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An approach to numerically integrate the Landau-Lifshitz fluctuating 
hydrodynamic equations is outlined. The method is applied to one-dimensional 
systems obeying the nonlinear Fourier equation and the full hydrodynamic 
equations for a dilute gas. Static spatial correlation functions are obtained from 
computer-generated sample trajectories (time series). They are found to show 
the emergence of long-range behavior whenever a temperature gradient is 
applied. The results are in very good agreement with those obtained from 
solving the correlation equations directly. 
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1. I N T R O D U C T I O N  

The introduction of high-speed computers has undoubtedly added a new 
dimension to the physics of fluids. C1) Numerical simulations often bridge 
the gap between theoretical analysis and laboratory experiments. Most 
computational work in hydrodynamics may be classified as strictly 
microscopic or macroscopic. The microscopic simulations trace the trajec- 
tories of interacting particles, while macroscopic algorithms integrate trans- 
port equations (typically PDEs) for selected initial and boundary con- 
ditions. The problem at hand dictates the choice of the simulation method. 

Landau-Lifshitz fluctuating hydrodynamics is a stochastic formulation 
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of standard fluid mechanics. (2) Spontaneous fluctuations of hydrodynamic 
variables are introduced into the transport equations by adding random 
components to the pressure and heat fluxes. Since these fluxes are not con- 
served quantities, the correlations of the random terms are expected to be 
short-ranged and short-lived, so that at hydrodynamic scales they are 
assumed to be Dirac-delta-correlated. Their strengths are then chosen to 
yield the correct equilibrium thermodynamic fluctuations as derived from 
the Gibbs distribution. There are various ways of deriving the Lan- 
dau-Lifshitz fluctuating hydrodynamics and there is general agreement 
about its validity, at least in near-equilibrium situations (for a review see 
Ref. 3). Extension of the theory to nonequilibrium systems leads to predic- 
tions of the asymmetry of the Brillouin lines in a liquid subjected to a con- 
stant heat flux/4 v) Kinetic theory provides further support for these 
predictions. (8'9) Although these theoretical results are in agreement with 
light scattering experiments, (~~ the importance of the nonlinearities (12) 
and the influence of the boundaries (13) remain under discussion (see also 
Ref. 14). In fact, since the fluctuating hydrodynamic equations can be 
solved analytically for only a few elementary idealized nonequilibrium 
cases, in general one is forced to introduce simplifying assumptions, which 
need to be tested. Technological constraints have limited the quantity of 
available experimental data for real systems. Molecular dynamics 
simulations prove to be too slow and have thus far yielded only qualitative 
results. (15) In this respect, the Boltzmann Monte Carlo particle 
simulations (16'~7) are useful because of their great computational speed, 
although they are restricted to dilute gas systems. An alternative approach 
is the direct numerical integration of the stochastic transport equations. 

In this paper, we outline the construction of an algorithm for 
numerically integrating the fluctuating hydrodynamic equations. There are 
two complications not encountered in the usual fluid mechanics com- 
putations. The obvious one is the introduction of the stochastic fluxes. The 
problem is more involved than the similar Langevin problem of Brownian 
dynamics because our white noise process is a flux (appearing behind a 
spatial derivative), as opposed to a simple stochastic force. (18) Further- 
more, the space discretization of stochastic partial differential equations 
cannot be arbitrary; in fact, different discretization schemes may yield dif- 
ferent answers. Second, the specification of the boundary conditions for the 
fluctuating quantities is nontrivial, especially if we have conserved 
quantities. (191 Thus, it is crucial that we compare our results with known 
solutions of the fluctuating hydrodynamic equations. 

In Section 2, we solve analytically the fluctuating nonlinear Fourier 
equation to obtain the equal-time spatial correlation function for the tem- 
perature fluctuations. The construction of the Langevin simulation 
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algorithm for this model is outlined in Section 3. Similarly, the more com- 
plex dilute gas equations are treated in Sections 4 and 5. We close with a 
general discussion of the method in Section 6. 

