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On the Boltzmann Equation for the Lorentz Gas 

C. Boldrighini, 1 L. A. Bunimovich, 2 and Ya. G. Sinai 2 

Received March 10, 1983," revised March 31, 1983 

W e  consider the Boltzmann-Grad limit for the Lorentz, or wind-tree,  model .  

W e  prove that if ~0 is a fixed configuration of scatterer centers belonging to a set 
of full measure with respect to the Poisson distribution with parameter h > 0, 

then the evolution of an initial a.c. particle density tends in the Boltzmann- 
Grad limit to the solution of the Boltzmann equation for the model .  As an 
intermediate step we prove that the process of the free path lengths and impact 
parameters induced by the Lebesgue measure on a smal l  region tends to a 

limiting independent process. 

KEY WORDS: Boltzmann-Grad limit; Boltzmann equation; Lorentz 
model. 

INTRODUCTION 

For the classical Lorentz gas the kinetic Boltzmann equation goes, in the 
Boltzmann-Grad limit (1) into the linear Fokker-Planck-Kolmogorov 
equation for the corresponding Markov process. What is known up to now 
on this problem can be found in the paper of Spohn. (2) 

In the generally accepted approach to the derivation of the Boltzmann 
equation for the Lorentz gas, which was first proposed by Gallavotti, (3'4~ 
one writes down first the equations for the correlation functions averaged 
over scatterer configurations, and then takes the Boltzmann-Grad limit of 
such equations. Spohn (2~ strengthened this result by proving convergence in 
probability. In this paper, using a different method, we show that the 
limiting Boltzmann equation holds for typical configurations. 

We hope that the development of our approach for more complicated 
systems may be useful to obtain new results on the existence and unique- 

J Istituto Matematico dell'Universit/t, Camerino, C.N.R.,  G.N.F .M. ,  Italy. 
2 Landau Institute for Theoretical Physics, Academy of Sciences of the U.S.S.R., Moscow. 

4 7 7  

0022-4715/83/0900-0477503.00/0 �9 1983 Plenum Publishing Corporation 



478 Boldrighini, Bunimovich, and Sinai 

ness problem for the general Boltzmann equation. Moreover, we should like 
to emphasize that our approach is natural if one wants to compare the 
theory with results of computer experiments. 3 

1. BASIC NOTATIONS AND FORMULATION OF THE RESULTS 

We consider only the two-dimensional case for simplicity. The case of 
arbitrary finite dimension can be treated in a similar way. Points of the 
plane R 2 are denoted by q = (ql, q2). The scalar product in R2 is denoted 
by .. All the subsets of R 2 we introduce below are supposed to be 
measurable. 

A particle moving in the plane with velocity of modulus 1 is described 
by a point in the phase space M = R 2 • S 1. The points of M are denoted 
by (q,+), where q E R 2 is the particle position and + E[0,2~r) is the 
direction of the velocity vector ~ = (cos p, sin ~). The Borel a-algebra of M 
is denoted by 23. 

By f~ we denote the space of the locally finite subsets of R 2. A point 
~0 E ~2 identifies a configuration of scatterer centers. For any subset A C R2 
and any r ~ ~ we denote by r the intersection ~0 N A and by ~2 A the space 
f~A = (w E ~ : ~0 = ~0 A }. By I,o I we denote the cardinality of e. f~ endowed 
with the topology of pointwise convergence is a polish space. The corre- 
sponding Borel a-algebra is denoted by TA. 

The Poisson measure with parameter ~ > 0 is the probability measure 
on (~, ~ )  such that for any integer k > 0 and any collection of noninter- 
secting subsets A t , A 2 , . . .  , A  k of ~2, the random variables 1'%,1,1 A21, 
. . . .  [~0A~ I are independent and each [r is distributed according to the 

Poisson law with parameter ~m(Ai) , i = 1 , 2 , . . . ,  k, where m(.)  denotes 
the Lebesgue measure on R 2. Throughout this paper ?t is fixed and the 
corresponding Poisson measure is denoted by Prob(-). 

Let q ~ ~2 a > 0. By Da(q) = (q' ~ N2: Iq' - q[ < a} we denote the 
circle of radius a and center q, and by Ka(q) = (q' ~ ~2 :lq' - ql = a) its 
boundary. 

Let now r ~ f~ and a > 0 be fixed. Consider a particle moving uni- 
formly with velocity of modulus 1 in Ra,,o = R2\[I,.J q ~ Da (q)] and undergo- 
ing elastic collisions with the "scatterers" Da (q), q ~ 0~. If we prescribe at 
collision the particle to be in the outgoing, configuration, its position and 
velocity are given by a point in the set K,(q)  = (q' ,+) ~ M :  q' ~ Ka(q), 
(q' - q)" ~k >/0) for some q ~ r 

Let K~,~ denote the boundary of R~,,o. In general Ka,,o ~ Oq~,~K,,(q) 

3 W e  are indeb ted  to H. van  Beijren for this remark .  
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since scatterers may overlap. Let ~'~,,o = Uq,q,E,~,q_~q,{Ka(q) n Ka(q')} de- 
note the set of the points which belong to the intersection of different 
scatterer boundaries (angular points), and set K~,,0 = Ka,~\K~,~. We define 
the phase space of our mechanical' system as 

q ~  

The evolution of a point (q, ~) E Ma,,o is given by Tt (a''~ (q, ~p) = (qt, ~t), 
t/> 0, where qt is the end point of a continuous path which starts at q in the 
direction q~, and consists of straight line segments which join on scatterer 
boundaries. The angle between two consecutive segments is determined 
according to the law of elastic collision, and tpt is the direction of the path 
at qt- 

Clearly if the path of the particle (q, ~) hits an angular point it cannot 
be continued. Therefore we must exclude all the points of Ma,,o the paths of 
which fall for some time t E NI on an angular point. It is not hard to see 
that the Lebesgue measure of this set is zero for all ~0 E ~2. 

In this way we define a one-parameter group of transformations (a 
flow) { Tt ("'~), t ~ ~1 } on a subset M~,,o C M~,,o such that its complement has 
Lebesgue measure 0. We shall call such a flow the Lorentz gas with 
scatterer configuration ~ and scatterer radius a. 

For (q,~) E Ma,,~ we denote by ~-~'(q,~) ~ [0, ~ )  the length of the free 
path of the (q,q,) particle, and by b2(q,~/) the corresponding impact 
parameter (see Fig. 1). If we admit the value m, ~'a ~ is defined for all points 
of M~,,o, whereas b2 is defined only on the subset of the points (q, ~) E M~,,~ 
such that ~'~(q, q0 < m and the straight line from q in the direction g, does 
not hit an angular point. We denote this subset by M'~,o. 

^ 

We denote by T" : M~.,~ K~,,0the map which associates to each point 
(q,~p) ~ M~'~, o the point T~(q, ~b) E Ka,,o corresponding to the first reflection 
of the particle (q, ~p) for positive times. 

Let (q,~) ~ M'I, o and consider the impact parameter b~(q + s~p• 
where q~• = ( - s i n+ , cos~ ) ,  as a function of s ~ N1. We extend its defini- 
tion to values of s for which q + s~ • ~ D~(q') for some q' ~ r (i.e., for 
which the starting point is "covered" by some scatterer), simply by omitting 
the scatterer D~(q'). We obtain a function of s defined on some union of 
intervals, which is continuous on each such interval; we denote by 
-d~'~'~)(q, tp) and d(z'~'~)(q,~p), the left and right end points, respectively, of 
the interval which contains the point s = 0 (see Fig. 2). 

