully explained the bifurcation sequence obtained in experiments. 
This model with an additive bifurcation parameter is written as follows: 

x < 0.125, f (x)  = [ - (0 .125  - x) 1/3 +.50607357 ] e x p ( -  x) + b 

0.125 < x < 0.3, f (x) - -[(x-O.125) l /3+O.50607357]exp(-x)+b 

0.3 < x, f (x )=0.121205692•  

The new transition from the chaotic behavior to the ordered behavior as 
the noise level is increased was first found in this model, so this model is 
thoroughly investigated in this paper. 

The next model is the well-known logistic model: (4) 

f (x)  = ax(1 - x) 

The investigation of this model is done for comparison with the former 
model. The transition mentioned above is not observed in the logistic 
model. 

Two other models which have steepness control parameters are pre- 
sented in Section 5 where the motivation for adopting these models is also 
explained. 

For a systematic investigation, we use the concept of the Markov 
maps. O~ Let x* be the point where df(x*)/dx = 0. The Markov maps in 
the model are the maps where f(nl(x *) is mapped into one of the unstable 
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periodic points. For the logistic model, it is known that these maps have 
asbolutely continuous invariant measureJ 6) On the other hand, for maps 
which violate the Schwarz condition, this is not generally true. However, we 
expect some of the Markov maps are chaotic even when the Schwarz 
condition is broken. Thus, we compare the models by comparing the same 
type of Markov map (with positive Lyapunov number) in each model. This 
enables us to investigate more or less systematically. 

For the numerical calculations we used double precision on the 
FACOM-M200 at the Kyoto University Data Processing Center. 

3. NUMERICAL RESULTS ON THE B-Z MODEL 

First of all we investigate the B-Z  model at the bifurcation parameter 
value b = 0.023288 . . . .  which corresponds to the Markov map of type 
RLLL.R.3 

Our first observation is that the originally positive Lyapunov number (8) 
changes to a negative one as the noise level is increased. This surprising fact 
is shown in Fig. 1. 

The Lyapunov number is the indicator of the orbital instability in the 
case without noise. However, that the Lyapunov number is an appropriate 
indicator in the presence of large noise is very questionable as the concept 
of orbits is lost. Alternatively, we study the entropy of this system viewed as 
an information source. 

Regarding the R - L  sequence of an orbit as the product of an informa- 
tion source, we can calculate its entropy H. (7) We call this quantity the 
entropy of a system composed of a deterministic dynamics and noise. 

As shown in Fig. 2, the entropy abruptly decreases as the noise level is 
increased. 

To check whether or not our phenomenon is observable in experi- 
ments, we study the power spectrum. The results are shown in Fig. 3. In 
Fig. 3a the power spectrum in the case without noise is shown. Figures 
3b-3f  are the cases where the noise level is gradually increased. For 
relatively large noise, the sharp peak which implies some kind of order 
appears. The Fig. 3f where the noise level is maximum cannot be distin- 
guished from the figure for the map in which a 6-periodic orbit is super 
stable with the same noise level. We call this phenomenon noise-induced 
order. 

3 Let x* be the point for which df(x*)/dx = 0. We associate a letter R to a point x when it is 
in the region > x*, otherwise we associate a letter L. Then for every sequence of points 
(whether it is an orbit or not) we can associate a sequence of letters consisting of R and L. 
The type of a Markov map is defined as the R-L  sequence associated with the orbit starting 
from x*. For part of sequence associated with the unstable periodic orbit, only sequence 
corresponding to one period is written after the period. 
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B-Z MODEL 
b= 0.0232885279 

c~ = 

!4G [ S F  L E V E L  

Fig.  1. Lyapunov number vs. noise at b = 0 .0232885279  for the B - Z  model. This is the 
Markov map of the type RLLL.R.  

This seems to give a new mechanism for the formation of order, 
namely, order can be formed from chaos by thermal fluctuation, and this 
order reflects the periodicity appearing at a different value of bifurcation 
parameter. The formation of order as seen in nucleation (9']~ or symmetry 
breaking (l]) is represented by transitions between multiple states existing 
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Fig. 2. Entropy of the same map as in Fig. 1. The arrow indicates the value of entropy in the 
case which is noiseless but for round-off error ( ~ 1 0 -  16). 
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Fig. 3. Power spectrum (FFT) of orbits of the same map as in Fig. 1 with various noise 
levels: (a) without noise (only round-off error), noise level is (b) 1.1 x 10 -5, (c) 3.53 X 10 -5, 
(d) 3.3 • 10 -4, (e) 9.99 X 10 -4, (f) 1.0 X 10 -2. 
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simultaneously at certain value of the bifurcation parameter. In our case, 
coexistence of phases is not observed. 