2. NONLINEAR FOURIER EQUATION.  THEORY 

Consider a liquid between two parallel walls maintained at different 
temperatures. In the fluctuating hydrodynamic literature this problem has 
received considerable attention. (4 14) Most calculations concentrate on 
computing the density-density dynamical correlation function, since it is 
directly measurable by light scattering. (2~ We instead consider tem- 
perature-temperature static correlations and restrict ourselves to high- 
Prandtl number fluids. By this we mean that we take the temperature 
equation to be decoupled from the density and velocity equations. 
Moreover, we take the macroscopic density to be constant throughout the 
fluid, thus neglecting any temperature dependence it might have. We 
choose this example because it is exactly soluble and also because its 
solution is qualitatively similar to that of the more complex model con- 
sidered later. Under the above assumptions, the energy conservation 
equation reduces to 

PoG-~ T= VK(T)' V T -  V-g (1) 

where Po is the mass density, c v the heat capacity per unit mass at fixed 
volume, and K the (temperature-dependent) heat conductivity coefficient. 
The fluctuating part of the heat flux g is assumed to be a Gaussian white 
noise. It is zero on average and its correlation functions are given by (a) 

(gi(r, t) g/(r', t ' ) )  = 2~cokB T~o 6 ( r -  r') 6 ( t -  t') 6i~ ~ (2) 

where Ko-K(To) and kB is the Boltzmann constant. The subscript 0 refers 
to macroscopic quantities, while the subscripts i , j  refer to spatial com- 
ponents. Since the noise term is small (typically 1/x/-N, where N is the 
number of particles in a macroscopic "fluid point"(2)), the deviations of the 
fluctuating temperature with respect to To(r ) (most probable path) are also 
small, (21'22) so that we can linearize Eq. (1) around To(r) to get 

0 1 1 
- - 6 T =  V2~co 6T - V ' g  (3) 
~t PoG PoG 

In deriving the above equation we use the fact that x depends only on tem- 
perature, so that &c = (O~Co/OTo) 6T and &Co/& = (&Co/OTo)(OTo/&). 
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Because the transport coefficient and the noise are both space-depen- 
dent and because we are dealing with a finite system, it is no longer 
possible to use elementary transform methods (note that for small 
gradients, an expansion in the wavenumber of the gradient can still be 
used(5'23)). To obtain the equal-time spatial correlation of the fluctuations, 
we employ the following identity. Given 

d 
ci = fi(cl ..... cn) + Fi(t), i= 1, 2 ..... n (4a) 

where the fi are arbitrary analytic functions of the ci, and the F~(t) are 
multi-Gaussian white noise processes with covariances 

(F, ( t )  Fj(t') ) = Q~ 6 ( t -  t') (4b) 

then 

1 . de* = ~ Q o ,  I = 
(G( t )  Fj ( t ' ) )  (0;  t < t '  (4c) 

For finite n, this identity is easily proved by writing the Fokker-Planck 
equation corresponding to (4a) and deriving from it the second moment 
equations. A comparison with the second moment equations derived 
directly from (4a) then leads to the relation (4c). These relations remain 
valid for n --, ~ ,  although, from a strictly mathematical point of view, some 
special care is needed in the continuum case. (24) 

Using the relations (4a)-(4c) and the identity 

2Vr-V,,f(r) 6(r - r ' )  = - { V  2 + V 2, } f ( r )  6(r - r ' )  + 6(r - r ' )Vr2 f ( r )  (5) 

one finds 

( 6 T ( r ) 6 T ( r ' ) )  1 
& poC~ 

2 ! {V2~o + V~,~% } {6T(r) aT(if) } 

+ ku 
~(r-r') W~Co~ 

poC~ 
(6) 

where ~:;=-x(To(r')) and we have introduced the notation { 6 T 6 T ' }  to 
express the correlation function with its local equilibrium component 
removed: 

kB 
{6T(r) fiT(if)} - (aT(r)  6T(r))  - ~  fi(r--r ')  

poCv 
(7) 
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The solution of (6T6T') at the steady state (O/~t(fTfT')ss=O) is 
reduced to a classic Green's function problem. For  simplicity, we assume 
the geometry illustrated in Fig. 1. The system is periodic in the x and z 
directions with walls in the planes y = 0 and y = L. These walls act as 
infinite reservoirs, so that by fixing their temperatures, one can impose the 
desired heat flux across the system. The boundary conditions in the y direc- 
tion are 

To(x, y=O,z)= T~; To(x, y=L,z)-- Tb (8a) 

If, moreover, we assume that the state of the system is statistically indepen- 
dent with respect to the walls, then the boundary conditions for 6T read 

fiT(x, y=O,z)=fiT(x, y=L,z)=O (8b) 

In fact, one can always consider an enlarged description in which the state 
of the walls is included as well. The evolution is then governed by a global 
probability density which factorizes into system variables and wall 
variables. Averaging over the wall variables leaves one with a stochastic 
process for the system variables only. A straightforward change of variables 
then leads to the relations (8b). Note that this is in no way contradictory 
with the fact that the wall variables can also be considered as fluctuating 
variables, as is usually done in computer experiments (stochastic boundary 
conditions). 