Ma,o~ = ~r U/~,,~ (1.1) 

where 
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For (q, ~b) E Ma,,~ we denote by ~-(~)(q, ~p) and b(an)(q, ~), n = 1,2 . . . .  , 
the sequences of the free path lengths and of the impact parameters, i.e., 
r(l)(q,~) = z~(q,~), %(2)(q,~) = .r~(Ty(q,~p)) . . . . .  b(al)(q,~p) = b2(q,~) ,  
b(~ 2~ (q, q~) = b~ (T2 ' (q ,  +)) . . . . .  

For what follows it is convenient to introduce the rescaled quantities 
I ~ ,~(,) aT(~ "), /~(') - lh( ' )  n 1, 2, . and A , ~ = a ~ . ~ ,  b ~  ' ~ = a - b  a ,  = = a  v ,  , = . , T a * 

~.(~'~) = a - l d i ( ~ ' a )  , i =  l ,  2 .  

We shall sometimes drop the indices w and a not to overload the 
notation. 

We introduce now a convenient representation of the point (qt,~bt) 
= T,("'~)(q,~), t > O, (q,~p) ~ M',,~, in terms of the free path lengths and of 
the impact parameters�9 

When a particle undergoes a collision with normalized impact parame- 
ter equal to y ~ [ -  l, 1], the direction of its velocity changes by a quantity 
z ( y ) = 2 a r c s i n y + ~ r .  Therefore it is not hard to see that if we set 

Rk(Yl, - ,Yk)=  �9 ~j=lZ(Yj) ,  k/> 1, R o = 0, and 

~(~)(~; y l , . . .  ,y~) = ~ + Rk(yl . . . . .  y~) (1.2a) 

k 

87)(~;  xl ,y l  ; - . - ; x ~ , y ~ )  = ~ 5~(J-1)(~; yl . . . . .  y j - l )  
j = l  

+ t -  xj ~(k)(~; y ,  . . . .  ,y~) (1.2b) 

for k/> 0, (Yl, . . . , Y k )  E [ -  1,1] k, xj ~ [0, ~ ) ,  j = l , . . . ,  k, and ~j=]x j  
< t, then 

q t = q  + 8t(')(4,;'r(,])(q,~),l~(a])(q, 4); . . .  ;r(")(q, 4,),t~(,')(q,~)) (1.3a) 

~b t = ~b(n)(~p; b(1)(qi~p), . . . ,  t~(n)(q,~)) (1.3b) 

where n = n,(q,~) is the number of collisions which the particle (q,~p) 
undergoes in the time interval (0, t]. 

If a configuration c0 E 12 of scatterers of radius a > 0 is given, and/~0 
is an absolutely continuous measure on M, we define the "compatible" 
measure 1~o (a''~) by setting 

I~(oa'~)(A) = ~o(A f-I M,,,~) A ~ ~3 (1.4) 

The family of measure (/~(""~), t ~ R 1 ) given by 

~t(a'~ = ~(oa'W)(T(_at'w)(~4 (-] MS,u)), A ~ ~ ,  t ~ ~'  (1.5) 

gives the evolution of the initial measure/z 0 under the Lorentz ga's dynam- 
ics. 
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For any o~ E s and p E (0, 1), we define the p-contracted scatterer 
configuration % by setting % = {q ~ R2: p -  lq ~ w}. The statistical behav- 
ior of the Lorentz gas in the Boltzmann-Grad limit for a fixed (micro- 
scopic) scatterer configuration ~0 is given by the behavior as p ~ 0 of the 
measures/~ya'~A, t E El. (2) In what follows we shall set a = 1. 

The main result of our paper is the following. 

Theorem 1. Let/~o be an absolutely continuous measure on M with 
density f0 E C I(M). Then for Prob-almost all ~0 E s the measures/~y,~0p) 
given by Eq. (1.5), tend locally weakly, as p-~ 0, to a limiting measure t~t. 
Moreover,/~t is absolutely continuous and its density ft(q,q~) is the unique 
solution of the equation 

O~ f t (q .4 ' )+  (q~" V,)f~(q.q~) = ~ f_?.f+' s i n ~  -~ {ft(q.g/) - ft(q.q~)} 

(1.6) 

with initial data f0. 

In Section 3 we will indicate how it is possible to give a "weak" version 
of the theorem for f0 ~ Llloc �9 

For what follows it is convenient to adopt another description of the 
Boltzmann-Grad limit. Namely, we can keep the scatterer configuration 
fixed and contract by a factor p-> 0 the particle trajectories. This fact is 
based on the following relation, which is easily proved: if we set (qt,~t) 
= Tt(~176 then T(oe'~t)(p-lq,~) -- (p-lqt,q4). 

The plan of the paper is the following. In Section 2 we give the 
necessary preliminaries on the theory of the Lorentz gas, and some simple 
probabilistic results. In Section 3 we prove a basic lemma and the main 
theorem. Section 4 contains concluding remarks. 

2. SOME FACTS FROM THE THEORY OF BILLIARDS AND 
AUXILIARY RESULTS 

Throughout this section p ~ (0, 1) is the scatterer radius. 
A point (q', ~) ~/(p(q), q ~ R 2 can be conveniently identified by two 

angles: 0 = a r c t a n [ ( q ' - q ) 2 / ( q ' - q ) l ]  and q , - - -+ -  0 (mod2r). 0 is the 
angle of the radial vector q ' -  q with respect to the ql axis, and ~ is the 
angle of the velocity vector ~ with respect to the radial vector q' - q (see 
Fig. 3). In this way to any scatterer center q we associate a copy S(q) of the 
cylinder S = S 1 X [ - 7r/2, rr/2]. 

Let ~, C S(q), q E R 2, be a curve of class C 2 which is "increasing," i.e.; 
such that in the (0, ~)-plane it is described by an increasing function q,(0) 
(vertical segments for which 0 = const are also admitted). We shall call 



On the Boltzmann Equation for the Lorentz Gas 

/ /. 
1 

Fig. 3. 

483 

such curves simply "increasing curves." Given the scatterer radius P, 7 
identifies a curve in M, which we denote by the same symbol. It is often 
convenient to take as a parameter describing the curve the outgoing 
direction ~p = 0 + ~,. 

The basic facts from the theory of billiards which we need are 
contained in the following proposition (see Refs. 5-7). 

Proposition 2.1. Let p E (0, 1) and r ~ f~ be fixed, and suppose that 
~, c S(q), q ~ ~0, is an increasing curve on which T~ ~ is continuous. Then its 
image 3'~ = TO3' identifies a curve in S(~), for some q ~ r which is also 
increasing, and, if (01,q~l) are the coordinates on S({), it is given by a 
function q~](01) which satisfies the equation 

d~ 1 cos~l 
dO 1 = 1 -I- T / O  Jr c o s ~ ( d 0 / d @ )  ( 2 . 1 )  

Moreover 

- - - ~  1 + cos ~l -P + cos ~ (2.2) 

where +] = 01 -t- ~1 01 denotes the outgoing angle on Yl. 

Remark. Clearly it is not needed that q ~ ~0, provided that ~,, as a 
curve in M, is contained in M~',,. In any case when we give a curve 
7 c S(q) the identification of the corresponding curve in M has to be done 
by setting the radius equal to p. 

