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For quantum lattice systems, we consider the problem of characterizing the set 
of single-particle densities, p, which come from the ground-state eigenspace of 
some N-particle Hamiltonian of the form H o + y ~ N  V(Xi), where H 0 is a fixed, 
bounded operator representing the kinetic and interaction energies. We show 
that the conditions on p are that it be strictly positive, properly normalized, and 
consistent with the Pauli principle. Our results are valid for both finite and 
infinite lattices and for either bosons or fermions. The Coulomb interaction may 
be included in H 0 if the lattice dimension is >/2. We also characterize those 
single-particle densities which come from the Gibbs states of such Hamiltonians 
at finite temperature. In addition to the conditions stated above, p must  satisfy a 
finite entropy condition. 

KEY WORDS: Density functionals; Hohenberg-Kohn  theory; V-represent- 
ability; inverse problem. 

1. INTRODUCTION 

In 1964 Hohenberg and Kohn (1) suggested a novel approach (now referred 
to as H K  theory) to the problem of finding the ground-state energy of a 
multiparticle Hamiltonian of the form 

N N 

j - I  j<k j I (1.1) 

- = H o +  V 
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where N is the number of particles, v(x) is a real-valued multiplication 
operator, and H 0 denotes the first two sums in (1.1). Traditionally, u is the 
Coulomb interaction, but many other interactions, including N-body rather 
that two-body interactions, can be used without significantly affecting the 
theory provided that the interaction is .fixed. 

The basic H K  uniqueness theorem (~) states that if vl(x ) 4: v2(x) + const, 
then the corresponding densities, 6 Pi, coming from the ground-state wave 
functions are also unequal, i.e., p~(x)4: p2(x). The H K  uniqueness theorem 
implies that there is a one-to-one map ~2: v ~ p ,  between a suitable set of 
potentials and a corresponding set of densities. Therefore, physical quantities 
such as the ground-state energy, g~, can in principle be considered via 
c~-~(p) as functionals of the density. Despite the obvious impracticality of 
finding an explicit form for such functionals, H K  theory has been widely 
used as the basis for approximation schemes and computations. (Most 
applications are based on the Kohn-Sham equations.rE) For a brief review 
see Ref. 3; for additional applications see Ref. 4.) A minimal condition for 
putting these variational schemes on a firm foundation is to restrict the 
variation to those p in r a n g e ( ~ ) = d o m a i n ( g ' ) .  The problem of charac- 
terizing the range of ~ is often referred to as the "V-representability" or 
"inverse" problem, and consists of finding conditions on p which guarantee 
that there is a single-particle potential v(x) such that p comes from the 
ground state of H 0 + V. 

The analogous problem for classical finite-temperature systems has also 
received attention (see, e.g., Ref. 5). For both the canonical and grand 
canonical distributions, sufficient conditions for V-representability have been 
obtained by Chayes, Chayes, and Lieb. ~6) In the case of H-stable grand 
canonical systems, both necessary and sufficient conditions have been 
obtained. (7) 

In this paper, we consider quantum lattice systems. For these systems, 
--Aj, which represents the kinetic energy of particle j, denotes the finite 
difference Laplacian or "hopping" operator. We show that every density 
which is strictly positive, properly normalized, and consistent with the Pauli 
principle 7 comes from the ground-state eigenspace of H 0 + V for some 
suitable potential. We also consider the generalization of H K  theory to finite 
temperature and show that if, in addition to the above conditions, p satisfies 
a finite entropy condition, then p comes from the Gibbs equilibrium state of 
a unique Hamiltonian of the form (1.1). Our results are valid for both finite 
and infinite lattices, for either bosons or fermions, and for any fixed, 

"By density, we always mean a single-particle density as defined in (1.3) or (1.6). 
v In the case of fermions, the Pauli principle ensures that the density at any lattice site is 

smaller than the number of spin states. Saturation is not permitted for finite potentials [see 
discussion following equation (2.8)]. 
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bounded interaction. It should be noted that this mild restriction on the 
interaction includes the electron gas, since the lattice Coulomb interaction is 
bounded in dimensions ~>2. These results are discussed in Sections 2 and 3. 
For finite lattices, some partial and related results were obtained by Epstein 
and Rosenthal, ~8) Kohn, (9) Englisch and Englisch, ~1~ and Katriel, Appellof, 
and Davidson. ~24)8 

Although we are primarily concerned in this paper with proving 
sufficient conditions on p, as we discuss in Section 4, our conditions are also 
necessary, except possibly for fermions at zero temperature. 

In order to place our results in perspective, we wish to summarize what 
is known about quantum continuous systems, which were the systems 
originally studied by Hohenberg and Kohn. Before doing so, it will be useful 
to introduce some notation. The single-particle reduced density matrix, y, 
coming from the N-particle wave function ~ is given by the kernel 

7(w, w')  = f T(w,  w 2,..., wN) ~t(w', w 2 ..... WN) dw 2 "" dw N (1.2) 

where w i = (xi, cri) denotes both the space, x i, and spin, ai, coordinates of 
the ith particle. When T and y are related by (1.2) we write T~--~ 7. The 
single-particle density, p(x), is the function 

p(x)  = U Z 7(w, w) 
G 

= U Z  I T( (x ,  al), W 2 , . . .  , WN)[ 2 dw2 . . ,  dw N (1.3) 
G 1 

We write T ~ p and y ~-~ p. If F is an N-particle density matrix, i.e., 

K(W,  W ' )  = ~.  a k ~k(BO ~ k ( W ' )  (1.4) 
k 

where W =  (w 1 .... ,WN), a k ~ O ,  and ~ k a k  = 1, then one can define the 
corresponding single-particle entities as 

y = • ak~k (1.5) 
k 

and 

P = Z a~Pk (1.6) 
k 

where T k ~ Yk ~-~ Pk" Again we write F ~ :y and F ~ p. 