The macroscopic steady-state temperature profile is given by the 
solution of 

V �9 ~(To) V T o = 0  (9) 

4 

I 1  / 

Y 

L 

Fig. 1. Schematic representation of the system geometry. 
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subject to the boundary conditions (8a). To proceed further, we need to fix 
the analytic dependence of ~co with respect to To. Let us assume that the 
thermal conductivity is of the form ~c(T)=~Cc T~, where ~c is a constant 
[-the solution of Eq. (6) for constant ~: is given in Ref. 25]. The steady-state 
temperature, from Eq. (9), is then 

To(y) = [(T; +1 - T• + 1) y /L  + T] + 131/(c~ + 1) (10) 

Since the system is periodic in x and z directions, it is useful to introduce 
reduced quantities defined as 

[ ('Lx fo Lz a 2 ( y ) - ~ j  ~ dx d z a A ( x , y , z )  (11) 

where A is any dynamical variable and S - L ~ L  z is the wall cross section 
(note that the reduced variables are in fact the zero-wavevector values of 
the "parallel" Fourier components of the dynamical variables). By standard 
techniques, we find the solution to be 

L ' y' 
- - '  ( 1 2 )  

~(6T6T } s s -  kB(1 + c~/2) (~:o ~To/OY) 2 ~Y - Y ), Y < 
poc~SL ~o~C'o [ y  ( L -  y), y > y' 

which is clearly proportional to the square of the imposed temperature 
gradient. Figure 2 shows (6T6T"}ss  for y ' =  L/2 (solid line); note its long- 
range behavior with an approximately linear decay (exactly linear if 

3. N O N L I N E A R  F O U R I E R  E Q U A T I O N .  L A N G E V I N  S I M U L A T I O N  

We shall illustrate the simulation method by considering the linearized 
equation (3) after it has first been integrated over the x and z directions as 
defined by Eq. (11). The starting point of our Langevin simulation is its 
discretization in space by central differences. Because the equation is 
strictly parabolic, the space discretization does not give rise to any of the 
complications mentioned in the introduction. We again take the one- 
dimensional geometry illustrated in Fig. l and restrict our attention to the 
reduced temperature function 6T. The system is divided into a one-dimen- 
sional chain of N cells plus two extra cells, one at each end, which serve to 
represent the walls, so that the cell length is 2 - - L / ( N +  1). The time 
derivative is discretized in the increment A t and we use the stochastic Euler 
scheme to integrate the equation forward in time. Higher order methods 
can be used, but, as pointed out by Rumelin, (26) they generally do not give 
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better results. Accordingly, we approximate 6I'(y, t) as 6T;,n, where y = i2 
and t = nat. The trajectory 6T~,,, is computed as 

1 
At 6]';+1,n+~c;_1 67", l , , ,-2~c;6T;n)+- AF;,, 

' " Z p o C ~  ' p o C v  ' 

(13) 
where AF,,, is an N-dimensional Gaussian distributed random vector with 
covariances 

k B / i t  Kr (Ki+ T~,+I_~K ' 1T~i , + 2 K , ~ ) 6 K r  < J r , , .  J ,m > - -  . . . .  _ , .  

- - ( K i + l T ~ i + l ~ - l s  lT~i 1 ~"/s ~t  ) ~Kri- l , j J  ~ 

(14) 

and where T; == - To(y=j2) ,  ~cj- to( T;), and V c is the cell volume. Note that 
to avoid cumbersome notation we have dropped the subscript zero with 
the understanding that ~c; and T; are, respectively, the macroscopic value of 
thermal conductivity and temperature evaluated at the grid point i. The 
discretized form of the noise correlation, Eq. (14), may be obtained from 
identity (5) or by discretizing 02/Oy Oy' directly. (27~ The simplest way to 
generate AF;,~ is to generate at each time step a vector R of independent 
Gaussian distributed random numbers with covariances 

k B /it 
<R/2 ) = ~ (Ki+ 1T~,+I ~- KiT~i ) (15) 

and ( R ; R j )  = 0 for all i # j ,  and then construct the discrete stochastic force 
as AF;,,= R ; -  R;_ I, which can be shown to possess the desired 
correlation, Eq. (14). 

In discretized form, the boundary conditions for 6T are 
6To.n = 6TN+ l,n = 0. The boundary cells 0 and N +  1 represent walls held at 
fixed temperatures. Though their temperatures are fixed, there is still a ran- 
dom flux between the boundary cells and their adjacent cells in the bulk, 1 
and N. As such, Eq. (14) specifies the stochastic force for all cells in the 
system; it is not modified for cells 1 and N. This fixes our boundary con- 
ditions for the stochastic fluxes at the walls. 