The following result can be proved using simple geometric consider- 
ations and the properties of the Poisson measure. 
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Proposition 2.2. Let (q,~b)E M be fixed, and set, for p E(0,1),  
x E [0, oo),y E [ -  1, 1], u E [0,2] 

F(~ = Prob{ 4~'(q,~,) < x, /~(q,q,)  < y }  (2.3a) 

Gg(P)(u) = Prob(di(~'~ < u}, i =  1,2 (2.3b) 

Then the following relations hold: 

!im F(~ y) = F(x,  y)  (2.4a) 
p - ~ 0  

lim GiO)(u) = G(u), i = 1,2 (2.4b) 
p-->0 

where F(x, y ) =  �89 +y) (1  - e-2X~), G(u)= 2u/ (2  + u), and convergence 
is uniform in (x, y) ~ [0, oo) x [ - 1, 1], and u ~ [0, 2]. 

If y c S(7~), 7] E ~2, is an increasing curve, as a curve in M it is 
parametrizable by the angle ~, i.e., it is given by , / =  {(q(+),~) : ~ ~ A}, 
where A C S 1 is some interval, and supq, EAldq/dqJ ] < oo. A curve of class 
C 2 in M satisfying these conditions will be called "admissible." 

We shall denote by I" I the "Lebesgue" measure on S l (more precisely 
the Haar measure on S 1 normalized to 2~r), and if A C S 1 is an interval, by 
d/2A = d~//IA] the normalized Lebesgue measure on A. Furthermore, if 
~, c M is an admissible curve, we denote by A the corresponding interval 
of variation of ~b, and for ~0 ~ s we set 

A 
~g~.'~(x, y)  = (ff ~ A : ,~(q(~) ,+)  < x, b~(q(+),~/) < y }  (2.5a) 

~go~(u) = (q~ ~ 2xv: ~(~'P)(q(~), +) < u),  i = 1, 2 (2.5b) 

In the following proposition we consider a family of increasing curves 
(Tp, P E (0, 1)) c S(~), on a scatterer of radius p and fixed center q. We 
prove that, if the curves do not become too small, the distributions of the 
quantities ~,/;, 4 ,  i = 1,2, induced by the Lebesgue measure on the angles, 
tend to a limit as p ~ 0. We shall write for simplicity Ap, /2, dt 'o and ~ i  o 
instead of Av,/2a~, ~ r  and ~i!~'f ), respectively. 

Proposition 2.3. Suppose that IA.I > #~' for some constant Ct 1 E 

[0, 1), and let p, < n - t  for some t > 0 and n = 1,2 . . . . .  Then for Prob- 
almost all o~ ~ s the following relations hold, uniformly in (x, y ) E  [0, 
oo) x [ -  1, 1] and u E [0, 2]: 

lim /~(Jt'p~ y))  = F(x,  y) 
n---~ oo 

(2.6a) 

lim ~(~iP~ = G(u), i =  1,2 (2.6b) 
n---) oo 
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Proof. Let/31 and/32 be two numbers  such that 0 </31 </32 < 1 - 
0~1, set 

I l l  , , (p)  = 08  ' + 082 

where [.] denotes the integer part, and consider the following subsets of 
~p = [~1,~2] (we take Ap closed for definiteness): 

/j = [r + ( j  _ 1)16.1(pe, + p82).+, + j lA  Lpe, + ( j  _ 1)IA Ip~2) 

j j  = [+, +jlAoipS,  + ( j  _ 1)iAoip82,@l +jlAol(pS, + pBz)), j = 1 . . . . .  K(p) 

Clearly we can write A s = ~J=l i,(p)111W U Jj) U I ' ,  and, setting ~,j = ((q, +) 
E 7o : + ~ / j ) ,  "~ = ((q,q~) ~ ~'p : + ~ Jj} and y' = {(q,~p) E Yo : ~ ~ I '} ,  we 

have 

[ j = l  "= 

Therefore 
~(o) 

j = l  

~< ~ /~(A~) +/~(7') < q(P) (2.7) 
j = l  

with q(p) = 2~(p~2-8'/2 + 2p8'). Let r(p) = ~pt-~2-,~ and consider the set 

~(P) = (~ ~ ~:dist(77,w ) > r(p)}  

Let P(P)(.)= Prob(. [~(P)) and E (p) denote the corresponding conditional 
probabil i ty and conditional expectation. It is not hard to see that 

IE(P)/~ ( ~ / ~  x, Y)) - F(P)( x,  Y)I < e2(O) (2.8) 

where e2(P) is a nondecreasing function (depending on a I and /32) and 
lim~o~z(p ) = 0. Therefore, setting 

~f,~(x, y) = ~(~.~ , - (x ,  y))  - ~(~)~(~*~..~(x, y)), 

since estimate (2.7) induces a corresponding estimate for the expected 
values, we find 

~(o) I " o _ < ~ Rf"~ (2.9) I~,(~ ( x , y ) )  F(O)(x,y)l  y )  +~3(p) 
j = l  

where e 3 = 2 q  + s is independent  of w ~ ~ and (x, y )  ~ [0, ~o) • [ -  1, 1]. 
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A crucial point in the proof is the observation that for p ~ (0, 1) the 
random variables Rj(x,  y), j = 1 . . . . .  K(p), are independent  with respect to 
the measure p(o). Moreover, since 

sup IRf, [ ,< 2p e,, j = 1 , 2 , . . . ,  ~(0) (2.10) 
oaEf~ 

the Chebyshev inequality gives the following estimate of the Bernstein type: 
for any X > 0 

where 

[{w ~(o) )1 p(o) C a "  ]~=lRjO"~ > X 

(2.11) 

H ~-- 2p/31 , B2(O) = E ~-(~ x, y))2 
j = l  

and h is a positive number  such that hH < 3. Now it is not hard to prove, 
using the properties of the Poisson measure and some simple estimates, that 

p2+B, log( Pl IV(P)(Rj(x, y))2 < C ~ ) (2.12) 

where C is an absolute constant. Hence, setting h = p -B', we find h2B2(p) 
( 1  - h H ) -  L < C' log(1/p)p 2(1-~~ [Ap[ < C" log(1/O)p 2-2~'- ~, and the last 
quantity goes to zero as p ~ 0 .  Therefore, setting E4(p)= pBt-8 for some 
6 </31, we get from inequalities (2.11), (2.12), for P small enough 

p(o) ~ a : R~'~( x, > q(0) < ~ e x p ( - 0  -a) (2.13) 
j = l  

Consider now the points x o = 0, Yo -- 0 and 

x i = i ( log(1 /p ) ) - ' ,  i = 1 . . . . .  N1(O) = [( log(I /p))2] ,  XN,+, = c~ 

Yt = l( log(1/P)) -1, l = 1 . . . . .  N2(O ) = [21og(1/p)] ,  YN2+l = 1 

From inequalities (2.9), (2.13) it follows that for P small enough 

/ = 0 , . . . ,  N2+ 1 

< 3 exp(0 -a) (2.14) 
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where e 5 = e 3 + i[ 4. Now, if x E (x i, xi+ 1), Y ~ (.,Pl, .Yl+ 1) for  some i and l, 
~(. .gP(x ,y))  will lie somewhere between i , (~ 'P(xi ,y l ))  and ~t(l/P(xi+l,  
Yt+l)), and hence, because of inequality (2.14), between F(P)(xi, Yt) - '5(9) 
and F(P)(xi+~,yl+l)+ "5(P). Since, as is easy to see, F (~ is uniformly 
continuous,  uniformly in O E (0, 1), we find, setting 