8 In the case of finite lattices, a proof of Theorem 2.1 for bosons was given by Englisch and 
Englisch in Ref. 10. After submitting this manuscript,  we learned that Englisch and Englisch 
have also obtained an independent proof of Theorem 2.1 for fermions on afinite lattice. (2s) 
In both cases, the techniques used are quite different from those presented here. 
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The problem of characterizing the range of  ~}~ was originally posed as 
follows: Under what conditions on candidate densities, p, is there a single- 
particle potential, v, such that H o + V [V=Y~iv(xi) ] has a ground-state 
eigenfunction T 0 satisfying T 0 e-~ p? Certain conditions are obvious: 

(a) f p = N .  
(b) p(x)>lO. 

In order to ensure that the kinetic energy of  T is finite whenever T~-~ p, it 
turns out (11) that the additional restriction 

(c) flV l 2<oo 
should also be imposed. Conditions (a) and (c) are sometimes combined as 9 
, fp  E H 1, since one can always adjust the normalization. 

For  the purposes of  V-representability one often considers a 
strengthened form of condition (b), namely p(x) > 0. While this condition 
may exclude some V-representable densities, there is a large class of  
potentials for which the corresponding densities are strictly positive. This 
follows from unique continuation theorems ~1:) and also from the results of  
Hoffmann-Ostenhof,  Hoffmann-Ostenhof,  and Simon ~13) on the nodes of  
wave functions and, in the case of  bosons, from Perron-Fr6benius type 
theorems. ~12) It should be noted that naive prescriptions for relaxing the 
restriction p(x)> 0 [e.g., set v(x)= oo whenever p(x)= 0] can lead to 
serious difficulties. 

In curious contrast to the quantum lattice case, the Pauli principle does 
not place any restrictions on r a n g e ( ~ )  for continuous systems. The reason is 
that one can always construct many single-particle density matices, 7, such 
that 7 ~-~ P and 7 satisfies the Pauli principle. 

These considerations suggest that one define 

and ask whether every p in 9 comes from the ground-state eigenfunction of 
some potential v. That this is false was demonstrated by means of counterex- 
amples constructed by Lieb (11) and Levy. ~14) They consider a system of N 
fermions for which the ground state of  H 0 + V has degeneracy I. Let 
F = Po/I, where Po projects onto the ground-state eigenspace of  H o + V, and 
let p be the density of  F, i.e., F ~ p. Lieb proved that it is possible to choose 
v so that T i b~ p for any Tj in the ground-state eigenspace of  v or of any 
other potential. 

Although H K  theory was originally formulated for potentials with 
nondegenerate ground states, it has since been realized that it can be easily 

9 H 1 _ {fl f If[ 2 < oo, f IVfl ~ < ~ }. 
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extended to include the possibility of degenerate ground states. For example, 
the functional 

(~(p) = inf{ (g/, H 0 ~,) ] T ~ p} (1.8) 

which was introduced by Levy (15) and analyzed by Lieb ~11), has an obvious 
generalization to 

Q(,o) = inf{Tr(FHo) l V ~ p} (1.9) 

This latter functional, which we use in Section 2, was introduced and studied 
by Lieb. (11) 

This generalization suggests that one might hope that every p in 3 can 
be obtained from some ensemble density matrix F which is nonzero only on 
the span of the ground-state eigenspace of H 0 + V, i.e., (H 0 + V ) F = E o F  
and F ~  p. Unfortunately, even this seemingly modest expectation is false. 
As Englisch and Englisch (~6) pointed out, even in the trivial case when 
N = 1, smooth densities may come from surprisingly singular potentials. The 
Englisch and Englisch counterexamples not only show that short-distance 
pathologies invalidate the above conjecture, but also suggest that the 
problem of completely characterizing r ange (~)  is a difficult and subtle one 
indeed. Because of the importance of the Englisch and Englisch counterex- 
amples, and also because we question the validity and interpretation of some 
of their examples, we comment in detail on their work in Section 5. 

Finally, it should be noted (see, e.g. Lieb (11)) that the proof of the HK 
uniqueness theorem requires that if g J ~  p, then Y~ 1~12 > 0 a.e. This can 
be proved in the continuous case (via unique continuation theorems ~ 
when the potential v ~ p satisfies certain regularity conditions. 

In Section 4, we consider uniqueness for quantum lattice systems. We 
establish the HK theorem for bosons at zero temperature. We also establish 
uniqueness for particles of any statistics in the finite-temperature case. The 
HK theorem for fermions at zero temperature remains an open problem. 

2. EXISTENCE 

We consider a system of N < m particles on the d-dimensional lattice 
2 a. The particle interaction is described by a bounded, symmetric function 

U: (Z a)~" _0 ~ (2.1) 

We note that this includes the case U =  Y~i<su(xi--xs),  where u may be the 
Coulomb interaction for d>/2 .  The kinetic energy is given by a sum of 
single-particle finite difference Laplacians, which can be defined as 

( - -Af) (x)  = 2df(x)  - ~_. f ( y )  (2.2) 
Y: IX- -Y]  = 1 
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for any function f:  z d ~  C. Note that the lattice Laplacian is a bounded 
operator on the space of square-summable functions 12(zd). 