A FORTRAN program was written to integrate 6T;,n in time and to com- 
pute the spatial correlation function from the resulting trajectory. The 
program was run in parallel on two Floating Point System 264 array 
processors on the ICAP2 system at IBM Kingston. A system of 20 cells was 
integrated first for 10 million time steps and then continued for another 
90 million steps. In Fig. 2 we plot two correlation functions ( 6 T 6 T ' } s  s as 
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Fig. 2. Temperature-temperature static correlation function (6T(y)6T(y'= L/'2)}~ for the 
nonlinear Fourier equation. The parameters used are poc~/kB = 65, ct = I/2, T~=2,  Tb= 8, 
S =  1000, L =  1. ( - - )  The result from Eq. (12); ( -  - )  the correlations constructed from the 
trajectory of simulation with 107 and 108 time steps. 

computed from the trajectory of these runs (dashed lines) and compare the 
results with Eq. (12) (solid line). We find excellent agreement, except for an 
overshoot at the peak, which is found to decay very slowly with the 
amount of statistics used. Note that the local equilibrium delta function 
contribution to ~6Ti 6Ti) is more than an order of magnitude larger than 
the nonequilibrium part of the correlation function, which may explain the 
difficulty in eliminating the overshoot. This situation improves somewhat 
when a larger number of cells is used. 

We also investigated the influence of nonlinearities in the Fourier 
equation. To this end, we integrated the fluctuating temperature equation 
(1) without linearizing about To for a one-dimensional system. Figure 3 
shows the average temperature as compared to the deterministic one. The 
deviations are less than 0.01%, but they are al! negative, i.e., To(y ) is 
strictly less than (T(y)). This is due to the asymmetry of the probability 
density of T, since the possible values of temperature range from zero to 
infinity. The average value of T therefore lies always to the right of the 
peak of the probability (recall that To is defined as the most probable tem- 
perature). The correlation functions obtained here show better agreement 
with the (linearized) theory, in the sense that the overshoot observed is 
smaller by a factor of 2.5 for the same amount of statistics. We are not able 
to find a simple theoretical explanation for this observation. Suffice it to 
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Fig. 3. T e m p e r a t u r e  profi le o b t a i n e d  f rom the  o n e - d i m e n s i o n a l  n o n l i n e a r  F o u r i e r  equa t ion .  

See legend to  Fig. 1 for the  p a r a m e t e r s  used.  

say that using the full nonlinear equation does not induce any abnormal 
behavior. In the last section we discuss the importance of this point in 
more detail. 

4. DILUTE GAS EQUATIONS. THEORY 

Having demonstrated the method on a simple case, we move on to a 
more complex situation. We retain our simple geometry (Fig. 1), but with 
a dilute gas between the plates. As before, these plates act as infinite reser- 
voirs, so that by fixing their temperature one can impose the desired heat 
flux across the system. As can be checked easily from the macroscopic 
hydrodynamic equations, at the stationary state the heat flux is constant 
and the velocity is zero. Note that we do not consider external fields, such 
as gravity, and therefore no convective instability can occur. Linearizing 
the resulting equations around the macroscopic stationary state, one 
obtains 

~P = - V ' p o  6n (16) 

po-~Su,=--~x-----~6P+-~xjrlo -~x 6UJ+ 6u,-5&~j -~xt6u, - Sgj 

(17) 
3 c~ 3 

P o R -~ ~ T = - -~ Rpo 6u- VTo - Po V- 6u + VZ~r 6 T -  V" g ( 18 ) 
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with the covariances of the random stress tensor S o given by 

(So(r, t) Sk,~(r', t ' ) )  

{,~Kr ,.~Kr 2 AKr ~Kr~ =2kur /0ro \v ,e  ~j, +6,Kr 6,Kr---Sv . vk, j 6 ( r - - r ' )6 ( t - - t '  ) (19) 

and (g~g~.) given by Eq. (2). Here m, p, u, and P are particle mass, mass 
density, velocity, and pressure, respectively, and R =-kB/m. As before, the 
indices i and j in Eq. (17) refer to spatial components and the subscript 
zero indicates macroscopic quantities. The convention of summation over 
repeated indices is used. The shear viscosity 11 and the thermal conductivity 

are both state-dependent; note that the bulk viscosity is zero for a dilute 
gas. In writing the above equations we have made use of the closure 
relations for a dilute gas: P(p, T) = RoT and e(p, T) = {pRT, where e is the 
internal energy density. 

If the force between the particles is purely repulsive and obeys a power 
law, then the transport coefficients are only functions of temperature as (28) 
~I(T) = rJ,.T ~ and K(T)= G.TL For a hard sphere gas, the exponent ~ is 
one-half, and, from Chapman-Enskog theory, G/~I,. = 15R/4. 