'6(10) = '5(10) n t" max [F(P)(xi+l, Yl+I) - F(~ 
i = 0 , . . . ,  N I 
l = 0 , . . . , N  2 

P<0)({~o ~ a :  II t~(~'~ , " ) ) -  F(P)( ", ")l[~ > ,6(o)}) ~< 3 e x p ( - p  - a )  

(2.15) 

where I1" IIo~ denotes the supremum norm on ~1 • [ _  1, 1]. 
To  conclude the proof, observe that, since fa (~ D fa (~ for any m > n, 

we have 

Prob(~  (~ 

Prob(f~ (p-)) 

Setting A = (oa ~ f~ : t l /~(~/o,o(-,  ")) - f (~  ")Hoe > '6(Pm)},  using in- 
equality (2.15), and letting m--->oe for fixed n, we find by the Bore l -  
Cantelli lemma that for  P(~ all ~o ~ fa limm__,o~l I / i (~"~ -, - ) ) -  
F(., ")ll~ = 0. Since 1,.J~=1~2(~ = a mod0 ,  Eq. (2.4a) is proved.  Equat ions 
(2.4b) are proved in a similar way. Proposi t ion 2.3 is proved.  �9 

We shall now show that convergence to the limiting distribution takes 
place for a sufficiently dense family of curves and for a large class of 
measures on them. 

For  a > 0  we denote  by 7 / = { q E R  2 : q = k a ,  k ~ 2 [  2} the square 
lattice of constant  a. If A C S ~ is an interval and f a nonnegat ive funct ion 
on it, we denote  by  #a,f the normalized measure on A induced by f (when 
no confusion arises we write simply /~f). Fur thermore  for a 2 E [0, 1) we 
denote  be 3-~(a2) the class of the positive functions f on A such that  
f ~ C 1 and 

sup I f ' ( + ) [ / ~ n f  f ( ~ )  < 0 - ~  (2.16) 

For  fixed a 2 E [0, l) and q E N 2 we consider the curves in M ,/q(i) 
-- {(q ,+) :  + ~ [(i - 1)(2~r/x(O)),i(2~r/~(p)))} i = 1 . . . . .  x(p), and ~(0) = 
[2~rp-~(1 +log( l /o) )] .  We shall call Fo(q) the col lect ion (y(qi): i =  
1 . . . .  , x ( O ) } .  

P r o p o s i t i o n  2.4. Let  a(p)--O t for l > 1. Then  for any choice of 
61 > 0, t > 0 and /3  ~ (0, 1 - ~2), if we set Z(P)(o~) = {q ~ 7]~(o) N D e ~,(0) : 
dist(q,~o) > r(p)} for r(p) = ~r0/~ and 0, < n-C, n = 1,2 . . . . .  the following 
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relations hold for Prob-almost  all ~0 ~ ~2: 

lim max sup II ~f(d[y~176 ", ")) - F ( . ,  ")11~ = 0 (2.17a) 

y ~ Fo.(q) 

lira max sup ii~f(~,o~.~(.))- G(.)[I~ =0, 
n--)or q~(P.)(w) f~-A~ 

i +  1,2 (2.17b) 

Proof. Clearly a curve ~, ~ Fo(q) is an admissible curve in M, which 
can be identified with an increasing curve on some scatterer. Choosing 
e ~ (0, 1 - fl - a2), and setting f12 = 1 - fl - a 2 - e we have IAyI > p~2+, 
for p small enough, so that  repeating the steps in the proof  of Proposit ion 
2.3 we find that for  any q E R 2, p small enough and all ~, ~ ro(q), 

e~o)({,o ~ a :  II ~(~"r ) )  - F ( - ,  ")11~ > ~;(p))) < 3 e x p ( - o - 8 ) ,  

~, ~ to(q) (2.18) 

where p(qo) is the condit ional  measure under  the condit ion 9(q ~ = {~o E ~2 : 
dist(q, ~o) > r(p)},/~ denotes the normalized Lebesgue measure on @,  and 
e; can be computed  as in the proof  of Proposit ion 2.3. Now, if f ~ g ~ , ( e 2 )  
it is easy to see that for any measurable A C A 

( sup [f'(ff)[ / ) log(1/p)4~r (2.19) It~(A)- t~j(A)l < 21AI - - , ~ f  f(q~) < 

Putting together inequalities (2.18) and (2.19) we find 

Y Ero(q) f ~ 3-~v(a2) 

< 3x (p)exp( - P -8)  

with e 7 nondecreasing and limo__,OeT(p) = 0, and consequently 

Prob ~0 E a : max sup II ~f(~,;,,o(., .)) _ f ( - ,  ")11~ > c7 
q ez(o~(~o) f~j-~o (a2) 

~ to(q) 

< 2 e(a~qo))3~(p)exp(-p -~) 
q E E(o)(e) 

< co -28,-2,-~21og(e/p)exp (_ p-8) 

Equat ion (2.17a) follows now by the Borel-Cantel l i  lemma. Equat ions 
(2.17b) are proved in a similar way. Proposit ion 2.4 is proved. []  
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In what follows fi0 will denote a family of increasing curves in 
S I x [ -  ~r /2 ,~ /2]  such that Ihvl > p-~ '  for some fixed a 1 E [0, 1) and any 
~, ~ tip, and the number  of the curves does not exceed p-~, where s is a 
positive integer. By rio(q) we denote a copy of ~p located on the scatterer 
of center q E R 2 and radius p. Furthermore,  if r is a positive number  and 
~o ~ ~2 we denote by ~0 (r) = {q E o::~o N Dr(q)= {q}} the configuration of 
the points q ~ to which are at a distance larger than r from the other points 
of c0. The following proposition holds. 

Proposition 2.5. For any choice of 6~ > 0, t > 0, a 2 ~ [0, 1), fl 
(0, 1 - R) where R = max(a~,a2), if oa(p) = (..o (r(p)} N D p - ~ l ( 0 ) ,  for r(p) = ~rp ~ 
and a~ ~ f~, and O,, < n - t ,  n = 1,2 . . . . .  the following relations hold for 
Prob-almost a l l ~  ~ ~2: 

lim max sup I I /~f (~""~( ' ,  ")) - F ( - ,  ")lloo = 0 (2.20a) 

p 60 lim max sup [I/*f(~a,"~ ( . ) ) _  G(')llo~ = 0 
n-~oo q~o(p. )  fEj,~-~.(a2) 

V E fi o.(q) . . . .  

i = 1 , 2  (2.20b) 

Proof. The situation is similar to that of the previous proposition, 
except for the fact that  the curves have now random positions. To over- 
come this difficulty we use a simple construction. Let a(p) = p l  l > 1, and 
Qa (q), q E •2 denote the square of center q and sides of length a parallel to 
the coordinate axes. Consider the event d)~ = {r E f~ : ~0O~(q ) N ,0 (r(p)) =/= 0}.  
Clearly if ~o ~ Eq ~ the intersection ~oO~(q ) • ~0 (r(p)) consists of exactly one 
point, which we denote by O(q). Consider the set 