In the absence of an external potential, the Hamiltonian of the system is 

N 

H 0 = - ~ A  i + U  (2.3) 
i=1 

Clearly, H 0 is a bounded operator on/2(Za)x).  
An external potential is a function v://a__, ~. For a given v, the full 

Hamiltonian of the system is 

N 

H~=H o+ ~, v(xi)=H o+ V (2.4) 
i--1 

which is unbounded whenever v is. 
The Hilbert space J/~ on which H 0 acts is dictated by the statistics of 

the particles. For (spinless) bosons, ~,'r by which we 
denote the symmetric subspace of square-summable functions, i.e., symmetric 
N-particle wave functions. For spin-l/2 fermions, the system should be 
defined on ( Z a |  {a, fl}) u. Thus we are concerned with antisymmetric 
square-summable functions ~0: (Z a | {a, fl})N ~ C, so that ~ f  = 
antisym[IZ(Za | {a,/~})u)]. In the latter case, the Hamiltonians (2.4) which 
we study are spin independent. Henceforth we only consider wave functions 
in the appropriate symmetry subspace and omit explicit reference to 
symmetry constraints. 

Note that, for any v, H~ has among its cores 

~ '  = {(P C ~ 1 r  = 0 except for finitely many points in  (7 /d)  u } (2.5) 

Since H 0 is bounded, the domain of H~ is simply 

E ~  ~. . . .  ~ [(~pV)(xl,...,xu)l 2 < ~ I (2.6) ~ ( V )  
Xl XN 

) 

Ho is clearly self-adjoint on ~(V) .  
When v is bounded below, so is H~, and the ground-state energy is 

given by 

E~ = inf{(~0, H~p) ] ~p C 9 ,  [Iq~[] = 1} (2.7) 

There is a minimizing ~o for (2.7) in ~ (V) ;  it is said to be a ground state and 
satisfies H~r = E~0. For any given ground state ~p, a density p~ in ll(Y a) 
may be constructed according to equation (1.3); for any set of (degenerate) 
ground states {~0k}, a convex set of densities in 12(7/a) may be constructed via 
equations (1.4)-(1.6). We denote a generic element of this set by Pv. 
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We will consider densities in the set 

3 =  l p : Z a ~  + ~ p = N ,  p ( x ) > 0  and 

p(x) < N Vx E ~d (bosons) (2.8b) 

p(x) < S ~/x ~ 2 a (fermions)I (2.8f) 
) 

where S is the number of spin states. It is well known (see, e.g., Kuhn (lv~ or 
Coleman (18)) that (2.8) is sufficient to guarantee that for every p in 9 there 
exists a density matrix, F, of the proper symmetry such that F ~  p. If we 
were to replace < by ~ in the upper bounds in (2.8), these conditions would 
also be necessary for the existence of such a F. The physical interpretation of 
our restriction to strict inequality is that no potential which is finite at a 
particular site can attract particles so strongly to that site that it always 
contains the maximum number of particles; i.e., finite potentials do not allow 
Pauli saturation. 

Given a p r 3 ,  we define the set of single-particle potentials 

~;-~- lu:~d--~2~ ~x PlVl < oo, E~>--eO I (2.9) 

Note that Y~o is nonempty since it contains all bounded functions. 
The principal result of this section is the following. 

Theorem 2.1. For any p C ~ ,  there exists a F~+p which is 
nonzero only on the ground-state eigenspace of H~ for some v ~ U~. 

We will give a variational proof of this theorem. To do this, for any fixed 
p C .~, we consider the functional 

q~o(v) = Ev -- Z pv (2.10) 
X 

which is well defined for all v in ~ .  It is easy to verify that if 5o has a 
maximizer v in ~ ,  then p = p~. Alternatively, ~p is related to the functional 
Q(p), defined in (1.9), by the following theorem, due to Lieb tll). 

Theorem 2.2.  

(a) sup{~o(v) l v E ~'o} = Q(P) - = i n f { T r ( F H 0 ) I F ~ p }  (2.11) 

(b) There exists a F 0 which minimizes the right-hand side of (2.11), 
i.e., Q(p) = Tr(FoHo) , for some F 0 ~ p. 
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The utility of the functional Q(p) is obvious from the above theorem. If it 
can be demonstrated that ~o achieves a maximum v in ~o ,  then the 
minimizer F o specified above must act on the ground-state eigenspace of H r. 
The remainder of this section is devoted to the proof that ~o achieves a 
maximum in ~" 

P "  

By the Rayleigh-Ritz variational principle, for any F ~ p we have 

E~ ~< Tr(FH0) + ~ p v  (2.12) 
x 

which implies that ~o(v) is bounded above uniformly in v by Tr(FH0). Using 
the previous theorem of Lieb, we can state the following somewhat stronger 
result. 

Proposition 2.3. ~o is uniformly bounded above in U~, i.e., 

sup{~o(v) I v ~ ~ }  = Tr(FoH0) - Q(p) < ov (2.13) 

Next, we recall that two potentials which differ only by a constant will 
have the same ground state, and note that 

?fo(v + cons t )=  qOo(v) for all v in ~ (2.14) 

Thus potentials which differ only a constant can be identified in HK theory. 
Henceforth, without loss of generality, we will consider only potentials for 
which the ground-state energy is zero, and use 

o {v C ~ I E ~ = 0 }  (2.15) ~ o  z 

Theorem 2.4. Let (Vk) C ~ '~  o be a maximizing sequence for ~o" Then 
there exists a v such that, for some subsequence, 

v k ~ v pointwise (2.16) 

This theorem depends on the following lemma, which will be proved 
separately for bosons and fermions. 

Lemma 2.5. Y~kP[Vk[ is bounded above uniformly in k. 

Proof (for bosons). We will use the notation v+(x)= max{v(x),0} 
and v - = v + - v to denote the positive and negative parts of v, respectively. 