In our geometry, the macroscopic values of density and temperature 
are determined from 

a # 
a7 e0 = R.o ro = 0 120t 

and Eq. (9). The temperature is again given by Eq. (10) and the density is 
Po/RTo, where the pressure P0 is constant throughout the system. 

Since we are mainly interested in the influence of nonequilibrium con- 
straints, we shall again limit ourselves to reduced quantities, defined by 
Eq. (11). The equations for the reduced x and z components of the velocity 
now decouple from the rest. These components are not influenced by the 
constraint and it is easy to check that their static correlation functions are 
given by their local equilibrium expressions. We instead concentrate on the 
remaining equations for the reduced density ap, y velocity 6v, and tem- 
perature aT, 

a a 
at 61) = - ~ Po 6v (21) 

a ~ 4 0  ~_y 0 
po a =-R (roap+po6r)+5 .o (221 

3 a 3 a a ~2 a 
-5.oR ar= epoa   ro-eo 6 +57 oar-G g,, (23) 
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The covariances of the reduced noises are 

(Syy(),, t) Sw(v',t'))=.. . -~k~To 6 ( y -  y ')cS(t-t ' )  (24a) 

h ~  

(g:.(y, t) gy(y', t') ) = 2k~ T~o s 6 ( y -  y') b ( t - t ' )  (24b) 

( Sy~.(y, t) gy(y', t') ) =0 (24c) 

There remains the specification of the boundary conditions for the 
above equations. The boundary conditions for 6T are the same as in Sec- 
tion 2, namely 

6T(y = 0, t) = 6T(y = L, t) = 0 (25) 

The boundary condition for fly follows from the conservation of the total 
number of particles: 

~L 

j 6p(y, t) dy = 0 Vt (26) 
o 

Inserting (26) into the continuity equation, one finds 

Po(Y) 6v(y)p boundaries = 0 (27) 

In words, the containing walls are rigid. This completes our specification of 
the boundary conditions. 

It may seem strange that we do not have to specify any boundary con- 
ditions for ~p. From a physical point of view, this comes from the fact that 
the state of the wall can only constrain the temperature and velocity of the 
gas at the wall, whereas the behavior of the density close to the wall is 
entirely determined by the internal dynamics of the system. From the 
mathematical point of view, it can be shown that for any given initial con- 
ditions (@(y, 0), 6u(y, 0), ~T(y, 0)), the boundary conditions for 6u and 
6T are sufficient to specify completely the solution of the system. (~9) 

Having set the stage, one might proceed as in Section 2 to derive the 
evolution equations for the correlations of the fluctuations. Since the 
derivation is straightforward, we omit the details. We simply mention that 
the resulting equations have not yielded any closed analytic solutions. The 
correlation equations may, however, be solved numerically; for the steady- 
state solution the space-discretized versions of these equations may be 
solved by standard techniques. (17) Some of the results obtained with this 
method will be discussed in the next section. The advantages and 
limitations of this approach vis h vis Langevin simulation are discussed in 
Section 6. 
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5. D ILUTE GAS E Q U A T I O N S .  L A N G E V I N  S I M U L A T I O N  

The first step in the construction of the Langevin simulation is the 
space discretization of Eqs. (21)-(23). This is not trivial, since different dis- 
cretization schemes may lead to different answers. These differences arise 
from the fact that the hydrodynamic variables are, in equilibrium, Dirac- 
delta-correlated in space. These local equilibrium components persist out of 
equilibrium, confronting us with the problem of discretizing generalized 
functions. The problem is reminiscent of the well known Ito-Stratonavich 
calculation for multiplicative noise processes, us~ To evercome this dif- 
ficulty, we shall again use (4a)-(4c) to derive the static correlation 
functions, which will assist us in determining the best discretization scheme. 
The details of the formulation may be found in the Appendix; suffice it to 
say that it is possible to formulate the evolution equations in such a way 
that one always obtains the same correlation equations regardless of the 
stage at which the equations are discretized. This guarantees that at least 
the correlation functions are given correctly. 