E ; ( e )  = {oa ~ Gq~ : max sup II/*f(J/r~176 -)) - F ( - ,  -)ll~ > e } 
V@~p(4) f ~o~g , (a2 )  

We have, denoting by P and f i  the probability measures induced by Prob 
on ~2Q~(q) and ~R2\QAq), respectively, 

Prob(EqP(C)) 

l r  
<~ c (  d4P-~P)/{r E f~ : max sup II ~tf(I/~~176 �9 )) 

JQa(q) q ~ ~(~p (21) f~3-~xy(a2) 

- F( ' , ' ) t{~o > e})  (2.21) 
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For y E ~ o ( q )  we set 7 ,=  ( ( q ( + ) , q ' ) ~ Y : ~ A ~ 0 }  with A(0 = [ ( i _  1) 
12Xr[/K(0), i[ArI/K(O)), i = 1 . . . . .  K(0) and ~(0) = [Lar[o-~(1 + log(I/0)]. As 
in the previous proof, one finds inequalities analogous to (2.18) and (2.19), 
which lead to the inequality 

P~~ E ~2 : max sup 11/zf(~/v~ .)) - F(- ,  .)l[~ > e}) 

< exp(0-~/2) (2.22) 

which holds for some 8 > 0 and 0 small enough, and in which we can take 
�9 t e = e~(O), with e~ nondecreasing and llmo_~0c7(O) = 0. Putting together (2.21) 

and (2.22) we find 
) 

m a x  sup  , ,  Prob 
q~%) f~  ~-~o (~2) JJ 

v ~ ?o(0) 

2 Prob(E~(e~)) < co-2%-2'exp(-o-~/2) 
q ~ 2(o)(~o) 

whence, using again the Borel-Cantelli lemma, we get Eq. (2.20a). Equa- 
tions (2.20b) are proved in a similar way. [] 

3. THE MAIN THEOREM 

The proof of the main theorem is based on some partial results which 
we give separately. The idea of the proof is the following. As we have 
proved (Propositions 2.4 and 2.5) there is a large family of increasing curves 
on which the distributions of the quantities ?, b, d i, i = 1,2, are close to the 
corresponding limits, for a large class of density functions, when ~o belongs 
to a set of full measure. The next step is a continuity argument, namely, we 
show that if a curve Y' is sufficiently close to a curve Y of the above family, 
then the distributions of ~, b, d/, i = 1,2, on y' are also close to the limiting 
values. We are then able to prove a fundamental lemma on the joint 
distribution of the successive free path lengths and impact parameters, 
which shows that they constitute, in the limit as 0---)0, a process with 
independent values for Prob-almost all ~o E ~2. This leads easily to the proof 
of the theorem. 

The "continuity property" for the distributions on curves which are 
close to each other is given by the following result. 

Proposition 3.1. Let y = {(q(~),~) : ~ ~ Ay} and - / =  {(q'(~),~) : 
A,} be two admissible curves in M such that A v DAy. and for some 

values of O E (0, 1), a L E [0, 1), ~1,~2 > 1 the following relations hold: (i) 
IAvl > pat, (ii) [Av\Av, [ < p<, and (iii) sup+E~,lq(+) - q'(+)l < p~2. Suppose 



On the Boltzmann Equation for the Lorentz Gas 491 

furthermore that ~ ~ ~ is such that y, y' c Mo,,~, and moreover  for some 
a 2 E [0, 1) 

sup II/~f(-J~/~'<~(', ")) - F ( . ,  ")11~ < ~ (3.1a) 
f ~  3-~r,(42 ) 

sup It ]'Lf(~t,P3~~ -- G(')lic~ < s i = 1,2 (3.1b) 
f @ ~v,(a2) 

Then there is a constant  C such that if 

= max (a i , a2 ) ,  and a = min(~l - ~,~c2 - 1) 

the following relations hold: 

sup I I / ~ f ( ~ ; ' " ( ' ,  ")) - F ( . ,  ")11o~ < c (~  + o")  (3.2a) 
f ~ - ~ ( a 2 )  

sup II #~s(~,s - G( ' ) I I=  < C(e + p<') (3.2b) 
f@ ~-~ 

Set -p = ( (q ,~)  ~ ~, : + EAv, ) and let f denote the restriction Proof. 
of f E J -~ ,  (a2) to A, .  We  have 

II ~ s ( J / # ~ (  ", - ) )  - #~i ( J t r  �9 , ) )11~ < 2/zf, A, (Ay\Av')  

f ( + )  
< 20 ~ sup < 40 ' ' - ~  

(3.3) 

In order to estimate II t~/(#~/~'~ " ) ) -  ~ / ( J / ~ # ( ' ,  "))11~ observe that if 
(q,~p) ~ y' is such that min,.= l 2d/(<~.O)(q , ~) > p~2 then 

I~ ' (q(~) , ,k)  - ~ ' (q ' (4 ) ,~ ) l  < 0 2 + o t+~2 < 2p 2 

f b ~ ( q ( , k ) , ~ )  - b~(q'(@),~)l < p~2-1 
Therefore, setting </V = ( + ~ Ay, : min i= l, 2 d!<~'~ (q'(4'), P) > P ~} we find 

y_) n w )  < m( 7(x, y)) 

< /~i (Av ' \ JU)  + bti ( J /~"~(x  + 2p 2, )~+ )) (3.4) 

where ;~ = max(0 ,x  - 202), j /+ = min(1, y + p ,~- l ) ,  )~_ = m a x ( -  1, y - 
p < - l ) .  Since f ~ J-~r(a2) ,  using equations (3.1b) and (3.4) and the fact 
that the function F(x, y) is uniformly Lipschitz it follows that 

II t~i ('J-/~"'<~( ", ")) - ~i ( J / # ' " ( ' ,  "))11~ < C'(e+P ~-') (3.5) 

Using inequalities (3.1a), (3.3), and (3.5) we obtain the result (3.2a). 
Equat ion (3.2b) can be proved in a similar way. �9 
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An increasing curve ,{ c S(q), q E R 2, beaks into a (at most countable) 
number of pieces, on which T o is continuous, each piece being again, by 
Proposition 2.1, an increasing curve. The information that we need on how 
measures are transformed is given by the following result. 

Proposition 3.2. Let ,{ = {(0(~),~(q0) : qJ ~ A )  C S(~/), ?/E R 2, be 
an increasing curve, and let f be a positive function on A of class C 1. If 
o~ E s is such that • c mp,,~, "~1 = ((O(l~l)'~l(l~])) : ~1 ~ Ayi)  is a continuous 

,/.to 
curve, in the image T~y such that T ~ = inf(q,,)Ev: rZ(q,~)Ev, p(q,~) > 2, and 
mf, ,~a,  c o s + l ( + 0 =  u >0 ,  and fl denotes the density of the measure 

induced on A by f, the following inequalities hold: 

d201 P 1 ( P d20 I (3.6) +~Ea~,sup ~ < ~ - 6 + ~ , I . _ ] 3 s u p  
I 

inf~,e~,, f l (*l)  < - -  1 + (3.7) u inf, Ea,f(6) 

where 

I ( ;supl 2~ C = 1 8  1 +  ~d ~Lx~ 

Proof. 

we have 

Using Eqs. (2.1) and (2.2) it is easily seen that, setting 

- -  + cos r 
H(+)  = cosr  l P 

d20----L = ( 2 H +  1) 3 d. H 
a~ 

The main point in the proof is the inequality Id%/d@i < p(1 + H) which 
can be derived from geometric arguments. Using this, Eqs. (2.1) and (2.2), 
and the obvious inequality H > 2/cosqh,  inequality (3.6) is easily proved. 