We also observe that the nature of the orbit in the noisy case differs 
from that in the noiseless case (see Fig. 4). In the case without noise, the 
orbit concentrates around the unstable fixed point at x--0.3929 . . . .  
reflecting the character of this Markov map. On the other hand, in the 
noisy case the orbit seldom visits the neighborhood of the fixed point but 
rather visits the neighborhood of the critical point x*. The mechanism for 
this is explained in Section 5. 

This change in the orbits appears more clearly in the invariant density, 
which is presented in Fig. 5. It is characteristic that a peak near the fixed 
point in the absence of noise shifts to the region near the critical point in 
the presence of noise. This makes the Lyapunov number negative and the 
overall structure of the orbit similar to that of the 6-periodic orbit with 
noise. 
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Fig. 4. Orbits in the same map as in Fig. 1. (a) Noiseless case and (b) the case with noise 
level 1.0 x l0 -2. First 50 points of the orbit starting from x = 0.1 are depicted, joined by a 
solid line. The stars represent the map. 

W e  conf i rmed  that  the same features  appea r  also in o ther  types of 
chaos.  As one example ,  we show this k ind  of t ransi t ion in the type 
R L L L L . R  M a r k o v  m a p  in Fig. 6. 

In  the next  section, we calcula te  the same quant i t ies  as those in this 
sect ion for the logistic model .  

4. NUMERICAL RESULTS ON THE LOGISTIC MODEL 

In  this section, we repor t  that  the t ransi t ion discussed in the previous  
sect ion is not  observed  in the logistic model .  Moreover ,  the mechan i sm of 
the t rans i t ion  (see Sect ion 5) suggests that  it is unl ikely  to exist in the 
logistic model .  
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Fig. 6. The characteristics indicating noise-induced order of the B - Z  model at b 
= 0.0121372859. This is the Markov map of the type RLLLL.R .  (a) Lyapunov number vs. 
noise. 
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(b) Entropy vs. noise. The arrow indicates the value of entropy in the case which is noiseless 
but for round-off error (-10-16).  
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B-Z MODEL 
b= 0.0121372'b59 

iI N.L.=O.O 

,41 
, 'A'~,46 163.94 184 ,a2  

~REQUENCY , * 13 '  

(c) 

(c) Power spectrum (FFT) in the case without noise. 
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(d) Power spectrum (FFT) in the case with noise level 1.0 • 10 -2. 
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The Lyapunov number increases as the noise level is increased, for 
example, for the case of the Markov map RLLL.R the Lyapunov number 
0.62419 in the absence of noise becomes slightly larger, 0.646998, at the 
noise level 0.01. (See Mayer-Kress and Haken (1) for a description of 
Lyapunov number vs. noise level in the logistic model.) 

The power spectrum shows only very weak peak as shown in Fig. 7. 
The orbit does not show any noticeable periodicity and the density merely 
broadens. (See Fig. 8 for the orbits and Fig. 9 for the density.) 

So, we inquire in what class of maps the transition from chaos to order 
occurs. 

5. NOISE-DESTABILIZED CHAOS 

The numerical calculations presented in the previous sections show 
definitely that the chaos is unstable against external random perturbations 
in some class of maps. We now investigate the mechanism of this insta- 
bility. 

Our explanation is based on the shift of the peak appearing in the 
invariant density of Fig. 5. This shift occurs as a result of the splitting of the 
peak at fixed point (x = 0 .3929 . . .  ) due to the smearing of the peaks on 
the left-hand side of the critical point (x = 0.3). 

Consider the slope on the left-hand side of the critical point in the B-Z 
model. If we assume a uniform density Pn(x) in this region of the map, the 
next iteration Pn+l(x) of this density function has clearly two peaks as 
depicted in Fig. 10. The probability measure of the region between these 
two peaks is very small. Thus, if the starting density [Pn(x)] is uniform 
enough, the probability of an orbit visiting this r~egion is very small. As seen 
from Fig. 5, this type of chaotic orbit uses the region near the unstable 
fixed point (x = 0 .3929 . . .  ) frequently. This is due to the fact that as the 
B-Z reaction map has wide flat regions and narrow steep regions, it is 
necessary for chaotic orbits to stay in the steep region for a long time. 
However, if the noise smears the peaks of the density on the left-hand side 
of the critical point, the orbit seldom visits the unstable fixed point, as 
described earlier. 

Thus, the chaos is destroyed by noise, and as a result, the Lyapunov 
number turns negative. This is our explanation of the phenomenon noise- 
induced order. 

To confirm this explanation, we construct two families of models 
which each have a parameter which controls the steepness of the slope on 
the left-hand side of the map. 

One of them is 

f(x) = 0.8 • (0.3)-'~• e'~x%xp( - 0~3 x) + b 
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Fig. 7. 
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Power spectrum (FFT) of logistic model at a = 3.982570732. This is the Markov map 
of type RLLL.R.  (a) Noiseless case. (b) The case with noise level 1.0 x 10 -2. 
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Fig, 8. Orb i t  of the same m a p  as in Fig. 7. Noise  level is 1.0 x 10 -2.  