The boundary value problem for the discretized equations also 
requires a careful treatment, mainly because of the conservation-of-mass 
condition. For example, consider the continuity equation (21 ) discretized in 
space by central differences, 

0 1 
(~--7 (~Pi "~- - - ~  (P i+ I  {SVi+ I -- Pi--115Di--i) (28) 

with the mass conservation condition 

N 
Y~ 6p~=O (29) 

i = l  

It is not possible to specify a suitable boundary condit ion for c~v 
corresponding to Eq. (27) that guarantees condit ion (29), and it is easy to 
check that none of the simple discretization schemes (forward, backward, 
higher order, etc.) can resolve this problem. We instead consider a more 
sophisticated half-grid scheme in which the system is divided into 2N + 1 
grid points (plus two extra grid points at the walls; see Fig. 4). The velocity 
and temperature fluctuations are computed at integer grid points, while the 

0 
I 
o 

1/2 
1 : 2 
I I I 

3/2 5/2 

L 

3 N -1 N N +1 

N-l/2 N+1/2 

Fig. 4. Schematic representation of the half-grid spatial discretization. 
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density fluctuations are computed at half-grid points. The discretized (cen- 
tral-difference) continuity equation then takes the form 

1 
~t~Pi+l /2  = --~(Pi+l~f)i+l--Pi~t2i);  i = 0 ,  I, . . . ,N (30) 

with the boundary condition Po 5Vo= P,v+l 5UN+I =0. It is now easy to 
check that Eq. (30) together with this boundary condition indeed conserve 
total mass. Analogously, the boundary condition for the temperature fluc- 
tuations is 5To = 6TN+I =0. Note that in this half-grid formulation, it is 
not possible to specify a boundary condition for 6p, just as it is not 
possible in the continuum case (see the preceding section). 

The full discretized fluctuating hydrodynamic equations are given at 
the end of the Appendix. An important property of these discrete evolution 
equations is that their corresponding correlation equations yield exactly 
the equilibrium results independent of the number of grid points used to 
discretize the system. 

The evolution equations for the fluctuations were numerically 
integrated in time and the resulting trajectory was used to compute several 
static correlation functions. As discussed above, the formulation of the 

Relaxation 

- -  - ~ D -  - - -  La nGevin 

rr 

"~ t .0 

. 0.6 

0.2 

' [ I I I ] 

1.0 3.0 5.0 7.0 9.0 

Y 

Fig. 5. Temperature-temperature static correlation [unction { 6T (y )&T (y '=4 .?6 )~  for 

the dilute gas equations. The parameters are P0 = 200, qc = 5 x/-~/16, c~ = 1/2, Ta = l ,  T b = 3, 
S =  l ,  L = 102. ( - - )  Obtained by numerically solving the correlation equations (see Re[ 17); 
( -  - )  the correlation constructed from the trajectory simulation. Note that y is expressed Jn 
units of 2. 
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Langevin simulation was guided by the form of the correlation equations. 
These correlation equations can be solved numerically and the results must 
be equal (within the statistical error) to those constructed from the trajec- 
tory. This is a good test of the self-consistency of the method. 

In Fig. 5, we present the temperature-temperature static correlation 
function { 6 Ti 6 Tj'~ ss as determined by both methods. Notice the qualitative 
similarity with the results from the simple Fourier equation presented in 
Sections 2 and 3. The agreement shown in Fig. 5 is quite good, except for 
an overshoot at the peak. As seen in Section 3, this same phenomenon was 
found in the Langevin simulation of the nonlinear Fourier equation. We 
believe that this discrepancy is primarily due to the presence of the local 
equilibrium contribution to the fluctuations, which is an order of 
magnitude larger than the nearest neighbor correlation. This is confirmed 
in Fig. 6, where we depict the velocity-temperature correlation function 
(6vi 6Tj)ss, for which the local equilibrium contribution is identically zero. 
The results of the two methods are now in perfect agreement, clearly 
establishing this assertion. Note that the correlation functions show a 
strong dependence on the size of the system. This is illustrated in Fig. 7, 
where we present the temperature-temperature static correlation function 
{fiTi6T/}ss again, but for a larger system. These results are also in full 
agreement with the data from Monte Carlo Boltzmann particle 
simulations.(17) 
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t Relaxation ~'~ -~i-- Langevln 

0 . 0 ~  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

- 4 . 0  ~ /  

i I I I I I I I I 
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Fig .  6. T h e  y - v e l o c i t y  t e m p e r a t u r e  s t a t i c  c o r r e l a t i o n  f u n c t i o n  {6v(y) 6T(y' = 4.76)}s~ for the  
d i l u t e  gas  e q u a t i o n s .  See l e g e n d  to  Fig .  5 for  de ta i l s .  
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Fig. 7. Temperature-temperature static correlation function < S T ( y ) 6 T ( y ' =  23.8)}~s for the 
dilute gas equations. The parameters are Po = 400, r/c = 5 x/~/16, c~ = 1/2,  T a = 1, T~, = 3, S =  1, 

i = 502. ( - - )  Obtained by numerically solving the correlation equations (see Ref. 17); (- -) the 
correlation constructed from the trajectory simulation. Comparison with the results in Ref. 17 
demonstrates the agreement with dynamic Monte Carlo particle simulations. Note that y is 
expressed in units of ,L 