The measure induced by f on At, has density fl = -f(+)(d~'/d+O" 
Equation (2.2) gives Id+/d~l[ < ( 2 H +  1) -1, and it is easily seen that 
r~ <<. H <<. (1 /u)(r~  + 3). Combining these results we get 

inf < - -  (3.8) 
~i @Av, ~ 1  ~Ay,  U7 0 

Moreover,  since ~1 = 01 + ~1 = 201 + ~b - ~r, we have Id2q /d  i = 
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2[d201/d~p~l, and, making use of the previous results, we find 

sup d2q' ( inf d~ )-'~<u~(; ( ~ ) 
Inequalities (3.8) and (3.9) give inequality (3.7). Proposition 3.2 is proved. 

[] 

Corollary 3.3. Let 7 c S(q), ~o E ~, and f be as in Proposition 3.4. 
Suppose furthermore that ,& = {(0k(~k),~)k(~k)): ~pk E @~}, k -  1 . . . .  , n, 
is a sequence of increasing curves such that ~'k C T~,k_ 1 (7o = ~'), 
k = l , . . . , n ,  and (i) inf(q,+)ev,'ro(q,~)l>~'~ k = 0 , . . . , n - 1 ,  (ii) 
inf+~ ez~, COSg, k(~pk ) >/ U > 0, k = 1 , . . . ,  n. Then, i ff ,  denotes the density of 
the measure induced by f on Av, the following inequality holds for P small 
enough and all n = 1,2 . . . .  : 

sup+o~z~, ]r ( C ) .  sup+ea,[f '(~)[ ( C / u )  ~ -  1 
inf~.~%f.(~p.) < u i n f ~ f ( ~ )  + C C -  u 

Proof. The proof follows immediately from Proposition 3.2. [] 

Proposition 3.4. Let 71 E [0, 1/2), No(w ) = ]co N Dp ~-,](0)[, Np(~0) = 
](~0/o~ ('~ A D o . . . . .  (O)[ for r(p) = 7tO ~ and fi ~ (1 /2  + 7,, 1). Then there 
is a set ~ c ~2, Prob(~2)= 1, such that for ~o E ~ and p small enough (i) 
No(~0 ) ~< clp -2(1+~') for some constant c I > 0, and (ii) A)o(w ) < O -~2 for any 
72 > 3 / 2 -  fl + 7,- 

Proof. We have EN o = DN o =Mrp -2(1+n0 (D denotes the disper- 
sion), whence by the Chebyshev inequality, for any s E (71,27/1) we get 

Prob({w E f~ :No(w ) > ~:_No-(X~r)'/2p-(2+s)}) <<. p 2 

from which assertion (i) follows from the Borel-Cantelli lemma and obvi- 
A 

ous geometric considerations. Consider now N,.  We have 

foo_,_,,,,o)aq for, o,,q)dq' = +"') 

Op -2 (1 -B+ 'qO (3.10) 

D ~ N o <<. X f  dqD[o~ (~ D~(o)(q)[ <~ 47rX2(r(p))2p -2('+nO 
a D  o , - . , ( 0 )  

~ p -  2( 1 -  fl +'q~) (3.11) 
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For +} > ( 1 - / 3  + ++1) inequalities (3.10) and (3.11) imply, via Chebyshev 
inequality, that 

Prob({o~ E a : 3~0(co ) >/EA? o + p-++}) < ~pl+++ 

for some "~ > 0. Assertion (ii) follows in a standard way for all +72 > ~ since 
+] > 2(1 - / 3  + vh). Proposition 3.4 is proved. �9 

We are now ready for the proof of our basic lemma on the joint  
distribution of the free path lengths and impact parameters. The notat ion is 
the same as in Proposition 2.4, only we require the following conditions on 
the parameters: a 2 @ [0, 1/2), 8] '~ (1 ,3 /2  - a2) and/3 E (81 - 1/2, 1 - a2). 
Furthermore we denote by J o  the class of the positive functions on M 
which are the class C 1 and for which 

sup (max]~f(q,g,)/~2nf(q,+))<O -'~, (3.12) 
lql<p-a, ~ E S  I 

and, if 7 is an admissible curve in M and (x 1, Yl), �9 �9 �9 (x. ,  y . )  E [0, oo) • 
[ -  1, 1] we set 

y,  ; . . .  ; x , ,  

= { +  A+ : < x , ,  ) ( q ( + ) , + )  < y ,  . . . .  , 

"P~n)(q(;.p),t~) < xn, /~(")(q('qr'),"4r' ) < v ,  ), n = 1,2 . . . .  

Lemma 3.5. 

lira sup sup 
O-->O f ~ J o  Iql<o ~' 

dist(q, r > d(o) 

The following relations hold for Prob-almost all o~ ~ r 

max /~ /,'o(~)(x] �9 "x,  

2 _ 1  
- [ I F ( x i , y i ) l  = 0 ,  n = l , 2  

i=1  I 

(3.13) 

where d(o) = r(p) + ~ a(o) and ~f denotes the normalized measure induced 
by f(q, ") on A v- 

Proof. We shall prove Eq. (3.13) for n = 1,2. The extension to the 
case n >/3 can be made along the same lines. 

Set D~ = {q E R2: Iql < O -~', dist(q,~0) > d(o)}. If q ~ D o there is at 
least one point 7/~ 2~(~ such that Iq - c/I < v f f a ( o ) .  We can therefore 
apply Proposition 3.1 to the pairs 7~ i), 3% (~ i = 1, . . . ,  x(p), and Proposition 
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2.4, and conclude that the Prob-a.a. ~ and Pm <~ m - t ,  t > O, m = 1, 2 . . . .  

lira sup ~',m( - - m a x q )  IIM'd/j2)'(', "))- F( . , - ) I I~ - -0  (3.14) 

fGJo,,, 

Using again Propositions 2.4 and 3.1 it is not hard to see that if we set 

.///, = (~p ~ A, :  rain 4(<~176 > ( log(e/p))- ' ,  %(q,~) ~ (p- '+"Sp-~ ' ) )  
i=1,2 

for some il 3 E (0, 1/2), we have 

lira sup max btf(Av\./Uv) - 0 (3.15) 
m-->~ q~ D~... Y~Fom(q) 

fEJo~ 

This means that we can neglect for each y E Fo(q) the angles for which the 
free path is either too long or too short, or which are too close to a 
discontinuity of the map T~. Consider now the sets 

J r  = {4' ~ A / ,  : Ty(q,~) E f:o(q') for q' E 0)\(-d (r(p)) } ~t ~ to (q )  

If we choose ~l ~ (61 - l, 1 /2  - a2) such that moreover ~i + I / 2  < /3  and 
A 

N,(w) is defined as in Proposition 3.4, it is easy to see by simple geometric 
considerations that for P small enough 

9 ^ 
sup max /~f(Jv)  < cx(P) o--S-i-~No(w ) (3.16) 