Since (Vk) is a maximizing sequence 

lim ~ p(v + -- v [ )  = -Q(p) (2.17) 
k --*oo 

x 
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Let 

/ ) +  D;=Zp ; (2.1B) 
x x 

By (2.17), it is sufficient to verify that Ds  is bounded above. 
Let B k = { x { v k ( x  )<0} .  If  B k = O ,  then D ~ - = 0 .  Otherwise, let 

n k = N/Y~x~B~p(x ) >~ I. Define Pk = nkPXAk, where ZB~(x) = 1 if x ~ B k and 
zero otherwise. Then there exists a (bosonic) density matrix F k ~ Pk. By the 
condition E~k = 0, we have 

0 ~< Tr (FkH~ ) = Tr(FkHo) - n~D[ ~ IIHoll- D~ (2.19) 

which implies that D~- is uniformly bounded above. [] 

Proof {for fermions). By assumption, the given p satisfies 
I [ p [ I o ~ = S ( l - 2 )  for some 0 < 2 <  I. Let B k be defined as before. Let 
b~ = ~x~Bkp(x) and ak = ~x~BkP(X)- We distinguish two cases: 

(i) If a k < 2N, set 

p~ = nkpzB k (2.20) 

with n k chosen so that ~ x p k = N .  Then we have n e = N / b  k < 1 / { 1 - 2 ) ,  so 
that pk(x) < S for every x. Clearly pk(x) >/0 for all x. 

(ii) If  a k >i )~N, set 

Pk = ns - -  •Bk) ~- (1 + 2)px~ k (2.21) 

with n;, chosen so that ~ x  Pk = N. It is easy to verify that 1 > n~/> 2 > 0 so 
that 0 < pk(x) < S for every x. 

In both cases, Pk is nonnegative and satisfies (2.8f), so that we can find 
an N-particle (fermionic) density matrix F k such that F~ ~ p~. Therefore, a 
slight modification of the argument in (2.19) can be used to show that Ds  is 
bounded above. In case (ii), one uses the fact that Pk <~P + 2px~ to show 
0 <~ IIHoll + ~,x pv~ - 2Ds so that lim supk_+~ o D[  ~ [t[H0[[ - Q(p)]/2. [] 

Proof of rheorom 2.4. By Lemma 2.5, for every x 

Irk(x)[ < const/p(x) (2.22) 

For x = 1, choose a convergent subsequence and denote the limit by v(1). 
Choose a further subsequence for x - - 2 ,  etc. This allows one to define a 
diagonal subsequence which converges pointwise (although not necessarily 
uniformly) to a limit function v(x). [] 
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Theorem 2.6. The v defined by (2.16) is in Y~. Moreover, Ev~>0. 

Proof. By Fatou's lemma and Lemma 2.5, 

~ p v  + ~ lim ~ p v ;  (2.23) 
k--*oo x x 

which is bounded above, and similarly for v_. Thus ~xP I v ] < oo. 
For all ~ ~ ~ ,  defined in (2.5), with [lr = 1, 

0 ~ lim (~0, H~k~0 ) = (~0, Hoq~) (2.24) 
k ~ o 0  

which shows that Ho is nonnegative on a core and hence nonnegative on its 
domain. �9 

Theorem 2.7. H~k-~ H~ in the strong resolvent sense. 

Proof. The operators H~k and H~ are self-adjoint on their respective 
domains [defined by equation (2.6)]. For every ~ in the common core 

[[(Hok -- H~) 911 ~ 0 (2.25) 

which implies strong resolvent convergence (see, e.g., Theorem VIII.25 in 
Ref. 19). �9 

Corollary. e-~/~k-~ e-n~ in the strong operator sense. 

Proof. We first note that whenever A ~> 0, e-A can be obtained from 
a bounded continuous function on ~ using the standard operator calculus. 
Therefore since Evk, E~ i> 0, this result follows immediately from well-known 
theorems (see, e.g., Theorem VIII.20 in Ref. 19). �9 

Theorem 2.8. v maximizes 5o in : ~ .  Moreover, there is a F o ~ p  
which is nonzero only on a ground-state eigenspace of H v. 

Proof. Let F 0 be the minimizer given by Theorem 2.2(b). We first 
show that Tr(Foe-n0 = 1. We have 

1 >/Tr(F0e-n0 = lim Tr(Foe-nvO 
k--*o~ 

/ \ 
~> exp[-Tr(FoHo) ] lira exp [--~.pUk) 

k--*oo 

: ~-Q(p)@+Q(p)  

=1 (2.26) 
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The first inequality in (2.26) follows from the fact that E~ >/0. The second 
step is a consequence of the convergence established in the Corollary to 
Theorem 2.7. The third step follows from Jensen's inequality 1~ applied to 
Tr(F 0 .). The fourth step follows from the fact that for our maximizing 
sequence, E ~  = 0 so that limk~oo(--Y~ x pVk) = Q(p). 

From Tr(_F0 e-n~) = 1, it follows that E~ = 0 and F o is nonzero only on 
a ground-state eigenspace of H~. Furthermore, since ~o(v)= E ~ -  ~xpv  and 
E~= ~xPV + Tr(FoHo)= 0, we have ~o(v)= Q(p), i.e., v maximizes ~o in 
~ .  [] 

Remark. We note that the ground-state eigenfunctions implicitly 
defined by the previous theorem are actually in the domain of V and H o, 
even though they were not constructed to be in ~(V) .  Indeed any eigen- 
function q~, with eigenvalue 2, of H~ is in ~ ( V )  since I Vcp]2 = I(;t--H0) ~ot 2 
and H 0 is a bounded operator. 