We call it the exponential model. As the control parameter a is varied, 
steepness is increased and the stable region about the critical point becomes 
small. 

The other map is 

f(x) = const • {arctan[ fi(x - 0.2)] + arctan(0.2fi)}/[  1 + (2x) 19] + b 

We call it the tangent model. 4 In this model as the parameter/3 is increased, 
the feature of the map on the right-hand side of the critical point does not 
change, but the steepness of the left slope is increased. 

For these maps, we calculate the same features as those for the B-Z 
model. These calculations confirm the mechanism explained above. Typical 
examples are shown in Figs. 11 and 12. When a and/3 are small, namely, 

4 Cons t  is chosen so as to give f(x*) = 0.8. 
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Fig. 9. Invariant density of the same map as in Fig. 7. Noise level is 1.0 • 10 -2. 

the left slope of the map is less steep, the transition--noise-induced order - -  
is not observed. On the other hand, when a and B are large, namely, the 
left slope is large enough, the transition is observed as expected. 

6. SUMMARY AND DISCUSSIONS 

The transition from chaos to order was observed as the noise level was 
increased. We call it noise-induced order. This kind of transition was 
attributed to the steepness of the map. However, global analysis of maps is 
necessary for understanding this transition more deeply and more quantita- 
tively. This formulation is now in progress. It was also found that the 
logistic model was not of the type demonstrating this phenomenon. 

The transition which was observed here in one-dimensional maps may 
be observed in flow systems. For example, in the Belousov-Zhabotinsky 
reaction, the nature of orbits in three-dimensional concentration space 
seems to suggest this. (12-14) There, extremely localized orbits exist and 
orbital delocalization (3) due to the saddle or the unstable manifold of the 
saddle is observed. Furthermore, in the Lorenz plot obtained from experi- 
mental data corresponding to chaos, (3) the density of the points in that plot 
is zero near the fixed point. Therefore, this situation should be considered 
noise-induced order, as the characteristics mentioned in Section 3 indicate. 
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Fig. 10. The mechanism of the peak splitting (see text). 

Thus it is expected that the noise-induced order would appear also in flow 
systems. We are now investigating in this direction. 

Furthermore, our noise-induced order would give a new insight for 
results obtained by computer calculations. It has been believed that poor 
precision can produce chaos, for example, it is possible that a calculation 
with single precision produces chaos but one with double precision pro- 
duces periodicity at the same value of the bifurcation parameter. However, 
our present observations indicate the opposite possibility. Namely, it is 
possible that a calculation with double precision produces chaos but one 
with single precision produces periodicity at the same value of the bifurca- 
tion parameter. 

Finally, we should add one more result of calculations, supposing the 
following question from the practical point of view. Suppose that a periodic 
solution with noise is obtained in some experiment. Then how do we decide 
whether the system is chaotic or periodic in the noiseless case, i.e., the ideal 
case? As shown in Fig. 13, if the chaos exists in the ideal case, the peak of 
the power spectrum is continuously shifted as the bifurcation parameter is 
continuously varied. On the other hand, if the periodic solution exists in the 
ideal case, other peaks, for example, those of subharmonics can appear as 
the bifurcation parameter is continuously varied. Thus, we can distinguish 
the above two cases by studying the bifurcation at the same noise level. 

NOTE ADDED IN PROOF 

For the effects of noise on period doubling systems, see J. P. 
Crutchfield and B. A. Huberman (Phys. Lett. 77A:407 (1980)) which was 
the first systematic study of external fluctuations on such systems and 
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Fig. 11. Orbits indicating noise-induced order of the exponential model a = 21 at b 
= 0.154617072. This is the Markov map of the type RLLL.R.  (a) Noise level 1,0 • l0 -5. (b) 
Noise level 1.0 • l0 -2. 



_J 

TANGENT MODEL 

b = 0-153761639 

N.L.=0-O 

~=200 

/ 
// 

/ 

X~N; 

(a) 

Fig. 12. 

TANGENT MODEL 

b = 0.153761639 

N.L.=0.01 

~=200 

/ 

/ 
/ 

XIN) 

(b) 

Orbits of the tangent model fl = 200 at b = 0.153761639. This is the Markov map of 
the type RLLL.R.  (a) Noiseless case. (b) Noise level is 1.0 • 10 -2. 
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Fig. 13. The frequency of the peak in the power spectrum vs. the bifurcation parameter b in 
the B-Z model. Noise level is 1.0 X 10 -2, but the noise level dependence of the frequency is 
not noticeable. 

reports the discovery of the bifurcation gap. See also T. Ohno (Publication 
RIMS Kyoto Univ., to be published) for the mathematical study of the 
noisy map. 
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