Iql <o -e' y Er~(q) 
f@Jp 

Therefore, according to Proposition 3.4, assertion (ii), we find that Prob-a.e. 
the right-hand side of Eq. (3.16) is less than c'p2-'~-":-~l:log(e/p), and we 
can take 712 E (3/2  + ~71 - / 3 ,  3 /2  - a2), so that it goes to 0. Therefore if we 

set JUv = #Uv \ f v  and ~/(,~)(.) = ~'o(,~)(-) N "/~v, 21 E Fo(q), q ~ D ; ,  we 
find that 

lira sup max [I/~f(~p(~')v(')\~/o(~'!y('))N~r = 0, n = 1,2 . . . .  
m - ~  q~D~' V~rp~(q) 

fEdo~ 

(3.17) 

Consider now on S l •  [ -~r /2 ,~r /2]  the lattice 2b of the points z k 
= bk, where b = b(p) = (qr/2)[Tr/p2] -1 and k = (kl,k2) E 7/;2 for k 1 = 
-217r/p 2] . . . . .  2[~r/02] - 1, k 2 = - [ 7 r / 0 2 ] , . . . ,  [~r/p2]. Let ~o denote the 
family of the straight segments of slope 1 on S 1 • [ - ~r/2, ~r/2] which have 
initial and end points in 2~ b and length larger than �89 For 
any choice of s > 4 and a] ~ (0, 1) the number of such segments does not 
exceed p-~ and their length is larger than 0% for O small enough. We can 
therefore apply Proposition 2.5 to find that for any a ~ (0, 1) and Prob-a.a. 
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lim max max sup [1/~f(Jt'v~176 ")) - F ( . ,  ")ll~ = 0 
m ~  iql<o-l-n, VE~,~om(q ) fE~-oAT(a) 

q ~(r(0m)) 

(3.18) 

Now if 7 ~ Fo(q), q ~ D~m, the image of ~(l)r , y )  under T~ consists, for 
0 small enough, of a finite number of increasing curves of length larger 
than (log(e/p)) -1, on which cosffl > (log(e/0)) -1/2, and which are on 
scatterers with centers in 0~ (r(p)) O Op-, nl(0). Let us denote by P1(7) the 
collection of such curves. If "rl E Fl(7) the density fl of the measure 
induced by/~f, via T~, on At,, belongs, according to Proposition 3.2 to the 
class 9-~,,(a) for any a > a 2 and p small enough. Moreover, let (0 o, $o) and 
(0-,~) be the end points on 71 (~ > ~0), and let (0o,~o) denote the point of 
the lattice 7/b which is closest to (0 o, ~o) under the condition 0 o + ~o > 0o + 
~o. Let (L ~) be the last point of Z b which is met moving away from (0o, ~o) 
on the straight line of slope 1, in the direction of increasing 0, for which 

A A 

d +  ~ < 0 + ~, and let ~1 be the segment of ~p with end points (0o, ~0) and 
A 

(0,~). Since [deOl/dO 1 - 1[ = (p/~-)cos~l < p2-.q, [see Eq. (2.1)], it is easy to 
see that we can apply Proposition 3.1 taking Y1 as 7, "~1 as 7', xl = 2 and 
x2 = 3 - ~3. Therefore the Prob-a.a. ~ E 

lim sup max max []/9,(Jr'v~ ., .)) - F ( , ,  ")]l~ = 0 (3.19) 

A 

Now, for 7 ~ F,(q), denoting by T r the restriction of T~' to 7, and setting, 
for 71 E F1(V ) ~1 = Tv-171 we have 

~:(Jo<~>(~1, Yl ;x2, Y2)) ~:(A~,) 

(3.20) 

Equations (3.14), (3.17), (3.19), and (3.20) imply that there is a set ~, 
Prob(~) = 1, such that for o~ E 

lim sup m a x  [[ ,, [ ~ f ( 2 )  t x , , Y 2 ) )  - F(x~ ,  y l ) F ( x 2  Y2)[lm = 0 m__~mq~D~y~rp~(q ) ~f~, pm,y I, 1 Y~ ;X2  

f ~ t ' ~  

(3.21) 

By Propositions 2.4, 2.5, and 3.1, one can choose ~ in such a way that for 
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lim sup max II ~f(~,,~"~(')) - a ( ' ) l l ~  = 0, i = 1,2 (3.22) 
m-->oo q E  D~,,, 7EFp,o(q) 

f e ffp,,, 

lim sup max max ] ] / # ( ~ p : ' ~ ( . ) ) -  G(')l]~ = 0 ,  i =  1,2 (3.23) 
m'--)~ q E D o  3,~_Fo,,,(q)'cIG_PI(T) Ji ,-  . 

f E.Jo., 

Now it is easy to check that for fixed q E ~2 the system of curves Fp(q) 
changes only when p assumes some discrete values O,,, m = 1, 2 , . . . ,  and 
it is easy to see that p ~ l >  m t for m large enough and any t < 1/az; 
Therefore we have only to prove, in addition to Eq. (3.21), that for o~ ~ f~ 

lim sup max sup l[tLf(~'(o~(xl,y, ;x2, y2)) 
m-->oo q E D~+j V Erp,,,(q) p e(p,,+ 1, o,~] 

f E  Jr. ,+t  

- F(x~, yi)F(x 2, Y2)II~ = 0 (3.24) 

Equation (3.24) can be proved making use of Eqs. (3.21), (3.22), (3.23) and 
simple geometric considerations. Therefore, Eq. (3.13) is proved for n = 2. 
For n = 1 it follows from Eqs. (3.14) and (3.22). For n > 2 the proof follows 
if one establishes for the increasing curves in the iterated images of the 
curves ~/~ Fp(q) a relation analogous to relation (3.19). This can be done 
by using Corollary 3.3 and again Propositions 2.5 and 3.1. Lemma 3.5 is 
proved. �9 

Proof of Theorem 1.1. We assume for the moment  that  
inf(q,~) ~Mfo(q, +) = cl > O. The theorem will be proved if we show that, if ~0 
belongs to a set of full measure, for any square Q and any interval 
I = [+1, ,~2] c S 1, and for all t ~ [~1 we have 

lim/x}~ Q x I)  = fa  (3.25) p-+o x ~  ~(q'~)aqd~ 

where f~, t ~ R l, is the unique solution of Eq. (1.6) with initial data f0. By 
the observation made at the end of Section 1 

Ixy"~,)( Q • I)=-,.,-f~';JqdV', fo(q,V')X~.t(q,+) (3.26) 

where X~,t(q,~) is the indicator function of the set T (~ ((Qo x I )  - o  2 
n Mr Qo = o -  1Q,4 and fo(q, ~) = P%(Pq' 4). The function L does not 

4 We  use  here  the no ta t ion  p - IQ = (q, E R 2 : oq' E Q }. 
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necessarily belong to the class .fro for any o~ 2 ~ [0, 1/2) and 8 t ~ ( 1 , 3 / 2 -  
a2). However, we can fix a 2 E (0, 1/2), choose 61 ~ ( 1 , 3 / 2 -  a2) and take 
the set 

_ } D o = D o M q ~ ~2 : l max fo(q,4)  < P-"~ 
clp 2 $ ~ s  ~ 

Clearly Lemma 3.5 implies that 

lim s u p  max I~f.(dg'~;~)(x,,Yl;''';x~,Y.)) - [ I  F(xi,Yi) =0 ,  
0--~0 q ~ D o  Y E F ~  i =  1 

n = l , 2 , . . .  (3.27) 