Remark. The arguments given above are also legitimate for a finite 
lattice A c yd provided that the Laplacian is supplemented with appropriate 
boundary conditions: 

A A =ZA(X) A (2.27) 

where ZA is the characteristic function of the set A. (For fermions, it is 
immediately clear that A must contain more than N/S  sites.) 

3. EXISTENCE: FINITE-TEMPERATURE CASE 

We again consider a system of N < oo particles on the lattice ~d with 
Hamiltonian H~ given by (2.3)-(2.4). In this case, however, we are interested 
in the Gibbs state of a system at finite temperature T =  l/ft. 

For a given v, the partition function of the system is 

Z~(fl) = Tr(e -~Hv) = ~ e ~ej (3.1) 
J 

where the trace is taken over the appropriate symmetry subspace, and the Ej 
are the eigenvalues of H v. Assuming that Zv is finite, the Gibbs equilibrium 
state is given by the density operator 

F v = e ~ /Zv ( f l )  (3.2) 

l~ operator generalization of Jensen's inequality follows easily from the Klein or 
Peierls-Bogoliubov inequality. 



508 Chayes, Chayes, and Ruskai 

This can be rewritten in the form (1.4) using the eigenfunctions of Ho in the 
usual way: 

I'~(W, W') = ~ e-~EJ~j(W) ~j(W')/Z~(fl) 
J 

The thermal density is given by 

(3.3) 

P~(X) = ~ ... ~ F(W, Hi) (3,4) 
Crl a N 

where X--(x, , . . . ,Xx).  The single-particle density p~(x) is obtained by 
reducing F~ as in equations (1.3) and (1.6), or from P~ according to 

p~(x) = ~ ... ~ P~(X) (3.5) 
X2 X N 

We use the notation F~ ~ P~ ~-* p~. 
For any density p ~ g ,  as defined in (2.8), let us consider the set of 

single-particle potentials 

~o( f l )=  Iv: Z a ~  ~ Z p v < o o ,  Z,,(fl)<oo I (3.6) 

Since H 0 is bounded, it is easy to show that Zv(fl ) < oo if and only if 
~ x  e-~(x) < or. Therefore, the condition Z~(fl) < oo implies that v(x) can 
take on negative values at only a finite number of lattice sites, so that 
~x P lvl < c~ if and only if Y'x pv < oo. 

Here we address the question of whether or not there exists a v ~ ~o(fl) 
such that Fv ~-+ p. However, for thermal systems we will need to place an 
additional constraint on the densities p which we consider. The point is that, 
on physical grounds, we are interested in potentials v for which the 
Hamiltonian H~ = H o + V satisfies 

i. H~ has finite free energy, i.e., log Z~(fl) < oo; and 
ii. the Gibbs state of H~ has finite energy, or equivalently, finite 

entropy. 

The condition Z~(fl) < oo tales care of (i); however, it is not immediately 
clear that this condition does not also reduce .~p(fl) to the empty set, since 
any v in ~ ( f l )  must be unbounded. We will see that the requirement that 
7Yo(fl ) be nonempty also takes care of (ii). The following theorem shows that 
~o(fl) is nonempty if and only if the entropy-like quantity -~xp(X)log p(x) 
is finite. As we explain in the Appendix, this is precisely the condition needed 
in order that the entropy of the N-particle Gibbs state be finite. 
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Theorem 3.1. For any p C  3 ,  the following two statements are 
equivalent: 

(a) T(p) =- - Y ' x  p(x) log p(x) < oo 
(b) ~ ( f l )  4= e .  

Proof, First recall that 

Z ~ )  < oo o Z e-~(x) < oo (3.7) 
X 

Using this, it is clear that the potential v(x)=--logp(x)/ f l  satisfies 
Zv(fl) < oo. Furthermore, if T(p) < oo, then Y~x pv < oo so that v C ~ ' ~ ) ,  
i.e., (a) implies (b). 

Next, recall that the convexity of f ( t ) = t l o g t  implies that 
a l o g a - a l o g b > ~ a - b .  For v in Wo(/3 ) we let b = e - ~ ( ~ )  and a=p(x ) .  
Summing over x proves that (b) implies (a). [] 

The previous theorem suggests that we consider the set of densities 
given by 

~ r =  l p ~ 9  --',_2~p logp < oo I (3.8) 
X 

The principal result of this section is the following. 

Theorem 3.2. For any p ~ 3 r, there exists a v C-~oo(fl) such that 

As in the previous section, the proof of this theorem is variational. For any 
p E 3 r, we define the functional 

( 
Note that (5 o is well-defined for all v C ~o(fl)" 

Proposition 3.3. (5o is uniformly bounded above in ~o(fl)" 

Proof. Let v C ~o(fl)" Construct F ~ p. Then, by Jensen's inequality 
applied to Tr(F .), we have 

Z~ ~> Tr(Fe -~H~) >~ e-~Tr(rH~ -~x~ ) e-~l~01~e -~z~ (3.10) 

Thus (5o(v) <~ e ~l~~ [] 

Theorem 3.3. (50 achieves a maximum in ~ ( f l ) .  

Proof. Let (vk) be a maximizing sequence for (50 in ~o(~)" Without 
loss of generality, we may normalize the v k so that Tr(e-~nvk)= 1 for every 
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k. We remark that with this normalization, the ground-state energy is 
nonnegative for all k. 

Following exactly the proofs of Theorem 2.4, Lemma 2.5, Theorem 2.6, 
and Theorem 2.7, we conclude that, for some subsequence, there exists a v 
such that 

i. v k ~ v pointwise; 
ii. v C ~Fo(fl); and 

iii. e-~uVk ~ e -~Hc in the strong operator sense. 