6 .  C O N C L U S I O N S  

It is clear that Langevin simulations are successful in describing 
hydrodynamic fluctuations. Their usefulness in the study of fluctuating 
hydrodynamics, however, would depend on their being able to treat 
problems that are intractable by other approaches. Though much of the 
work on fluctuating hydrodynamics was originally stimulated by 
experimental results, the current technological limitations place a con- 
siderable constraint on these laboratory measurements/x~ Thus, particle 
simulations have been playing a central role in the theory of fluctuations 
over the past 15 years, 3 but unfortunately even with modern supercom- 
puters molecular dynamics studies are still limited to small systems 
integrated for short times. 

At the level of hydrodynamic equations, a number of strategies are 
available; the most common is the computation of the eigenmodes of the 
nonequilibrium hydrodynamic operator. (29'3~ The approach illustrated in 

3 See, e.g., Hoover, Evans, and others in Ref. 1. 
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Sections 2 and 4 yields directly the evolution equations for the equal-time 
correlation functions. For simple models these equations can be solved 
exactly; for more complex models they are amenable to numerical solution 
by the relaxation method. This approach, however, has two limitations. 

The first is the number of grid points that may be used to discretize 
the system: for the dilute gas equations, we have 15 correlation equations 
(in 6p, 6u and 6T); if our system is discretized into N cells, then we must 
solve 15N 2 simultaneous equations (involving a complicated 15N2• 15N 2 
matrix). Furthermore, there remains the problem of computing the 
dynamical correlation functions from the static correlations. The com- 
parable Langevin simulation, however, integrates only 5N evolution 
equations. From the resulting trajectory, both static and dynamic 
correlations may be obtained directly. Certainly, the relaxation method 
converges much faster than the stochastic Langevin method for small 
problems. For complex problems (e.g., 2D or 3D systems), however, the 
relaxation approach quickly becomes computationally prohibitive. 

The second, more important, limitation of the relaxation method is 
that the correlation equations can only be formulated from evolution 
equations that are linearized about a steady state. Here, we have restricted 
our attention to systems far from instabilities and as such this has not been 
a restriction. Near the instabilities, however, the nonlinear terms can no 
longer be neglected and of course we are interested in extending our 
investigation to the onset of instabilities. 

It should, however, be realized that the validity of the fluctuating 
hydrodynamic formalism becomes questionable beyond instabilities where 
multiple solutions of the macroscopic hydrodynamic equations are expec- 
ted. Indeed, a Langevin formalism is always characterized by a 
macroscopic law to which a noise term has been added. This law may be 
linear or nonlinear and the noise may be white or be correlated in time, but 
in any case, in the limit of vanishing noise, one must recover the original 
macroscopic law. The macroscopic behavior therefore appears as the most 
probable path (and not necessarily the average!) of the stochastic process 
so defined. This is precisely the meaning of the equilibrium statistical 
ensembles, where the thermodynamic quantities are some particular values 
of the state variables for which the entropy or some other thermodynamic 
potential reaches its extremum. In nonequilibrium systems, the probability 
density associated with the corresponding Langevin type of equations is 
somehow equivalent to the equilibrium partition function in the sense that 
the macroscopic paths are defined by a particular set of dynamical 
variables for which the probability density is maximum. Close to and 
beyond the instability, the system is generally characterized by more than 
one stable attractor, that is, the probability density is now multimodal. 
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Each local maximum characterizes a possible stable or metastable solution 
of the corresponding macroscopic equations. While a Langevin approach 
might be suitable to describe the behavior of the system around a given 
maximum, it seems unlikely that it would correctly describe the global 
behavior (31'32) (for a more detailed discussion see also Ref. 33). 
Nevertheless, it seems promising that the Langevin formulation describes 
correctly the state of the system up to and including the bifurcation point, 
so that we may study the onset of hydrodynamic instabilities via the techni- 
ques developed in this paper. Such a program is currently under study. 