If we set B f  = ( q E R 2 : d i s t ( q ,  Qo) <" p - I t } '  it is clear that  
t 2 A6O 

T(-~ Qo • I )  N Mo,~) C B f  • S ~. Moreover, setting D--o ~ = N ) D o ,  it is 
easily seen by Proposition 3.4, assertion (i), that there is a set f~, Prob(O) 
= 1, such that for ~o ~ ~ and all t E R l 

lim r dq dff 5~(q, +) = 0 (3.28) 
o-,0 a(Bp n ~ ; )  • s '  

Therefore the limit as O ~ 0 of expression on the right-hand side of Eq. 
(3.26) is equal to that of the expression 

A t 

V E re(q) n = 0  

(3.29) 
A A O A 

where B f  ''~ = Bt~ ('1 Dp,  ~q is the measure on S l with density fo(q, "), and 
E(v")(q,t) = {q~ E A v : nt(q,~p) = n and T(P'~)(op t '.'l,tP) E Qo x I ) .  From Eqs. 
(1.2.a,b) and (l.3a, b) we see that 

e~~ 0 

k n + l  = tp E A : "~(J)(q,._ tp) < t < ~,, "~(J)(q,._ +), 
j= l  j= l  

q + 8 ~ , ( q , ; , ( ' ~ ( q ,  ~ * tp),b( ~(q, t p ) ; . . .  ; ,(")(q, tp),b(O)(q,g,)) ~ Qo' 

+ Rn(b*t l ) (q ,+) , . . . , /~( ' ) (q ,  tp)) E I } 
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Let fv denote the middle point of the interval A v and consider the sets 

~?>(q,t) 

= + ~ A v : ~(J>(q, ~)  < t < ~]  "~(J)(q, Lp), 
j=l j=l 

A , A A 

q + 8~_tt(~v;.r('>(q,~),b ()(q,~p) . . . . .  .c('>(q,~p),b('>(q,~)) E Qo, 

•+ ^1 * ^ /  Rn(b( )(q,~) . . . . .  b(n)(q,+)) ~ I~ , ~ ~ re(q) 

where Qp = (q E ~2: dist(q, Qo) <" 2~rt(p~(P))-1)'^ [p = (~P E A : dist(~,I) 
< 2~(x(O))-l). It is easy to see that E(~)(q, t) C Ev(')(q, t). Moreover from 

co the weak convergence, uniform in q E Dp, of the distributions of free path 
lengths and impact parameters, given by Eq. (3.27), and taking into 
account Eq. (3.28), we find 

l i m (  dq E tLq(Ay)lzf,(E(')(q,t)) 
p-~O d~fl, '~ y ~ Fo(q ) 

... dx 1 dx. = exp(-2;u)xnfMdqdq~ fo(q, qJ)f~,+ +~.<, . . .  

Xf[_l, 1],dyl.-.dynXI(t~+ R n ( Y l , ' ' ' , Y n ) )  

xo(q + 8,(')(~; x, , Y, ; " "  x. , y,)) 

which implies (see Ref. 3) 

limsup i~(tA'%)( Q • I) < fQ / ~ d ~  fMdqd ~ gt(q,~;q,~)fo(q,~) 
p-~O X 

= fo• dqdg' f~(q, qO 

where gt denotes the distribution (Green's function) 

O0 

g , ( ~ , ~ 7 ; q , ~ )  = E x"( /~, ...d~.( ay. n=O d x j +  . . .  +x.< J [ - l , l ]  "dy l  " ' "  

(3.30) 

• ~ ( ( g , ~ ) -  (~ + R , ( y , , . . . , y , ) ,  

q + ~>")(+; x, ,  y, ; . . .  ;x , ,  y,))) 
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In a similar way we prove that 

liminfo_~0 ~(t~ Q • I) >~ fQx dqdq~ f~(q,+) (3.31) 

Equations (3.30) and (3.31) imply Eq. (3.25). 
If the condition inf(q,~)~gfo(q,~) = C 1 > 0,does not hold one can 

modify the proof by excluding from the set Bfl '~ the points in which 
fp(q,+) < p2~(p) for some function 7/(p) going to zero slowly enough as 
p ~ 0. Theorem 1.1 is proved. �9 

We now show how the result can be extended to nonsmooth initial 
data fo E Llloc(M). For each N =  1 , 2 , . . . ,  we take a function f(o N) E 
C l(M) such that 

fD ' l f~ f(N)ldqd+ < cN 
N(0)X S 

where limN__,o~e N = 0. Correspondingly, by the above result, one can find a 
set f~(u), Prob(f~(N)) __ 1, such that for ~0 E f~(N) the limiting behavior of the 
Lorentz gas is given by the solution ft (N), t E R 1, of Eq. (1.6) with initial 
data f0 (N) . Now, for any fixed t E N1, and any bounded A E ~3, we have, for 
N '  > N > R = t + sup(q,q0 EAlq[, 

Ldqd~lft(lV)(q,~)- f(N')(q,~)[ <~( JqdqJ[f(oN)(q'~)-- f(oN')(q'q~)[ 
,,'D R (0) x S 

< 2r N 

r(N) X ~ is a Cauchy sequence in LI(A). which shows that the sequence t st J N= 
If we denote by ft the corresponding limit, clearly f~ ~ L~oc(M), and it is 
easily seen, setting 0 = O~=if~ (u), that Prob(fi) = 1, and for ~ E 

lira/~}~ = lim ( ~ dqd~ fo(q,+) = Ldqd+ f,(q,+) 
O-~,O p---~O fiT(f, ,'~ Mo2,,o,,) 

for any bounded A ~ ~3 �9 ft, t ~ R 1, gives a weak solution of Eq. (1.6). 

4. CONCLUDING REMARKS 

As we said in the Introduction, the kinetic equation of Boltzmann for 
the classical Lorentz gas, goes, when we apply the limiting procedure of 
Boltzmann and Grad, into the Fokker-Planck-Kolmogorov equation for 
the limiting Markov process. From Lemma 3.7 it follows that in the limit 
we have a process with independent values. This explains why the Boltz- 
mann equation for the Lorentz gas which we obtain is of the form 

( 3~t + ~ .  Vq)ft(q,+) = l - ' ( P -  ~)ft(q, q0 
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where l is the mean free path,/~ an averaging over directions 

= I 

S d-1 is the surface of the d-dimensional unit sphere, dq/ is the usual 
measure over solid angles and e(q~[ 4/) is the scattering cross section. 

Apparently it is possible to consider other distributions of the 
scatterers centers, not necessarily Poisson. However, such a generalization 
is not a direct consequence of our paper. 

In conclusion we want to say something about the difference between 
the problems which arise in ergodic theory and in kinetic theory (kinetics). 
Ergodic theory is interested in the asymptotic properties, as t goes to 
infinity, of dynamical systems, whereas in kinetic theory we look at the 
behavior of the system for finite times (of the order of the mean free flight 
time). This is the reason for the difference in the methods which are used. 
The basic object of investigation in the ergodic theory of Hamiltonian 
systems are the so-called horospheres, or, more generally, the stable and 
unstable foliations. On the other hand the present paper shows that to 
derive kinetic equations it is sufficient to study the evolution for finite times 
of the spheres which are given by a set of velocity vectors corresponding to 
one point of the configuration space of the system under consideration. 
One can introduce such objects for a large class of potentials, including 
potentials for which horospheres have not been constructed. 
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