In order to show that the v defined by (i) maximizes (rio, we first note 
that either (3.10) or Lemma 2.5 can be used to show that (PVk)(X) is 
bounded below uniformly in k and x. Thus, by Fatou's lemma 

lim ~ pv k > /~  pv (3.11) 
k --*o9 

x x 

Furthermore, by (iii) and the operator form of Fatou's lemma (see, e.g., 
Ref. 20), 

lim Tr(e ~H~k) ~ Tr(e-~U0 (3.12) 
k ~ o 9  

Combining (3.11) and (3.12), we have 

(ro(v) >~ lira (ro(Vk) = sup{(r o(V) I V ~ "~o~)} 
k--*o9 

�9 (3.13) 

The principal result (Theorem 3.2) now follows from a standard 
variational argument established below. 

Theorem 3.4. If v maximizes (ro in ~p(fl), then p(x) = p~(x). 

Proof. Let r/: 2d_,  R be a function which vanishes on all but finitely 
many points of Y a. Then, for e C P +, v + et/C 7~'~), so that 

(ro(v + ~rl) <~ (r o(v) (3.14) 

Then, by the Golden-Thompson inequality (see, e.g., Ref. 20) 

Tr(e-~Hv+~,) <~ Tr (e-~nv ffl e - ~  ) 

=Z~[1- -~ f l~ ,p~ t l ]  +o(~) (3.15) 
x 

while 

(3.16) 
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Thus 

efi o(v + e~l) ~ (5 o(v ) [1--efl~ (p--p~)r/] +o(e) 
x 

(3.17) 

which, by proper choice of t/, violates (3.14) i fp  and p~ differ at any site. [] 

Remark. As noted in Section 2, these results hold for finite lattices 
provided that the Laplacian is supplemented with suitable boundary con- 
ditions. 

4. UNIQUENESS 

In this section, we address the question of whether or not the v giving 
rise to a particular density p is unique (up to a constant). The standard HK 
proof of uniqueness for continuous systems (1~ relies on assumptions 
concerning the zeros of ground-state eigenfunctions (see Lieb(~l)). In 
particular, the proof reduces to the statement that two potentials of the form 
V =  Y~iv(xi) cannot be identical on the set of points, X =  (x I ..... XN), for 
which the corresponding wave function T (or density matrix) satisfies 

~ [ ~F(X)I 2 > 0 a.e. (4.1) 
G 

13/2 That this is true for a large class of potentials (presumably v ,_ ~o c ,  see 
Ref. 21) follows from unique continuation theorems (see, e.g., Ref. 12). 
However, in density functional theory, the class of potentials is normally not 
specified a priori. Indeed, it is easy to construct densities from potentials 
which do not satisfy the hypotheses of the unique continuation theorem. 
Thus, a complete proof of the HK theorem, that is a proof which allows the 
inclusion of such general potentials, has not been given for continuous 
systems. 

If the ground state is known to be nonzero, the standard HK uniqueness 
arguments can be extended to zero-temperature quantum lattice systems. 
Thus we conclude that V =  ~ i v  is unique whenever the corresponding 
ground-state wave functions satisfy (4.1). For bosons, strict positivity of the 
ground-state wave function can be shown by Perron-Fr6benius arguments 
(see, e.g., Ref. 12). Thus we have the following theorem. 

Theorem 4.1. For zero-temperature bosonic lattice systems, the 
potential v(x) giving rise to the density pv(x) is unique (up to a constant). 
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Furthermore, strict positivity of p(x) implies that strict inequality in (2.8b) is 
necessary so that the conditions in Theorem 2.1 are necessary, as well as 
sufficient. Therefore, we conclude that in the case of bosons there is a map~ 

~r a) ~ ~ (4.2) 

from positive potentials on 7/d to strictly positive, properly normalized 
densities, which is one-to-one and onto. 

In the case of fermions, the situation is more complex and, as yet, 
unresolved. The H K  uniqueness theorem is obviously false for N fermions 
with S spin states on a lattice with precisely N/S  sites. In this trivial case, 
only one antisymmetric function exists so that all potentials have the same 
ground state and, therefore, the same density. In general, (4.1) will not hold 
because antisymmetry forces the wave function to vanish at many points, 
any one of which must be thought of as "open" or having nonzero measure. 
However, the relevant question is not whether (4.1) is satisfied at every point 
X = (x~,..., xu), but whether there are enough points on which some ground- 
state wave function does not vanish to conclude that v(x) is unique. 
Although this is quite plausible, we do not know of any proof. 

Regarding the related question of whether or not the strict inequality, 
0 < p(x)< S, is necessary in the case of fermions, we know of no direct 
proof. However, in addition to the physical argument given earlier, the 
existence of a p in r a n g e ( 3 )  for which p(xo) = 0 or P(Xo) = S at some lattice 
site x 0 would contradict the widely believed conjecture that range(~.~) is 
open. For finite lattices, arguments analogous to Kohn's proof ~ of openness 
would appear to eliminate the possibility of Pauli saturation. 

At finite temperature, uniqueness is true for quantum lattice systems 
with any statistics. This does not follow from H K  arguments, hut by 
showing that 150 has a unique maximizer. 

Theorem 4.2. Assume v~, v 2 E.~o(fl) both maximize 15o" Then 
vl(x) = v2(x) + const. 