APPENDIX.  D ISCRETIZATION OF THE DILUTE GAS 
EQUATIONS 

There are many ways in which the terms in Eqs. (21)-(23) may be 
arranged. So long as we work with the continuous equations, all forms are 
equally valid. When the equations are discretized, however, this is no 
longer the case, because some identities that are valid for the continuous 
equations no longer hold for their discretized versions. Let us illustrate 
with an example; consider the y-velocity and temperature equations for the 
reduced fluctuations, 

R 0  
-~ 6v . . . .  {P0 6T+ To 6p } + dissipative terms (A1) 

Po ~?Y 

o 3 To -@y 6v + dissipative terms (A2) 

The evolution equation for the velocity-temperature correlations is 

0 

= - { 6 v 6 v ' }  aT'o 2 0, ay__=_ 5 :r; ~y, ~ av'} 

R O  
- - - - -  (po{6T6T'} + ro{6p 6T'}) 

Po @ 

5 kB To 
0~_~o 6(y - y') + dissipative terms (A3) 

3 PoS 

Again we employ the notation ,(6a 6b' } to express the correlation function 
with the local equilibrium contribution removed; note that if a and b are 
different (e.g., a-=p and b =-T), then ,(6a 6b'} = (6a 6b'). Discretizing by 
central differences, we find that this correlation equation takes the form 

822/47/1-2-15 
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=_{6viavj ,}(OTo~ 2 1 \ ay J j--3 Tj-~ ({6v, avj+,} - {3v, avj_l}) 

R 1 

p~ 22 
- - - -  ( p , + l  6 T j }  - p , _ ,  { a T , _ ,  aT,.} 

+ 2T;+ 1/2{6p,+ ,/2 6Tj} - 2T i_ l/2{~Spi_ 1/2 6Tj}) 

3 piV~ \ Oy ]~ 6~ +dissipative terms (A4) 

Returning to Eqs. (A1) and (A2), if we first discretize the fluctuation 
equations and then use these discretized versions to compute the evolution 
equation for {6vi 6Tj}, we find 

8 
Tt <&i aTj) 

2 1 
= -{6v i6v j}  \-~-yjj--~ Tj-~({avi6vj+~} - {6v~avj _~'}) 

R 1  
Pi 22 (P~+~ {aTe+, 5Tj} - p~_, {6Ti_ , 6Tj'} 

+ 2Ti+ 1/2{6p~+ 1/2 5Tj} - 2Tg_ ~/24,5p~ ,/2 6Tj}) 

kBTi((~Yo~ ( ~ i S r  1 2k B KE 6iKrlj)~, (Tj - 
p,V~.kSyJi  ~' 223V~. ( 3 i + l ' j -  ' , ,  

Tz) 

+ dissipative terms (A5) 

By inspection, (A4) and (A5) are not equivalent (except at equilibrium) 
and their solutions must differ. If, however, we rearrange the terms in (A2), 
we may write the temperature equation as 

8 aT= - ~ 5 v  8To 2 To ~ by+dissipative terms (A6) 
c?t 8y 3 Po ay Po 

The discretized correlation equation for {6v 6T' } computed from (A1) and 
(A6) is now the same whether one discretizes initially or at the end of the 
calculation. In this way, we use the construction of the correlation 
equations as the criterion for selecting how to discretize our equations. 
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are 

The final forms of the discretized fluctuating hydrodynamic  equat ions  

at tip,+ ,/2 = -~  (P,+ , av, + , - p, 6v,) (AT) 

0 R 1  
-~ aDi-  jOiZ ~ (Ti+l/2 aPi+l/2-- Ti-1/2 aPi-1/2) 

R 1  
pi2Z (Pi+l a T i + l - P i - [  aTi 1) 

4 1 +~---~(~,+, av,+,+~,_l av, , -2~,&,)  Jpiz- 

Cq 
j. (Pi+I aV/+I--Pi--I a v i _ l ) + A F ~  (AS) 

0 5 (c~To~ 2 T, 1 
~ a T i =  - - ~ a v i  (Pi+I aUi+,--P,--, al), 1) 

\ 0 y J i  3 p ,  22 

2 1 
+ .--~---:v (K,+ ~ aT ,+ ,  + ~c,._ ~ a T , _ ~ - 2 K ,  aT,)+AFf(A9) 

J/~p, .,7 

where 

1 rlo 8To 
C " = - 3 p o T  o @ 

is a constant.  The variances of A F  7 and AFT are obta ined  f rom (24a)-(24c),  
recalling the discussion in Section 3. Explicitly, we have 

4ka 6(t -- t ' )  Kr 

T~(a  K~ + a  Kr ~ (AIO) - - ( r l iT i+t l j  jJt i+l.j i -x . j lJ  

( d F f d F f ) =  4 k n f i ( t - - t ' )  {(K,+IT~,.+ "~-Ki_lT~i +2K/T~/)a  Kr 
9R2pepj V,.22 1 - l 

- (lq T~ + Kj ~ ) ( a ~ +  ,,i + a~f 1,j)} (A 11 ) 
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