Proof. Let v = 1/2(v 1 + v2). Clearly, ~ x p v  < oo. By the 
Golden-Thompson (see, e.g., Ref. 20) and Cauchy-Schwarz inequalities 

Tr(e -~Hv) ~ [Tr(e-~nvl) Tr(e-~n~2)] 1/2 (4.3) 

and thus v E 7Wo(fl ). Furthermore (4.3) implies 

15o(v) >~ [15 o(vl)(15 o(vz) ] 1/~ (4.4) 

11 l + (zd)= {all positive, real-valued functions on ~ d  modulo constants}. 
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Evidently v also maximizes 15 o. This implies that Cauchy-Schwarz must be 
saturated, which means that 

e -uv, = (const) e-Hv2 (4.5) 

Since v 1 , v 2 C ~ ( f l ) ,  this implies 

H ~ - H ~ = V  1 - V  z = c o n s t  �9 (4.6) 

Corollary. For finite-temperature lattice systems, the potential v(x) 
giving rise to the density p~(x) is unique (up to a constant). 

Proof. By the H61der inequality applied to Tr(e-~H~), it is clear that 
15o is log concave in v (see, e.g., Ref. 20). Thus, by the above theorem, it can 
have at most one critical point. �9 

Finally, we note that the necessity of strict inequality in (2.8) in 
Theorem3.2 can easily be seen using straightforward orthogonality 
arguments. 

5. THE ENGLISCH AND ENGLISCH COUNTEREXAMPLES 

Englisch and Englisch ~16) (EE) considered the validity of the following 
statement. 

Inverse Conjecture: For every density p in 3 ,  there is a real-valued 
potential v such that a normalized density matrix F, which is nonzero only 
on the ground-state eigenspace of H 0 + V [i.e., (H o + V) F = E~F], satisfies 
F~-~ p. 

They give a negative answer by means of several counterexamples 
which we analyze below. 

EE construct their examples for the simple case when N =  1 (or, 
equivalently, for N bosons when the interaction U =  0). In this case, the 
ground state is nondegenerate, and the density is p = I g*l 2, where ~ is the 
ground-state eigenfunction. We can assume without loss of generality that 
~u=Xfp and that the ground-state energy is zero. Then the eigenvalue 
equation is (--A + v) x/P = 0. Since p > 0, v, if it exists, must be given by 
v 

For such v, we observe that 

f = - f  v(t 12/ ) .v r 

=fp v -flvoL (5.1) 

822/38/3-4-6 
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so that, at least formally, 

which is consistent with the assumption that the ground-state energy is zero. 
While it is certainly conceivable that A X/P may be singular enough to 
invalidate the integration by parts in (5.1), we do expect to be able to find a 
dense set of  ~0 which avoid the singularities so that the above argument is 
still valid. We also expect such (0 to define a core for --A + v, so that can 
conclude that - A  + v is a positive operator. Therefore, we regard the claim 
of  EE that a v of  the form A v/P/V~ can define a Hamiltonian which is 
unbounded below with caution and skepticism. 

For this reason, we believe that EE's example 5 in Ref. 16, which is 
based on the long-distance behavior of  p, is incorrect. In fact, the above 
argument can be rigorously applied to the functions ~0; defined in their 
equation (38) to show that (g t , ( -A + v)(0i)/> 0, contrary to the i r  claim. 
Indeed, since we could expect any such long-distance problems to also 
manifest themselves on the lattice, our results suggest that long-distance 

difficulties do not generally occur in H K  theory. Therefore we turn our 
attention to the more interesting short-distance examples. 

EE first consider a one-dimensional example which is explicitly defined 
only near x = 0. Their example 4 in Ref. 16 is given by 

p = (a + h I x l ~ + l / Z )  z 

where Ixl < 1, a > b > 0, and 1/2 > a > 0. If  one insists that  the potential be 
a real-valued function, the only possible candidate is 

~(x )  = b ( a  2 - 1 / 4 ) I x l ~ - 3 / 2 / v J p  ~ - b '  Ixl ~ 3/2 

where b ' >  0. For this v, --A + v is unbounded below as EE claim, in 
apparent contradiction to our remarks above. However, v is not formally 

given by A E / V / p ,  because 

v ~  = b ( a  + 1 / 2 ) I x l  o--1/2 6 ( x )  + b ( a  ~ - 1 / 4 ) I x l  ~ 3/~ 

Thus it appears that p is associated with the ground state of  a Hamiltonian 
whose potential is not a real-valued function, but a distribution. ~2 Thus EE 
have constructed a p in ~.~ that does not satisfy the conjecture. This p is not 
the ground state of  any Hamiltonian - A  + v, having a real-valued potential, 

~2 Differentiation of Ix[ can be avoided by considering, e.g., p = (a + bx3/5) ~ but the resulting 
potential goes as -b 'x  7/5, which is odd around the singular point. This prevents --A + v 
from being unbounded below. 
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although it may be the ground state of a Hamiltonian with a distributional 
potential. 

This example suggests that we ought to look more closely at the 
relationship between the domain and range of the function ~ ( v )  which maps 
v-~p.  Although we have devoted considerable attention to the problem of 
characterizing range(~.~), we have been surprisingly cavalier about its 
domain. The problem with ~ is that it need not map smooth ~ smooth. It 
may map very singular potentials into very smooth densities. Indeed, one of 
the principal difficulties with characterizing r a n g e ( 3 )  in the continuous case 
is that reasonable choices for d o m a i n ( ~ )  do not go to equally reasonable 
subsets of 3 .  This problem did not occur for the lattice because it is possible 
to choose, as we implicitly did, d o m a i n ( ~ ) = l + ( 2 d ) =  {all positive, real- 
valued functions on v~d}. 

At this point it may seem tempting to try to circumvent the difficulties 
of EE's example 4 by extending the domain of ~ to include generalized 
potentials. However, we caution the reader that much of H K  theory, 
particularly the proof of the basic uniqueness theorem, may break down for 
generalized potentials. 

Although the first counterexample is sufficient to settle the conjecture, 
some additional insight into the problem can be gained by studying a 
generalization of one of EE's other examples. In this case, 

p(x) = [a + bx p sin(x-S)] 2 

near x =  0, where a > I b[ > 0 and s >/1. This example may be either one 
dimensional or three dimensional, where in the latter case we assume that p 
is spherically symmetric and identify x with [r [. For d = 1, EE considered an 
example of this form with s = 1 and x p replaced by I x f .  Here we avoid 
differentiating [x[ by assuming p is a (positive) fraction with odd 
denominator (e.g., p = 3/5) and s is a (positive) integer. For both d = 1 and 
d =  3, the most singular part of v goes a s  b 'x  p-zs-2  sin(x-S). If we now 
require 

s>~l s + l < p < 2 s + l  ( d = l )  

s > 2  s + l < p < 2 s - 1  ( d = 3 )  

the lower bound implies that V V/p is continuous at x = 0, which is more 
than sufficient to ensure v/p C H 1. However, the upper bound implies that 
f [ 1//[2 [U I ~___fp [U I = O0 in both cases. Thus x/P is not in the form domain of 
v. However, f pv can be defined as a limit, which suggests that X/P may be 
the ground state of a self-adjoint extension of --A + v. In fact, it follows 
easily from a theorem of Combescure and Ginibre (26'27) that such H v are 
essentially self-adjoint, so that one does not get counterexamples of this type. 
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Now consider only d =  1 and let s + 1/2 < p  < s + 1 (e.g., s = 1, p = 5/3). 
Then X/PC H I, but both V X/P and zl v/p are undefined at the origin; 
fp lv  I = +oo and it is not at all obvious how one should define fpv. This 
suggests that v/p may not be in the form domain or the Friedrich's extension 
of --A + v. Thus, the question of whether or not this example contradicts the 
conjecture involves some subtle and unpleasant domain questions. 

These examples obviously do not extend to our lattice systems because 
they involve short-distance pathologies which cannot occur for a discrete 
system. Furthermore, the domain questions associated with the sum - A  + v 
cannot occur on the lattice even if v is very singular as Ixl ~ oo, because the 
finite difference Laplacian is bounded. Domain problems arise when one 
takes the sum of two unbounded operators. If  one attempts to extend our 
proofs to continuous systems, one encounters domain problems of this type 
head-on. 

APPENDIX: FINITE ENTROPY CONDITIONS 

We wish to show that the condition T(p) < oo, used in Section 3, is 
equivalent to the requirement that we restrict ourselves to N-particle Gibbs 
states with finite entropy. Because the sum over spins in (3.4) does not play 
an essential role, for simplicity we will limit our discussion to spinless 
bosons. 

Recall that the entropy of the density matrix, F is defined as 

S(F) = - T r  F log F 

= - ~ ~k log ~'k (A. 1) 
k 

where the 2 k are the eigenvalues of F. For lattice systems, one can also define 
the quantity 

T(P) = - ~ P(X) log P(X) (a .2)  
x 

which measures the amount of disorder in the distribution of particles over 
lattice sites. In general, /" is not diagonal, so that T(P)4: S(F). However, 
concavity of the entropy implies that 

S(F) <~ T(P) (a .3)  

(see, e.g., Wehrl, (22) Section I.B.5). 
We now wish to relate S(F) and T(P) to the corresponding single- 

particle quantities, S(7) and T(p). Although T is not a quantum mechanical 
entropy, it has all the properties of an entropy. Indeed, (3.4) implies that 
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T(P) acts like the entropy of a classical discrete system. (For an excellent 
summary of entropy inequalities which compares classical discrete, classical 
continuous, and quantum entropies, see Lieb, {23) especially properties C and 
D. Note that the densities, /3, in Ref. 23 are normalized to 1, and that 
T(p) = T(Nd) = NT(fi) - N log N, etc.). In particular, if P t---* p 

1 
T(P) >/-~ T(p) § log N (A.4) 

and 

T(P) <~ T(p) § N log N (A.5) 

The monotonicity (A.4) follows from Jensen's inequality; (A.5) follows from 
repeated use of subadditivity. These inequalities clearly imply that T(P) is 
finite if and only if T(p) is finite for any F ~-* p. 

By combining (A.3) and (A.5), we immediately see that whenever T(p) 
is finite, any N-particle system which reduces to p has finite entropy since 

S(F) <~ T(P) <~ T(p) + N log N (A.6) 

whenever F ~ P ~ p. We could also have reached the same conclusion via 

S(F) ~ S(7) + N log N 

T(p) + Nlog N (A.7) 

whenever F~---~7~--* p. Note that (A.7) also shows S (7 )<oo  implies 
S(F) < oo whenever F ~ p. 

We now wish to consider the converse question: Does finite entropy for 
an N-particle system imply that the corresponding S(?) and/or T(p) are 
finite? At first glance the answer appears to be no, since it is easy to find 
examples of pure states, F, for which S ( 7 ) = T ( p ) = + o o  ( F ~ 7 - ~ p )  
although S(F) is necessarily zero. If, however, we restrict ourselves to Gibbs 
states, F~, corresponding to Hamiltonians H = H  o +Y~iv(xi) of the type 
under consideration in this paper, the answer is positive. In that case 

S(F~) = fl(H,) + log Z~(fl) 

=/~ Tr(HoG) +~y'pv + log Zv(fl) 
X 

(A.8) 

Thus, if p is V-representable, then S(Fo) < oo implies that v ~ ~ ( f l ) ,  which 
by Theorem 3.1 implies T(p) < oo. 
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